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Abstract. This paper describes a method to accelerate the generation of shape 
primitives for N-dimensional images NX . These shape primitives can be used 

in conditions for topology preserving erosion or skeletonization in N-
dimensional images. The method is based on the possibility to describe primi-

tives for intrinsic dimensions 1N N= −% by quadratic equations of the form 
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1   Introduction 

In [4-9], a general principle for morphological operations in cubic tessellated binary 
images NX  was described. One of its major applications is the skeletonization opera-

tion, which can be described as a conditional erosion operation. The conditions to the 
erosion are topology preservation conditions which are in this case constituted out of 
sets of structuring elements or mask. These sets can be partitioned in a number of 
sub-sets, e.g., for three dimensional images one can distinguish subsets that preserve 
volumes, surfaces, surface-ends, curves, curve-ends and single voxel objects. The 
subsets for topology preservation of surfaces and curves are made of so-called shape 
primitives, which are –in short- all possible ways a non-bifurcating surface or a curve 
intersects a 33 neighbourhood. We have elaborated on the connectivity paradox for 
high-dimensional images and, considering the fact that one likes to have the highest 
possible curvature to describe foreground objects, it is preferable to select the highest 
connectivity for foreground objects and the lowest for background objects. The to-
pology preservation conditions are generated out of the shape primitives by properly 
intersecting foreground and background primitives. For three-dimensional images, 
the intersections of foreground surface primitives with background curve primitives, 
yield the surface preservation conditions; they specify all possible ways in which a 
foreground surface is possibly “pierced” by a background curve. This happens when 
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the central voxel swaps value from foreground to background. The same principle 
holds for the curve preservation conditions; they specify all possible ways in which a 
foreground curve is possibly “sliced” by a background surface. This, again, happens 
when the central voxel swaps value from foreground to background.  

As we designed a general principle for skeletonization in cubic tessellated binary 
images NX , based on the hit-or-miss transform [10], we came in [8] with a method 

that can be used to generate shape primitives up to NX . It is a bootstrapping method, 

in which starting from a single voxel we gradually generate the shape primitives for 
ever higher object dimensions: A single voxel with two adjacent mutually not con-
nected neighbour voxels form all possible space curve primitives. A voxel encircled 
by a closed space curve constitutes all surface primitives. We noticed also that as a 
consequence, the surface primitive is 18-connected and its behaviour can be described 
by a quadratic equation. This can also be used to measure the surface area of objects. 

If we come to skeletonization in four dimensional images, the skeletonization pro-
cedure is identical to that in 3D and 2D, the question is only to find the suitable shape 
primitives. As was suggested in [8], the 3D procedure could be extended to 4D. In 4D 
we find space curves, curved surfaces, curved volumes and a hyper-volume. We 
stated that encircling a central voxel by surface patches generates the curved volumes; 
much alike a football is made out of leather patches. However, in practise this is a 
recursive procedure that takes almost infinite time to generate all possible situations. 
As a consequence, in this paper we describe a method to speed up the generation of 
shape primitives, starting from their quadratic descriptions. 

2   Connectivities in N Dimensional Images 

A set is connected if each pair of its points can be joined by a path along points that 
are all in the set, [3]. Within a square tessellated two-dimensional image with objects 
on a background, the objects can be chosen to consist of pixels connected with one or 
more of their 8 neighbours at (E, NE, N, NW, W, SW, S, SE) but as a consequence 
the background pixels must be connected with one or more of their 4 neighbours at 
(E, N, W, S) [1], or vice versa. This paradox extends to higher dimensions. 

Tessellation in higher dimensions is also known as honeycombing. Coxeter [2] 
proved that the only regular honeycomb, i.e., a single regular identical cell on a lat-
tice, which exists in all dimensions N, is the cubic honeycomb. This leaves hyper-
cubic honeycombing as the only way to set-up a method that is able to operate from 
low to high dimensions. In [5], [6], we derived expressions to generate xN , the con-
nectivity between elements for N dimensional cases, i.e. the connectivities for 3N  

neighbourhoods in 3D are 6 18 26, ,N N N  and in 4D are 8 32 64 80, , ,N N N N . An object in 
a binary image NX  is defined as a set of mutually connected image elements with the 

same value. Generally the highest connectivity is chosen as foreground connectivity. 
Consequently, the connectivity of an object is the highest connectivity between any 
two adjacent elements (pixels, voxels, …) within that object. If an image has more 
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than one object, we assume that all objects have the same value 1. The set of all ob-
jects in an image is the image foreground. When we define a basic object as a non-
forking object with arbitrary shape and connectivity having a single intrinsic dimen-

sion N%  with: 0 N N≤ ≤% , we can categorize them as in Table 1. 

Table 1.  Intrinsic dimensions of basic objects 

Dimension Intrinsic 
dimension 

Basic object type Non-linear form 

N=1 Ñ = 0 Point  
 Ñ = 1 Line  
N=2 Ñ = 0 Point  
 Ñ = 1 Line Curve 
 Ñ = 2 Plane  
N=3 Ñ = 0 Point  
 Ñ = 1 Line Space Curve 
 Ñ = 2 Planar Curved Surface 
 Ñ = 3 Volume  
N=4 Ñ = 0 Point  
 Ñ = 1 Line Space Curve 
 Ñ = 2 Planar Curved Surface 
 Ñ = 3 Volume Curved Volume 
 Ñ = 4 Hyper-Volume  

 
 
 

An example of a basic object is a non-bifurcating 18-connected curved surface in 3X . 

Another example is a non-forking 26-connected space curve in 3X . Note that curving 

is only possible when 1 1N N≤ ≤ −% . For 0N =%  the basic object's size is the unit size, 

which prevents curving. For N N=% the basic object's structure spatially fills all di-
mensions and leaves no freedom for curving in another dimension. The degree of 

freedom for a basic object to curve is N N− % . Basic objects are tessellated from shape 

primitives with a single intrinsic dimension N%  only. 
In contrast with a basic object, we can define a compound object as an object of 

any arbitrary shape and size composed of one or more basic objects. Commonly a 
compound object is referred to as “object”. It can bifurcate. Compound objects are 
tessellated from shape primitives from any intrinsic dimension. Examples in 3X  are 

objects composed of a number of volumes and / or surfaces and / or space curves, and 
in 2X objects composed of a number of planes and / or curves. 

Compound objects can be thinned from an intrinsic dimension N%  to a lower intrin-
sic dimension 1N −%  by eroding them until the topology preservation conditions for 
dimensions 1N N≤ −% %  prevent further thinning. These conditions for intrinsic dimen-

sion N% are found by intersecting foreground and background shape primitives of N% . 
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 As to each shape primitive, e.g., in 3D, an area or length contribution can be 
given, the total area of object boundaries or the length of space curves can be calcu-
lated by adding up the contributions of the primitive occurrences within an object. 

3   The Generation of Shape Primitives in XN 

In [8], we defined Table 2, which gives per dimension N the relations between a 
shape primitive of object dimension N% , the connectivity of the neighbour voxels to 
the Central Element (CE), the number of neighbour voxels connected to the central 
element (NE), and the recursive connectivity (RC). For example, a curved surface in 
3D, (N, N% ) = (3,2), has at least 4 neighbour voxels 18-connected to its central voxel. 
The neighbour voxels are mutually 26-connected (they are a closed space curve).  

 

Table 2.  Dimension, intrinsic dimension and connectivity for various shapes 

N, N%  Foreground 
shape primitive 

CE NE RC Background 
shape primitive 

CE NE RC 

(2,2) Flat surface 4 4 - Point - - - 
(2,1) Curve 8 2 - Curve 4 2 - 
(3,3) Flat volume 6 6 - Point - - - 
(3,2) Curved surface 18 ≥ 4 26 Space curve 6 2 6 

(3,1) Space curve 26 2 - Curved surface 18 ≥ 4 6 

(4,4) Flat hyper-volume 8 8 - Point - - - 
(4,3) Curved volume 32 ≥ 6 64 Space curve 80 2 8 

(4,2) Curved surface 64 ≥ 4 80 Curved surface 64 ≥ 4 8 

(4,1) Space curve 80 2 - Curved volume 32 ≥ 6 8 

 
 

Table 2 specifies the algorithms with which the primitives can be generated: 

! A curve primitive in 3X is formed by a central voxel connected to two mutually 

not connected voxels. The curve roams over the 26-connected positions 
! A curved surface primitive in 3X is formed by a central voxel encircled by a 

closed space curve. This curve is 26-connected but is 18-connected to the central 
voxel 

! A curve primitive in 4X is formed by a central voxel connected to two mutually 

not connected voxels. The curve roams over the 80-connected positions. 
! A curved surface primitive in 4X is formed by a central voxel encircled by a 

closed space curve. The curve is 80-connected but it is 64-connected to the cen-
tral voxel 

! A curved volume primitive in 4X is formed by a central voxel encircled by a 

closed set of surface patches. Each patch is a surface primitive. The surface 
patch is 64-connected but is 32-connected to the central voxel 
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These rules can be used to generate primitives as in figures 1-5. However, for dimen-
sions higher than 3 this becomes cumbersome because of the recursive nature of the 
algorithms. Using quadratic equations to generate candidates for intrinsic dimen-
sions 1N N= −%  speeds up this generation considerably.  Fig. 1 shows the set of space 
curve primitives for 3X . Masks a and b form the 6-connected background set. Masks 

b...l form the 26-connected foreground set. Note that the masks {b, c f, i} form the set 
of masks that is used as the foreground set of curves in 2X , and the masks {a, b} 

form the background set in 2X . The curves of the foreground set in 2X are described 

(and can hence be generated) by: 

( ) { } ( )
2

, 0, 0.5, 1   1

y ax bx

with a b and a b

= +

∈ ± ± + ≤
 

(1) 

Which generates a set of 7 curves, of which 3 are mirrored versions of others: 
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Fig. 1. The relation between the 4- and 8-connected curve primitives in 2X  and the 6- and 26-

connected curve primitives in 3X  
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Observe in fig. 1 that the 8N curve primitives in 2D {b, c, f, i} [4] are a subset of the 
26N curve primitives in 3D. In 2X  they stay in the x-z plane. Note that another 

method to generate the 3D curve primitives {d, e, g, h, j, k, l}  from the 2D curve 
primitives, is by exploring the newly obtained degree of freedom in the y direction. 
All non-central voxels are permuted over the ordinates y = {-1, 0, 1}. See, e.g., {j, k, 
l}, that have been derived from i. 

 
 

 

Fig. 2. The 18-connected surface primitives in 3X  

Fig. 2 shows the set of foreground curved surface primitives for 3X . In geometry, 

two lines span a plane. Likewise two space curves may span a curved surface.  This is 
shown by the surface primitive of mask a, which is spanned by two perpendicular 
versions of mask i of fig. 1 (the quadratic mask). The reason for this is that the sur-
faces of the foreground set in 3X are described (and can hence be generated) by: 

{ }
2 2

( , , , ) 0, 0.5, 1

( 1) ( 1)

z ax bx cy dy

with a b c d

and a b and c d
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(3) 

( ) ( ) ( ) ( )( ) ( ) ( )( )0 0 0 0 0 0a b c d b cand ≥ ∧ ≥ ∧ ≥ ∧ ≥ ∨ > ∧ <  (4) 

This generates a set of 22 surfaces, of which 9 are mirrored versions of others: 

 

(5) 

a                  b                    c                  d         e                   f                  g 

h         i                   j                    k                  l                  m 
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Fig. 3 shows some curved volume primitives for 4X . Like in 3D, where two lines 

span a plane and two space curves may span a curved surface, in 4D two planes may 
span a volume and two curved surfaces may span a curved volume. The curved vol-
umes of the foreground set in 4X are described (and can hence be generated) by: 

{ }
2 2 2

( , , , , , ) 0, 0.5, 1

( 1) ( 1) ( 1)

u ax bx cy dy ez fz

with a b c d e f

and a b and c d and e f

= + + + + +
∈ ± ±

+ ≤ + ≤ + ≤

 

(6) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

0 0 0 0 0 0

0 0 0b d f

and a b c d e f≥ ∧ ≥ ∧ ≥ ∧ ≥ ∧ ≥ ∧ ≥ ∨

> ∧ > ∧ <
 

(7) 

Fig. 3 shows by way of example a flat volume a ( )0z = , and the linear volumes1 

b ( )z y= , c ( )z u= , d ( )z x y= + , e ( )z y u= +  and f ( )z x y z= + + .  

                                                           
1 Note that there is difference in terminology: in general, shape primitives of dimension 

1N N= −%  are indicated in the field of pattern recognition as hyper-planes, where we indi-
cate them here as curved volumes. The term hyper-plane in pattern recognition is used to in-
dicate that the structure separates the hyperspace in two parts, e.g. each of which contains a 
point cloud that represents a class. Our terminology indicates the basic shape of the objects 
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4   The Number of Unique Shape Primitives for %N = N - 1  

Quadratic equations of the form (8) can be used to generate the shape primitives of 

dimensions 1N N= −% . It is of interest how many shape primitives can be found for 
each dimension.  

( )2

0

n N

n x n nN
n

X a x b x
=

=

= +∑
%

%  
(8) 

First, note that all linear solutions have two symmetry axes. 
Hence, for linear equations a difference version, e.g., z x y= − , is a mirrored version 

of the sum version, i.e., z x y= + . Secondly, all quadratic solutions have only one 

symmetry axis. But, a difference of a linear term and quadratic term will also produce 
mirrored versions. Only differences that involve two quadratic terms give rise to a 
new valid combination. This gives raise to the extra conditions (4) and (7) for the 
curved surfaces in 3D and the curved volumes in 4D. 

 
 

 

Fig. 3.  Some 32 connected curved volume primitives in 4X  

In order to estimate how many candidates we may expect for shape primitives of 

intrinsic dimension 1N N= −% , we observe that in (8) the parameters come in tuples 

per dimension ( ) ( ), , ,...a,b c d , whereas each dimension adds a tuple. Each tuple has 

the four sum combinations ( ) ( ) ( ) ( )0,0 , 1,0 , 0,1 , 0.5,0.5 , which we may code with (0, 

1, 2, 3). Consequently there are 4N% sum candidate combinations. In the case of the 3D 
surface primitives, this is 16. However, there are four self-mirrors (ab, cd) = (00, 11, 
22, 33), leaving 12 candidates that are asymmetric. Of those 12, 12/2 = 6 are unique 
(10 = 01, 20 = 02, 30 = 03, 21 = 12, 31 = 13, 32 = 23). Adding the four self-mirrors 
(00, 11, 22, 33), yields as number of unique 3D surface primitives, based on a sum of 
terms, 10mC + = . To set-up a general equation for the number of shape primitives, 

observe (12), in which the generating equation is setup for 2N =% .  

O x

yz

u

a 
 
 
 
b 
 

 
c 
 

 

d 
 
 
e 
 
 
 
f 



428      Pieter P. Jonker and Stina Svensson 
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This can be generalized for higher dimensions to: 
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This sum can be solved to: 

( )( )( )( ) ( )( )1
1 2 3 2 3

6 6m m

N
C N N N C N N+ += + + + ⇒ = + +% % %  

(11) 

This yields for intrinsic dimensions 1N N= + =%  (1,2,3,4,5,6,7,8,9,10,11,12), the 
values of mC +  = (1,4,10,20,35,56,84,120,165,220,286,364). These numbers are also 

known as the Tetrahedal numbers from Pascal’s Triangle. 
For the combinations involving differences of terms that all involve squares, each 

tuple has two combinations ( ) ( )0,1 , 0.5,0.5 , which we may code with (a, b). Conse-

quently, there are in principle 2N% candidate combinations: (00, 01, 10, 11), in which 
the first and the last are self-mirrors and the middle two are mirrors of eachother. This 
gives as number of unique 3D surface primitives based on a differences of terms: 

3mC − = . The general case is more complicated. For example, for N% = 2, we have the 

sum k l+  and the difference k l− .  For N% = 3, we have the sum k l m+ +  and the 
differences k l m+ −  and k l m− − , which is, however, a mirrored version of the first 
difference. For N% = 4, we have the sum k l m n+ + +  and the differences 
k l m n+ + −  and k l m n+ − −  and k l m n− − − , where the first difference is a mir-
rored version of the last difference. If we write out the combinations of a and b for 
differences of terms for some intrinsic dimensions, we obtain Table 3. In this table 
bold  a and b indicate a negative term, others a positive term. E.g., aababb indicates 
the term -k-l-m+n+o+p. Note that we have written down only half of the combina-
tions. The lower half for each intrinsic dimension is identical to the upper half, i.e. for  
N% = 8 the combinations for (m, n) = (3,5), (2,6), (1,7) and (0,8) must be added. 

Note also the regular pattern in Table 3, which gives rise to the generating function 
of equation (12), but for odd N%  only. The second term in (12) is half of the total sum 
of the boxed entries in Table 3. The grey entries are omitted mirrored versions. 
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Table 3.  Combinations of n ma b for  intrinsic dimensions 6,7,8N =%  with m n N+ = %  

m n N%  = 8        

8 0 aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa 4 

7 1 aaaaaaab aaaaaaab aaaaaaab aaaaaaab aaaaaaab aaaaaaab aaaaaaab 7 

6 2 aaaaaabb aaaaaabb aaaaaabb aaaaaabb aaaaaabb aaaaaabb aaaaaabb 7 

  abaaaaab aabaaaab aaabaaab aaaabaab aaaaabab   3 

5 3 aaaaabbb aaaaabbb aaaaabbb aaaaabbb aaaaabbb aaaaabbb aaaaabbb 7 

  abaaaabb aabaaabb aaabaabb aaaababb    2 

  abbaaaab aabbaaab aaabbaab aaaabbab    2 

4 4 aaaabbbb aaaabbbb aaaabbbb aaaabbbb aaaabbbb aaaabbbb aaaabbbb 7 

  abaaabbb aabaabbb aaababbb     2 

  abbaaabb aabbaabb aaabbabb     2 

  abbbaaab aabbbaab aaabbbab     1 

         44 

m n N%  = 7        

7 0 aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa  3 

6 1 aaaaaab aaaaaab aaaaaab aaaaaab aaaaaab aaaaaab  6 

5 2 aaaaabb aaaaabb aaaaabb aaaaabb aaaaabb aaaaabb  6 

  abaaaab aabaaab aaabaab aaaabab    2 

4 3 aaaabbb aaaabbb aaaabbb aaaabbb aaaabbb aaaabbb  6 

  abaaabb aabaabb aaababb     2 

  abbaaab aabbaab aaabbab     1 

         26 

m n N%  = 6        

6 0 aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa   3 

5 1 aaaaab aaaaab aaaaab aaaaab aaaaab   5 

4 2 aaaabb aaaabb aaaabb aaaabb aaaabb   5 

  abaaab aabaab aaabab     2 

3 3 aaabbb aaabbb aaabbb aaabbb aaabbb   5 

  abaabb aababb      2 

  abbaab aabbab      0 

         22 

 
 
 
This equation can be solved to (16): 

3 2 3 21 1 1 1 1 11
1

12 2 12 2 6 6m mC N N N while C was N N N− +
 = + − − + + + 
 

% % % % % %  
(13) 
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For even dimensions N this gives: 

( )( )3 2
, ,

1 1
3 2 1 2 4

4 4m even m evenC N N N C N N = + − ⇒ = + + −     
(14) 

Table 3 shows that for odd dimensions N, i.e. for even intrinsic dimensions N% , when 
n is also even, there is a problem as the product of (m-1)(n-1) is odd. For these di-

mensions we have to add a contribution ( )1 / 2N −% . This results in the equation: 

3 2
,

1
3 1

4m oddC N N N = + − +   
(15) 

 Written in one equation this gives: 

( ) ( )3 21
3 2 1

4 2 2

N N
C N N N N N

     = + − + + −          
 

(16) 

Consequently, the numbers for mC −  are: 0, 3, 6, 14, 22, 37, 52, 76, 100, 135, 170, 

while the total number of unique 1N N= −%   primitives for dimension N = 1..12 are: 

(1..12) 1,4,13,26,49,78,121,172,241,320,421,534C =  (17) 

5   The Unique Shape Primitives for %N < N - 1  

As fig. 1 showed, the curve primitives in 2D are a subset of the curve primitives in 
3D. This procedure can also be used in higher dimensions to generate for example the 
ND curve primitives from the (N-1)D curve primitives by exploring the newly ob-
tained degree of freedom. 

Fig. 4 shows some masks from the set of foreground curved surface primitives for 

4X . The procedure to generate these masks is similar to the generation of space 

curves in 3X  using the space curves from 2X . The surface masks from 3X  (figure 

2), are placed in 4X . The 3D surface primitives are a subset of the 4D surface primi-

tives. They stay in 4X  in the x-y-z plane. The 4D masks can be generated from the 

3D set by exploring the newly obtained degree of freedom in the u direction. All non-
central voxels are permuted over the ordinates u = {-1, 0, 1}. Fig. 4 shows the permu-
tation of mask l of fig. 2. In addition to this method, there is a downward method that 
is based on the observation that in 3D, the intersection of two planes is a line. Fur-
thermore, the intersection of two curved surfaces may produce a space curve. This is 
not always the case, because two intersecting curved surfaces may partially overlap. 
As a consequence, this method can only be used to generate candidate situations for 
the shape primitives of N < N - 1% . The candidates need to be sieved using the rules of 
section 3. 
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Fig. 4. Some 64-connected surface primitives in 4X  

 

6   The Unique Shape Primitives for the Background 

Fig. 5 shows the 6-connected surface primitives in 3X , generated by  taking a central 

voxel and encircling it with a 6-connected space curve that is 18-connected to the 
central voxel. This can be accelerated by using the quadratic equations of (18). How-
ever, as can be observed in fig. 5f, the z-axis runs along the body diagonal of the 
neighbourhood. Consequently, the points generated by (18) have to be rotated by 

rotating the body diagonal around the central voxel, ( )2atan , in the direction of the 

z-axis. Fig. 6 shows for each mask (a..f) of fig 5. the result (a..f) of  the surface gener-
ated by (18) and its rotated version. 
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Fig. 5. The 6-connected surface primitives in 3X , generated by encircling 

Fig. 6. The 6-connected surface primitives in 3X , generated by (18) and rotation 

 

2 2

2 2 2

(0,0;0,0) 0 (1,0;1,0)

(1,0;0,0) (0,1;0,1)

(0,1;0,0) (0,1;0, 1)

a z d z x y

c z x f z x y

e z x b z x y

= = +
= = +
= − = −

mask (a,b;c,d) equation mask (a,b;c,d) equation

 

(18) 

7   Conclusions 

We described a method to accelerate the generation of shape primitives for N-
dimensional images. These shape primitives can be used in conditions for topology 
preserving erosion or skeletonization in N-dimensional images, as well as for meas-
urements. The method is based on the possibility to describe primitives for intrinsic 
dimensions 1N N= −% by quadratic equations. We derived an equation to predict the 
number of unique shape primitives thus generated, being  C(N) = (1, 4, 13, 26, 49, 78, 
121) for the dimensions 1N N= +%  = 1..7 Finally, we showed that derived from this 
method, also the primitive candidates for 1N N< −%  as well as those for the back-
ground (lowest) connectivities can be found. This is used to speed up their generation. 
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