
Can Decision Diagrams Overcome
State Space Explosion in Real-Time Verification?

Dirk Beyer and Andreas Noack

Software Systems Engineering Research Group,
Brandenburg Technical University at Cottbus, Germany,

{db|an}@informatik.tu-cottbus.de

Abstract. In this paper we analyze the efficiency of binary decision di-
agrams (BDDs) and clock difference diagrams (CDDs) in the verification
of timed automata. Therefore we present analytical and empirical com-
plexity results for three communication protocols. The contributions of
the analyses are: Firstly, they show that BDDs and CDDs of polyno-
mial size exist for the reachability sets of the three protocols. This is the
first evidence that CDDs can grow only polynomially for models with
non-trivial state space explosion. Secondly, they show that CDD-based
tools, which currently use at least exponential space for two of the pro-
tocols, will only find polynomial-size CDDs if they use better variable
orders, as the BDD-based tool Rabbit does. Finally, they give insight into
the dependency of the BDD and CDD size on properties of the model,
in particular the number of automata and the magnitude of the clock
values.

1 Introduction

Timed automata [1] are a popular modeling formalism for distributed real-time
systems. Several tools for the verification of timed automata exist, e.g. Kro-
nos [19] and Uppaal [4]. One of the main problems in the application of these
tools is the exploding consumption of time for the computation and memory for
the representation of the reachable configurations. Thus a key issue in achieving
practical relevance of verification tools is to investigate efficient data structures
for sets of configurations.

Sets of configurations of timed automata consist of locations and associated
sets of clock assignments. The most common data structure for the representa-
tion of clock assignments are difference bound matrices (DBMs) [14], as used in
Kronos and Uppaal. But DBMs are not efficient for non-convex sets, and the
use of different data structures for locations and clock assignments often leads
to an inefficient representation of configuration sets with many locations.

More recently, binary decision diagrams (BDDs) [12] and clock difference
diagrams (CDDs) [7] (and their variants difference decision diagram [17] and
clock restriction diagram [18]) were used to represent sets of configurations and
were shown to be more efficient than DBMs for many models [7, 9, 11, 17, 18].
Although empirical performance results were published, important questions

H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 193–208, 2003.
c© IFIP International Federation for Information Processing 2003

194 Dirk Beyer and Andreas Noack

remained unanswered: (1) For which models are CDDs smaller than BDDs,
and vice versa? (2) Can CDDs cope with state space explosion, i.e. are there
polynomial-size CDDs for non-trivial sets of configurations with an exponential
number of locations? (3) How large is the gap between the size of the representa-
tions which are actually computed by the tools and the size of the best possible
representations? (4) What can be done to narrow this gap?

To answer these questions, our strategy is to study instructive examples
and use methods that allow generalizations to other practically relevant models.
Therefore, we examine the performance of BDDs and CDDs in the analysis of
three models of communication protocols, two of them exhibiting state space
explosion. For each model, we present not only empirical performance results,
but also a detailed analysis of the BDD and the CDD representation of the
reachability set. Before this main part, the next two sections give a definition
of timed automata and their semantics, and introduce the data structures BDD
and CDD.

2 Timed Automata

This section starts with a formal definition of timed automata similar to that in-
troduced by Alur [1]. It gives definitions of the continuous and discrete semantics
of timed automata. A CDD represents a set of configurations of the continuous
semantics, while a BDD represents a set of configurations of the discrete se-
mantics. A theorem at the end of this section states that both semantics are
equivalent with respect to the reachable locations for timed automata without
strict clock constraints.

2.1 Definition

At first, we define clock constraints, which are allowed as invariants and guards
of a timed automaton. Let X = {x1, . . . , xn} be a set of clocks. Atomic clock
constraints over X are comparisons of a clock with a time constant from N,
the set of natural numbers (including 0). Clock constraints are conjunctions of
atomic clock constraints. Formally, the set Φ(X) of clock constraints over X is
generated by the grammar ϕ := x ∼ c | ϕ ∧ ϕ | true, with x ∈ X, c ∈ N and
∼ ∈ {≤, ≥, <, >}.

A clock assignment of X is a total function from X into R+, the set of non-
negative real numbers. Val(X) denotes the set of all clock assignments of X.
The semantics [[ϕ]] of a clock constraint ϕ is the set of all clock assignments of X
that satisfy ϕ. The clock assignment which assigns the value 0 to all clocks is
denoted by v0. For v ∈ Val(X) and δ ∈ R+, v + δ is the clock assignment of X
that assigns the value v(x) + δ to each clock x. For v ∈ Val(X) and Y ⊆ X,
v[Y := 0] denotes the clock assignment of X that assigns the value 0 to each
clock in Y and leaves the other clocks unchanged.

Decision Diagrams in Real-Time Verification 195

A timed automaton A is a tuple (L, L0, X, Σ, I, E), where

– L is a finite set of locations,
– L0 ⊆ L is a set of initial locations,
– X is a finite set of clocks,
– Σ, with Σ ∩ R+ = ∅, is a finite set of synchronization labels,
– I is a total function that assigns an invariant from Φ(X) to each location

in L,
– E ⊆ L × Σ × Φ(X) × 2X × L is a set of switches. A switch (l, a, ϕ, Y, m)

represents a transition labeled with synchronization label a from location l
to location m.

Complex systems can be described as parallel composition of several timed
automata which communicate through synchronization labels. A composition of
two timed automata with disjoint sets of clocks can be transformed into a single
timed automaton by constructing the product automaton. The locations of the
product automaton are pairs of component locations, and the invariant of a com-
pound location is the conjunction of the invariants of the component locations.
Each two switches of different components with the same synchronization label
are synchronized.

2.2 Continuous Semantics

The semantics of a timed automaton is defined by associating a labeled tran-
sition system with it. The continuous semantics [[A]]C of a timed automaton
A = (L, L0, X, Σ, I, E) is the labeled transition system (L×Val(X), L0×{v0},
Σ ∪ R+, →), with → containing two kinds of transitions:

– Time transitions: For (l, v), (m, w) ∈ L×Val(X) and δ∈R+, (l, v) δ→ (m, w)
holds iff l = m, w = v + δ, v ∈ [[I(l)]] and w ∈ [[I(l)]].

– Discrete transitions: For (l, v), (m, w) ∈ L×Val(X) and a∈Σ, (l, v) a→ (m, w)
holds iff there exists an (l, a, ϕ, Y, m) ∈ E with v ∈ [[ϕ]] and w = v[Y := 0].

Note that discrete transitions to configurations that violate an invariant are
possible, but no time is allowed to pass in such configurations.

For a timed automaton A = (L, L0, X, Σ, I, E) and its continuous semantics
[[A]]C = (L×Val(X), L0×{v0}, Σ∪R+, →) we define the following notions: Let
(q0, q1, ..., qk) be a sequence of configurations from L×Val(X), a0, a1, ..., ak−1 ∈
Σ∪R+, q0∈L0×{v0}, and qi

ai→ qi+1 for all i ∈ {0, 1, ..., k − 1}. Then the con-
figuration qk is reachable. A location l ∈ L is reachable iff there exists a clock
assignment v ∈ Val(X) such that (l, v) is reachable. ReachLoc([[A]]C) denotes
the set of reachable locations of A regarding semantics [[A]]C . We apply analogous
notions for other semantics of A.

2.3 Discrete Semantics

The continuous semantics of a timed automaton has infinitely many configu-
rations. To represent sets of configurations with data structures for finite sets,

196 Dirk Beyer and Andreas Noack

equivalent semantics with finitely many configurations are needed. For proving
that certain locations are not reachable, it is sufficient that the continuous and
the finite semantics have the same set of reachable locations. There exist two
ways to transform the continuous semantics into finite semantics: partitioning
the configurations into equivalence classes [2], and discretization of time. Parti-
tioning into equivalence classes is the basis for the use of DBMs and CDDs, while
discretization is the basis for the use of BDDs, and thus both are needed for the
complexity analyses in Sect. 4. We only sketch the less known discretization of
time in the following.

A discretization of time which is equivalent to the continuous semantics with
respect to the reachable locations exists for all timed automata [15]. However,
we restrict ourselves to the subclass of closed timed automata to allow for a dis-
cretization which is particularly simple and enables efficient reachability analysis.
This restriction is of technical nature, and we did not find examples within our
application area of real-time algorithms and embedded systems for which it is
difficult to construct models using only non-strict constraints.

Closed timed automata have only clock constraints ϕ generated by ϕ := x ≤ c
| x ≥ c | ϕ ∧ ϕ with x ∈ X and c ∈ N, i.e. the relations < and > are not
allowed. The product automaton of two closed timed automata is closed again.
For closed timed automata it is sufficient to use only integer clock values for the
computation of the reachable locations. For a set of clocks X the set of integer
clock assignments ValI(X) is defined to be the set of total functions from X to N.
For a timed automaton A with a clock x, CA(x) denotes the greatest constant
x is compared with in a clock constraint of A. For v ∈ ValI(X) and δ ∈ N, v ⊕ δ
is the clock assignment of X that assigns the value min (v(x) + δ, CA(x) + 1) to
each clock x.

Let A = (L, L0, X, Σ, I, E) be a closed timed automaton. The discrete se-
mantics [[A]]I of A is the transition system (L×ValI(X), L0×{v0}, Σ ∪ N, →I)
with:

– Time transitions: For (l, v), (m, w) ∈ L×ValI(X) and δ ∈ N, (l, v) δ→I (m, w)
holds iff l = m, w = v ⊕ δ, v ∈ [[I(l)]] and w ∈ [[I(l)]].

– Discrete transitions: For (l, v), (m, w) ∈ L × ValI(X) and a ∈ Σ, (l, v) a→I

(m, w) holds iff there exists an (l, a, ϕ, Y, m) ∈ E with v ∈ [[ϕ]], w = v[Y :=
0].

This discrete semantics is equivalent to the continuous semantics defined in
Sect. 2.2 with respect to the reachable locations.

Theorem 1. For every closed timed automaton A, ReachLoc([[A]]C) =
ReachLoc([[A]]I) holds.

The proof for Theorem 1 is given in [9]. Proofs of the location equivalence
of the integer semantics and the continuous semantics for other formalisms than
timed automata can be found in [16] and [5].

Decision Diagrams in Real-Time Verification 197

3 Data Structures for Reachability Sets

The storage and processing of large sets of configurations are the most expen-
sive tasks in the verification of timed automata. Consider, for example, proving
that a timed automaton cannot reach a forbidden location. This can be done by
computing the set of all reachable configurations and checking that this set con-
tains no configuration with the forbidden location. Therefore, the reachability
set has to be represented by a data structure, and this representation is usually
large even for medium-size models. The most common data structure for repre-
senting sets of configurations are Difference Bound Matrices (DBMs) [14]. More
recently, Binary Decision Diagrams and Clock Difference Diagrams were applied
to the verification of timed automata and were shown to be more efficient for
many models [7, 9, 11, 17, 18]. In the following, these two data structures are
introduced.

3.1 Binary Decision Diagrams

A binary decision diagram (BDD) [12] represents a set of assignments for a set
of Boolean variables. In the discrete semantics for timed automata defined in
Sect. 2.3, a configuration consists of the location and the integer values of the
clocks. These can be encoded by bit strings, and thus sets of configurations can
be represented by BDDs.

A BDD is a rooted directed acyclic graph. It consists of decision nodes,
and two terminal nodes called 0-terminal and 1-terminal. Each decision node is
labeled by a Boolean variable and has two children called low child and high child.
A BDD is maximally reduced with respect to two rules: Merge any isomorphic
subgraphs, and eliminate any node whose two children are isomorphic.

The assignments represented by a BDD correspond to the paths from the
root node to the 1-terminal. The variable of a node has the value 0 if the path
descends to the low child and the value 1 if it descends to the high child.

We only deal with ordered BDDs which means that the variables occur in the
same order on any path from the root to a terminal node. For a given variable
order, the representation of a set of assignments is unique.

Figure 2 shows BDD representations for two different variable orders of the
reachability set of the two timed automata in Fig. 1. The locations of the au-
tomata are encoded by binary variables si, and the clocks are encoded by binary

� � � � � � � � � �

� � � � � �� � � � � �
� � � � � � �

� � � � � � � � � �

� � � � � �� � � � � �
� � � � � � �

Fig. 1. Two simple timed automata

198 Dirk Beyer and Andreas Noack

� �

� � � � � �

� � �

� �

� � � � � �

� � �

�

� �

� �� �

� � � � � �� � �� � � � � �

� � � � � �

� � �� � �

� � �

�

Fig. 2. Two BDD representations of the reachability set of the model in Fig. 1

variables xi1 and xi2 (i ∈ {1, 2}). Edges to low children are shown as dotted
lines, and edges to the 0-terminal are omitted.

3.2 Clock Difference Diagrams

Clock Difference Diagrams (CDDs) were derived from BDDs by Behrmann et
al. [7]. Minor variations of CDDs include Clock Restriction Diagrams (CRDs),
which are used in the tool RED [18], and Difference Decision Diagrams (DDDs)
[17]. The only difference is that all CRD and DDD nodes have two outgoing
edges, while CDD nodes can have more than two outgoing edges. But a CDD
node with k outgoing edges can be transformed into k−1 nodes with two outgoing
edges each. So we only need to consider nodes with two outgoing edges and use
the unique name Clock Difference Diagram (CDD) in the following.

Nodes in CDDs can not only be labeled with Boolean variables (like BDD
nodes), but also with inequalities of the form x−y < c, where x and y are clocks
or 0, and c is an integer constant. Figure 3 shows CDD representations for two
different variable orders of the reachability set of the two timed automata in
Fig. 1.

For a fixed variable order, a set of configurations usually has several CDD
representations. So even if for a given variable order the smallest CDD repre-
sentation of a reachability set is significantly smaller than the (unique) BDD
representation, it is not guaranteed that CDD-based tools actually find a repre-
sentation that is smaller than the BDD.

In contrast to BDDs, there is currently no evidence that CDDs can cope with
an explosion of the reachable locations. The only model with an exponential num-
ber of reachable locations for which a polynomial-size CDD representation has
been published is Milner’s scheduler in [17]. However, the state space explosion in

Decision Diagrams in Real-Time Verification 199

� �

� � � � � � � � � �

� �

�

� �

� �� �

�

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

Fig. 3. Two CDD representations of the reachability set of the model in Fig. 1

this model is trivial because there is only a linear number of reachable locations
with pair-wise different reachable clock assignments. In Sect. 4, we show that
there exist non-trivial reachability sets with exponential number of locations,
but polynomial CDD representation.

3.3 Variable Order

The size of BDDs and CDDs is highly dependent on the variable order. Consider
a generalization of Fig. 1 to n automata. For the variable order s1, x1, ..., sn, xn

the BDD and the CDD representation of the reachability set have O(n) nodes,
while for the variable order s1, ..., sn, x1, ..., xn the BDD and the CDD have
O(2n) nodes.

We denote the second type of variable order, where the locations of the au-
tomata precede the clock values, as location-first variable orders. The simple
example indicates a general problem: The number of reachable locations is often
exponential in the number of automata. If the reachable clock assignments are
different for most of the reachable locations, the size of the BDD or CDD repre-
sentation using location-first variable orders grows at least as fast as the number
of reachable locations. The CDD-based tool RED [18] and the CDD implemen-
tation described in [7] use location-first variable orders, while the BDD-based
tool Rabbit [8] applies techniques for finding good variable orders.

Because finding the optimal variable order of a BDD is algorithmically in-
tractable [10], Rabbit applies heuristics. Like Aziz et al.’s approach for com-
municating finite automata [6], the heuristic optimizes the variable order with
respect to a size estimate for the BDD representation of the reachability set. This
estimate is derived from an upper bound for the size of the transition relation
which is proven in [9].

200 Dirk Beyer and Andreas Noack

Research in the verification of finite automata has shown that besides vari-
able ordering, several other techniques can considerably improve the efficiency
of BDD implementations [13]. Some of these techniques, like partitioning tran-
sition relations, and modified breadth first search to minimize the BDD size of
intermediate results, were adapted for the use in Rabbit [9].

4 Case Studies: Three Protocols

In this section, we examine the sizes of BDDs and CDDs for the reachability
sets of three models of communication protocols. To show how the data struc-
tures deal with state space explosion, we chose two models (Fischer, CSMA/CD)
which exhibit exponential growth of the reachable locations. For comparison, we
used one more deterministic model (FDDI) with linear growth of the reachable
locations.

As empirical results, we present memory requirements and runtimes for the
tools RED [18] version 3.1, which is based on location-first CDDs, Rabbit [8]
version 2.1, which is based on BDDs with automatic variable ordering, and
(for comparison) Uppaal2k [4] version 3.2.4 (without approximation), a popular
and highly optimized DBM-based tool. The runtimes are given in seconds of
processor time on a Linux PC with 1 GHz AMD Athlon processor. The memory
requirements for the representation of the reachability sets are given in BDD
nodes for Rabbit. (One BDD node including supporting data structures takes
about 26 bytes.) Because we have no access to such precise measures for RED
and Uppaal, the overall memory requirements in MByte are given for these tools.
Empty table entries mean that more than 7200 seconds of processor time or more
than 400 MBytes of memory were consumed.

Besides empirical results, we give for each model a detailed analysis of the
size of the smallest BDD, the smallest CDD, and the smallest location-first CDD
representation of the reachability set. The analyses complement the empirical
results in three ways. First, they explain the empirical results. Knowledge of
the causes of inefficiencies is essential for systematic improvement. Second, they
enable us to assess the potential of techniques that are not yet implemented,
like variable ordering for CDDs. Third, analytical results can be generalized
from the analyzed models to other models which allow the same (or a similar)
argumentation.

The size of the BDD or CDD of the reachability set is not the only factor
that determines the performance of reachability analysis. Other important fac-
tors include the size of intermediate BDDs or CDDs and the representation of
the transition relation. It is possible to apply our analysis techniques also for
intermediate BDDs and CDDs, but for brevity, we do not consider these factors
explicitly here. The runtime measurements for all three models show that the
overall performance, including the computation of intermediate representations,
does not deviate drastically from the analytical results for the reachability sets.

Decision Diagrams in Real-Time Verification 201

4.1 Fischer’s Protocol for Mutual Exclusion

Model description. The model of Fischer’s timing-based mutual exclusion
protocol is composed from n instances of the timed automaton depicted in
Fig. 4, each modeling one process. They communicate through a shared vari-
able k (0 ≤ k ≤ n). The variable k could be modeled as additional automaton,
but we prefer a more compact notation. The initial value of k is 0, which means
that no process tries to enter the critical section. When k �= 0, the kth process
is scheduled to enter the critical section or already stays there.

Each automaton has four locations. Initially it is in Uncritical. If no other
process tries to enter the critical section (k = 0), it can move to Assign. Process i
needs less than c time units for the assignment k := i. This is modeled by the
clock xi, which measures the time spent in Assign, and the invariant of Assign,
which forces the automaton to leave the location before xi is c. The transition
to Wait sets k to i. After the process has stayed in Wait for c time units, it is
guaranteed that no process is in location Assign. The process is allowed to enter
the critical section if the value of k still is its identifier i, otherwise it has to go
back to Uncritical.

Complexity analysis. Consider the protocol with n ≥ 2 processes. The
location of each process automaton can be encoded by 2 bits and the value of k
by ld(n + 1)� bits for a total of Θ(n) bits. (ld denotes the logarithm to base 2.)

For each clock xi, the values greater or equal c do not need to be distinguished
(see Sect. 2.3), and are therefore represented by the single value c. So Θ(n ld c)
bits are needed to encode the n clocks in the BDD representation.

An (up to a constant factor) optimal BDD variable order is: k, location
of process 1, x1, ..., location of process n, xn. (See [6, 9] for information about

� � � � 	
 	 � � �

 � 	
� � 	
 	 � � �

� � � 	 � �

� � � � � �

	 � � � �

	 � � � �

� � � � � � �

� � � � � �

	 � � � �

	
 � � � �

	 � � � �

� � � � � � � � � � � � � � �

	
 � � � �

� � � � � � �

processes 4 5 6 7 8 10 12 14 16 32 64 128
Uppaal, sec 0.06 1.44 181 32488

MByte 1.2 3.7 24.6 352
RED, sec 1.64 6.78 21.7 60.7 168 1400

MByte 1.9 1.9 2.1 2.4 3.1 8.9
Rabbit, sec 0.04 0.08 0.15 0.26 0.50 1.35 1.61 3.81 6.50 61.4 559 5200

BDD nodes 326 544 812 1129 1497 2375 3450 4720 6190 24983 100200 401161

Fig. 4. Fischer’s protocol: timed automaton for the ith process and performance results

202 Dirk Beyer and Andreas Noack

variable ordering.) A corresponding CDD variable order is obtained by replacing
each xi by xi − 0, 0 − xi, and all xi − xj , xj − xi with j ∈ {i+1, ..., n}.

The model can reach the following configurations:

1. k = 0
When k = 0, every configuration is reachable where every process i (1≤i≤n)
is in one of the locations Uncritical with xi = c, Assign with xi ≤ c − 1, or
Wait with xi = c. However, at least one process must be outside Wait, else
k �= 0.
So the only fact about the configurations of the processes 1, ..., i − 1 (1<i≤n)
that influences the possible configurations of the remaining processes i, ..., n
is if any of the processes 1, ..., i − 1 is outside Wait. Because there are only
two possibilities, the set of configurations can be represented by a BDD of
Θ(2n ld c) = Θ(n ld c) nodes or a CDD of Θ(2n) = Θ(n) nodes.
A location-first CDD representation has Ω(2n) nodes, because 2n of the 3n−1
reachable locations have different reachable clock assignments.

2. 1 ≤ k ≤ n

Then process k must be in the location Wait or Critical.
(a) Process k is in Wait.

Then every process i (i �= k) can be in Uncritical with xi = c, in Wait
with xi ≥ xk, or in Assign with xi ≥ xj , where j is the process that has
the maximum clock value among all processes in location Wait having
clock values smaller than c.
To ensure that the processes i, ..., n satisfy these constraints, knowledge
of the value of k and three clock values of the processes 1, ..., i − 1 is
needed: the smallest clock value of the processes in location Assign, and
the smallest and largest clock value of the processes in location Wait. So
the BDD representation has Θ(c3n2 ld c) nodes.
In the smallest CDD, the representation of the processes depends on
the value of k and the identifier j ∈ {1, ..., n} of the process in location
Assign with the smallest clock value (or alternatively the identifier of the
process in location Wait with the largest clock value smaller than c). So
the smallest CDD representation has Θ(n3) nodes.

(b) Process k is in Critical.
Every other process i (i �= k) can be in Uncritical or Wait with xi = c.
Thus the asymptotic complexity is for the BDD Θ(n ld c) and for the
CDD Θ(n).

So the overall size is Θ(c3n2 ld c) for the BDD, Θ(n3) for the smallest CDD
and Ω(2n) for the location-first CDD. The time and space used by the BDD-
based tool Rabbit (see Fig. 4, c = 2) conforms to the analytical result for BDDs,
and the measurement data for the CDD-based tool RED conform to the analyt-
ical result for location-first CDDs. The large gap between the analytical results
for the smallest and the location-first CDD shows that better variable orders are
necessary to cope with the explosion of the reachable locations.

Decision Diagrams in Real-Time Verification 203

4.2 CSMA/CD Protocol

Model description. The model of the CSMA/CD protocol consists of one
automaton for the medium and n automata for senders, as depicted in Fig. 5
(cf. [19]). The signals begini, endi and busyi exist for each sender i for commu-
nication with the medium. The shared signal cd indicates a collision. As long
as the medium is unused, the automaton is in the location Init. The medium
synchronizes with signal begini, if the sender i wants to use the medium. The
clock x measures the time that elapsed since the start of the transmission. If
another sender starts to transmit within the propagation time of σ time units,
then the medium switches to location Cd and both senders receive the signal cd
indicating a collision. After no other sender started to transmit within σ time
units, the medium answers requests from another sender j by the signal busyj .

If a sender in the location Init wants to transmit data, it switches to the
location Send. Because of the invariant of this location it has to move to the
next location immediately. If the medium is not used (i.e. it is in state Init), then
the sender and the medium synchronously switch to location Transm. Now the
sender can transmit data for λ time units (λ > σ), measured by clock xi. After
finishing the transmission the sender releases the medium with signal endi. If
another sender enters location Transm within the propagation time σ then all
senders receive the signal cd, and the transmitting senders switch to the location
Cd. After a random delay of at most 2σ time units the senders try again to access
the medium.

� � 	
 � � � � � �

� � �

�
 � � � � � �

� � � � �

� � � � � � �

�
 � � � �
� �

� � � � �

� � � � � � �

�
 � � � �

� � � � �

� � � � � �
� � � � �

� � � � � �

� � � � �

�
 � � � � � �

� � � � � � �

�
 � � � �
� � � � �

� � � � � � �

�
 � � � �

� � � � � � �

� � � � �

�
 � � � � � �

� � 	

� �

� � � �

� � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

	 � �

� � � � � � �

� � � � � 	

� � � � �

� �
 � � � 	 � �

	 � �

� � � � � �

� � � � � �	 � �� � � � � � �

	 � �

� � � � � 	

� � � � � 	 � �

senders 2 4 6 8 10 12 14 16 32 64 128
Uppaal, sec 0.01 0.03 5.1

MByte 1.2 1.2 6.1
RED, sec 0.05 0.28 1.15 5.88 41.4 516

MByte 1.9 2.1 2.4 4.5 15.9 75
Rabbit, sec 0.02 0.08 0.23 0.49 0.82 1.28 1.83 2.69 12.6 62.9 367

BDD nodes 103 329 561 793 1025 1257 1489 1721 3577 7289 14713

Fig. 5. CSMA/CD protocol: timed automata for the medium for two senders (left) and
for the ith sender (right); performance results

204 Dirk Beyer and Andreas Noack

Complexity analysis. Consider the protocol with n > 2 senders. The lo-
cations of the medium and the n senders can be encoded by Θ(n) bits, and the
values of the n clocks are encoded by Θ(n ld λ) bits in the BDD representation.

An (up to a constant factor) optimal variable order is: location of the medium,
x, location of sender 1, x1, ..., location of sender n, xn.

The model can reach the following configurations:

1. The medium is in Init.
Then every sender i (1 ≤ i ≤ n) can be in any of the locations Init with
xi = λ + 1, Send with xi = 0, and Cd with 0 ≤ xi ≤ 2σ.
These configurations can be represented by a BDD with Θ(n ld λ) nodes or
a CDD with Θ(n) nodes.
However, all of the 3n reachable locations have different sets of reachable
clock assignments, so the smallest location-first CDD has Ω(3n) nodes.

2. The medium is in Transm.
Then exactly one sender k is in Transm, and the clock xk of this sender
equals the clock x of the medium. Again, every sender i (i �= k) can be in
any of the locations Init with xi = λ+1, Send with xi = 0, and Cd. However,
because no sender can move to location Cd while x < σ (without forcing the
medium to leave Transm), the possible values of xi depend on x if sender i
is in Cd.
These clock dependencies only change the constant factor in the smallest
CDD size, so it is Θ(n). But they contribute a factor of Θ(σ) to the BDD
size, yielding Θ(nσ ld λ).

3. The medium is in Cd.
Then exactly two senders k1 and k2 are in Transm. Let xk1 ≥ xk2 . Because
the medium could only move from Transm to Cd when x = xk1 < σ, we have
xk1 < x + σ and xk2 < x + σ.
Every sender i �∈ {k1, k2} can be in any of the locations Init with xi = λ + 1,
Send with xi = 0, and Cd with xi ≥ xk1 (because no sender entered Cd since
the medium moved from Init to Transm).
To ensure that the senders i, ..., n (1 < i ≤ n) satisfy these constraints,
knowledge of the value of x and two clock values of the processes 1, ..., i − 1
is needed: the value of the largest clock value of a sender in Transm, and the
value of the smallest clock value of a sender in Cd. This leads to a BDD with
Θ(nσ3 ld λ) nodes.
The dependencies on x do not significantly increase the size of the small-
est CDD, but the representation of every sender depends on the identifier
j ∈ {1, ..., n} of the sender in location Transm with the largest clock value
(or alternatively the identifier of the sender in location Cd with the smallest
clock value). So the smallest CDD representation has Θ(n2) nodes.

So the overall size is Θ(nσ3 ld λ) for BDDs, Θ(n2) for smallest CDDs and
Ω(3n) for location-first CDDs. The analytical result for BDDs conforms to the
empirical data for Rabbit in Fig. 5 (σ = 1, λ = 4), and the result for location-
first CDDs roughly conforms to the empirical data for RED in this table. Like for
Fischer’s protocol, the number of reachable locations explodes with growing n,

Decision Diagrams in Real-Time Verification 205

and consequently the location-first CDDs are much greater than the smallest
CDDs for better variable orders.

4.3 Token Ring FDDI Protocol

Model description. The model of the FDDI protocol consists of one automaton
for the token ring and n automata for the stations, as depicted in Fig. 6 (cf. [20]).
Station i gets the token by receiving the signal tti (take token). After the data
transmission, it returns the token to the ring by sending the signal rti (release
token). The clock x and the invariants of the locations RingTok ensure that the
ring immediately transmits the token to station i + 1 (mod n).

Each station has the modes waiting for token, synchronous transmission and
asynchronous transmission. According to the roles of the two clocks xi and yi, we
distinguish six locations: In the locations z Idle, z Sync and z Async the clock zi

measures the time that elapsed since the start of the previous transmission of
station i. The clock yi is reset when receiving the signal tti and ensures that

� 	 � � � � �

� 	 � � � � �

� 	 � � �

� 	 � � �

� � � � �

� � �
�

�
 � � � �

� � � � �

	 � �
�

�
 � � � �

� � �
�

�
 � � � �

	 � �
�

�
 � � � �

� � � � �

� � � � � �

� � � � � � � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

	 � � �
�

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � � � �

�
 � � � � � � � � � �

	 � � �
�

� � � � � � �

� � � � � � �

� � � � � � � � �

�
 � � � � � � � � � �

� � � � � � �

� � � � � � � � �

� � � �
� � � � � � � � � � �

� � � � � � � � �

� � � � � � �

� � � � � � � � �

� � � �
� � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �

stations 2 4 6 8 10 12 14 16 32 64
Uppaal, sec 0.01 0.03 0.16 1.42 18.2 279 4530

MByte 1.2 1.2 2.2 3.0 7.4 30.3 151
RED, sec 0.02 0.09 0.26 0.61 1.18 2.16 3.62 6.31 157 2550

MByte 1.30 2.07 2.26 2.49 2.79 3.13 3.47 3.92 9.84 35.8
Rabbit, sec 0.04 0.25 0.99 4.20 11.4 26.9 49.8 142

BDD nodes 350 4211 18501 64505 151737 305523 501305 993673

Fig. 6. FDDI protocol: timed automata for the ring for two stations (top) and for the
ith station (bottom); performance results

206 Dirk Beyer and Andreas Noack

the time for the synchronous transmission in location z Sync does not exceed sa.
After the synchronous transmission, the station is permitted to transmit data in
the asynchronous mode if the time since the previous transmission (as measured
by zi) is smaller than ttrt (target token rotation time). In the locations y Idle,
y Sync and y Async the clocks yi and zi swap their roles.

Complexity analysis. Consider the protocol with n ≥ 2 stations. The loca-
tions of the ring and the n stations can be encoded by Θ(n) bits, and the values
of the 2n clocks are encoded by Θ(n ld ttrt) bits in the BDD representation.

An (up to a constant factor) optimal variable order is: location of the ring,
x, location of station 1, y1, z1, ..., location of station n, yn, zn.

We start with the characterization of the reachable locations and then pro-
ceed with the reachable clock assignments. Regarding the locations, let the ring
automaton be in RingTok or Ringk. Consider two cases concerning the location
of station 1:

1. Station 1 is in z Idle, z Sync or z Async.
If k = 1, then all stations i with i > 1 are in z Idle. If k > 1, then all stations i
with i < k are in z Idle, and all stations i with i > k are in y Idle. Station k
is in y Idle if the ring is in RingTok, and in y Sync or y Async if the ring is in
Ringk.

2. Station 1 is in y Idle, y Sync or y Async. (Analogous to the first case.)

So only 6n locations are reachable, and the possible locations of the stations
i, ..., n (i≥2) are completely determined by the location of the ring and station 1.
Consequently, the representation of the locations has Θ(n2) BDD nodes.

Let us now consider the clock values. Again, let the ring automaton be in
RingTok or Ringk.

1. Station k is in z Idle, z Sync or z Async.
Then yk+1 = ... = yn = z1 = ... = zk−1 = ttrt+1 and yk ≤ yk−1 ≤ ... ≤
y1 ≤ zn ≤ ... ≤ zk. Although this characterization is not entirely precise
(e.g., even yk + sa ≤ yk−1 holds), it is sufficient for the estimation of the
BDD and CDD size. It implies two dependencies between the clocks of the
stations 1, ..., i − 1 (1 < i ≤ n) and the clocks of the stations i, ..., n:
– If i ≤ k then yi ≤ yi−1 else zi ≤ zi−1, and
– y1 ≤ zn.

2. Station k is in y Idle, y Sync or y Async. (Analogous to the first case.)

In the BDD representation, the two clock dependencies contribute a factor
of Θ(ttrt2) to the number of nodes, yielding an overall size of Θ(n2ttrt2 ld ttrt).
The data in Fig. 6 was created with ttrt = 2n + 1 and sa = 1, so we expect a
BDD size of Θ(n4 ld n), which agrees with the BDD size data for Rabbit.

In the smallest CDD, the representation of the clock dependencies only re-
quires a constant-factor extension of the representation of the locations, so the
overall number of nodes is in Θ(n2). Fig. 6 shows that the tool RED, which
is based on location-first CDDs, actually achieves polynomial performance. Be-
cause the number of reachable locations is small, the location-first variable order
is appropriate here.

Decision Diagrams in Real-Time Verification 207

5 Conclusion

We examined for three models of communication protocols how the size of the
BDD and the CDD representation of the reachability set depends on two prop-
erties of the models: the number of automata and the magnitude of the clock
values. The results are summarized in Fig. 7. These analyses answer the four
questions of the introduction:

(1) While the size of CDDs is almost independent of the magnitude of the
clock values, the size of BDDs is very sensitive to large clock values. (The latter
was observed before e.g. in [3].) On the other hand, BDDs with good variable
orders are least sensitive to the number of automata, but smallest CDDs with
good variable orders are only slightly worse. (2) So there exist polynomial-size
CDDs for non-trivial sets of configurations with an exponential number of loca-
tions. (3) But, in contrast to the BDD-based tool Rabbit, the time and space
used by the CDD-based tool RED is usually at least exponential for these mod-
els. (4) This aspect of the performance will not be competitive to BDDs until
CDD-based tools use techniques for finding better variables orders, as Rabbit
does.

So there exist CDDs which combine the advantages of DBMs and BDDs –
independence of the magnitudes of clock values and robustness against state
space explosion – in the verification of practical distributed systems. Work on
variable ordering is a necessary step towards tools that find them.

Data structure BDD CDD CDD
Variable order interleaved interleaved location-first
Fischer (Sect. 4.1) Θ(n2c3 ld c) Θ(n3) Ω(2n)
CSMA/CD (Sect. 4.2) Θ(nσ3 ld λ) Θ(n2) Ω(3n)
Token Ring FDDI (Sect. 4.3) Θ(n2ttrt2 ld ttrt) Θ(n2) Θ(n2)

Fig. 7. Summary of the decision diagram sizes. n denotes the number of processes
(Fischer) or senders (CSMA/CD, FDDI), and c, σ, λ, and ttrt are constants from
clock constraints of the models.

References

1. Rajeev Alur. Timed automata. In Proc. CAV’99, LNCS 1633, pages 8–22. Springer,
1999.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

3. Rajeev Alur, Alon Itai, Robert P. Kurshan, and Mihalis Yannakakis. Timing ver-
ification by successive approximation. Information and Computation, 118(1):142–
157, 1995.

4. Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexan-
dre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen,
M. Oliver Möller, Paul Pettersson, Carsten Weise, and Wang Yi. Uppaal - now,
next, and future. In Proc. MOVEP’00, LNCS 2067, pages 99–124. Springer, 2001.

208 Dirk Beyer and Andreas Noack

5. Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of delays in timed
automata and digital circuits. In Proc. CONCUR’98, LNCS 1466, pages 470–484.
Springer, 1998.

6. Adnan Aziz, Serdar Tasiran, and Robert K. Brayton. BDD variable ordering for
interacting finite state machines. In Proc. DAC’94, pages 283–288. ACM Press,
1994.

7. Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi.
Efficient timed reachability analysis using clock difference diagrams. In Proc.
CAV’99, LNCS 1633, pages 341–353. Springer, 1999.

8. Dirk Beyer. Efficient reachability analysis and refinement checking of timed au-
tomata using BDDs. In Proc. CHARME’01, LNCS 2144, pages 86–91. Springer,
2001.

9. Dirk Beyer. Improvements in BDD-based reachability analysis of timed automata.
In Proc. FME’01, LNCS 2021, pages 318–343. Springer, 2001.

10. Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers, 45(9):993–1002, 1996.

11. Marius Bozga, Oded Maler, Amir Pnueli, and Sergio Yovine. Some progress in
the symbolic verification of timed automata. In Proc. CAV’97, LNCS 1254, pages
179–190. Springer, 1997.

12. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transaction on Computers, C-35(8):677–691, 1986.

13. Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan, and
David L. Dill. Symbolic model checking for sequential circuit verification. IEEE
Transactions on CAD, 13(4):401–424, 1994.

14. David L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Proc. Automatic Verification Methods for Finite State Systems,
LNCS 407, pages 197–212. Springer, 1990.

15. Aleks Göllü, Anuj Puri, and Pravin Varaiya. Discretization of timed automata. In
Proc. Decision and Control, pages 957–958, 1994.

16. Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital
clocks? In Proc. ICALP’92, LNCS 623, pages 545–558. Springer, 1992.

17. Jesper Møller, Jakob Lichtenberg, Henrik R. Andersen, and Henrik Hulgaard. Dif-
ference decision diagrams. In Proc. CSL’99, LNCS 1683, pages 111–125. Springer,
1999.

18. Farn Wang. Symbolic verification of complex real-time systems with clock-
restriction diagram. In Proc. FORTE’01, pages 235–250. Kluwer, 2001.

19. Sergio Yovine. Kronos: A verification tool for real-time systems. Software Tools
for Technology Transfer, 1(1-2):123–133, 1997.

20. Sergio Yovine. Model checking timed automata. In Lectures on Embedded Systems,
LNCS 1494, pages 114–152. Springer, 1998.

	Can Decision Diagrams Overcome State Space Explosion in Real-Time Verification?
	1 Introduction
	2 Timed Automata
	2.1 Definition
	2.2 Continuous Semantics
	2.3 Discrete Semantics

	3 Data Structures for Reachability Sets
	3.1 Binary Decision Diagrams
	3.2 Clock Difference Diagrams
	3.3 Variable Order

	4 Case Studies: Three Protocols
	4.1 Fischer's Protocol for Mutual Exclusion
	4.2 CSMA/CD Protocol
	4.3 Token Ring FDDI Protocol

	5 Conclusion
	References

