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Abstract. We consider a non numerable family of colorations induced
by discrete rotations. The symbolical dynamical system associated with
the coloration is first explained. We introduce then a group that supports
the dynamics of the system. The periodical cases are precised, they are
induced by Pythagorean triples. Finally, a proof of the quasi-periodicity
of the colorations, and a description of asymmetrical colorations conclude
this paper.

1 Introduction

The search for discrete rotation algorithms that have similar properties as euclid-
ian rotations (bijectivity, commutativity, etc.) was started by Andres, Réveilles
([3], [8]), ten years ago. It remains today one of the most interesting —and
hardest— problems of discrete geometry theory.

In this paper, we focused on the image of a single point’s neighbors as trans-
formed by discrete rotations. We have embedded this neighborhood information
into each point as a color, therefore describing the transformation as a coloration
of the grid Z?. This paper documents our investigations of local deformations,
by the bias of a study of these colorizations.

We explain when and why the colorizations investigated are periodical,or
asymmetric. We prove their quasi-periodicity, in the aim of laying the foundation
for ongoing research based on their use.

2 Definitions

We denote by |z the integer part of z: the integer such that |z] <z < |x] + 1.
The rounding function, or point-discretization function is defined as [z] = |x +
0.5]; it may be applied to vectors, components by components. We may notice
that [(-. 5, . 5)] = (0, 1). The composition of a function f with the rounding
function will be denoted by [f]. We define the application {.} by {z} = = — [z].
For a binary relation r on set E, ie r is a subset of E?, we denote f(r) as the
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set of all pairs (f(z), f(y)) with (x,y) belonging to =, r(x) is the set of all y
such that (z,y) belongs to r. RC(r), that stands for “relative coding”, will
refer to the binary relationl] formed by all (x,y — ) for (z,y) belonging to r. In
the real plane R?, i, j will refer to the unit vectors (1, 0) and (0, 1). Assuming
v is a vector, we denote the horizontal (resp. vertical) coordinate of v by v,
(vy). U denotes the application of Z? that maps the point p to p +j. If U(p)
stands for “Up”, one easily guesses what will be D(p) for down, L(p) for left
and R(p) for right. By Vi we mean the binary relation that links any point of
the plane with its upward neighbor, (Vy = {(x,U(z))|x € Z?}). By V, it’s the
4-neighborhood (Von Neumann neighborhood) of a point in a the discrete plane
72 that is denoted (V4 = VL, UVRUVpUVy ). When an application f is bijective,
f~1 denotes the inverse application. If it is not one-to-one, f1~1} will denote the
application that maps to x the set of elements y such that f(y) = z. If x € R?,
the set [[x]]{_l} will be called a discretization cell associated to x; it is the unit
square centered on [x].

In this document, an arrow is an element of A = {—1,0,1}2. A coloration
is an application that maps a point of Z? into a finite set, which is called the
colorset. (The elements of the colorset may be different from what we usually
call colors, this is just a finite set). The colorset we are going to use across
this document will be P(A), the set of subsets of A. A coloration C' is deemed
periodical, if and only if there exists two non colinear vectors v and v’ of Z?2,
such that for all x € Z?, C(x) = C(x +v) = C(x + V/).

3 Description of the Studied Colorations

ro is the euclidian rotation in the real euclidian plane. We consider the applica-
tion that maps a point x of Z? to the set of the arrows to its neighbors after a
discrete rotation [r,]. Formally:

Gal(x) = U(x/ev4(x)){[7"a](xl) = [ra](x)}

The information G, can be also be affected to the discretization cell of r,(z).
For a discretization cell ¢ = [.13]{_1}, we can also affect to x the union of G, (y)
for all y such that r,(y) € ¢: We denote by G, the following coloration.

/ .
, G (x) = U(yE[TQ]{il}(X)) Ga(}’)l
G ) = Uy, g0, Uiyrevaiy Lral 37) = a3}

(G") ’s construction is now detailed:

We consider the discrete latticd] Z2. We rotate it, thus we get 4 (Z?), the
rotated lattice is represented in dark on figure[d. a. On Z2, with dashed lines,
we have also represented its dual, which corresponds to the Voronoi diagram of
72, and divides the space into cells; These cells are the discretization cells. If a
real point v is located in the cell associated with an integer coordinate point p
the [v] = p. The exact behaviour of the relation on the border is induced from
the behavior of the discretization operator [.].

! Note that we assume a “minus” operator has been defined between the elements.
2 A lattice is here the couple (Z2, V).
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Fig. 1. Construction of the coloration G (y) and G, ().

The neighborhood relation V4 on the rotated lattice is r,(V4). (see figure. [
a) We have overlined here the edges of the relation of r,(V,) for one point of
the rotated lattice. The relation is then discretized according to the underlying
networkd. Each edge of the relation will be moved to the nearest integer point (see
fig.[Mb), and thus we obtain [r,](Vs). And we draw the edges of the corresponding
relation ([ro](V4)(x)), see fig. k), for the point y that fall in a cell centered on
x after rotation.

We consider, RC([ro(V4)])(x), the relative coding of the precedent relation.
This is required in order to have a finite color set (which would be independant
of the point considered in the relation). Moreover this provides the ability to
compare, the colors of two points directly.

The cardinal of [ra]{_l} is at most 2. If the cardinal of [ra]{_l}(x) is zero
then x is a hole in G!,. If the cardinal of [ra]{_l}(x) is one then x is a normal
point in G.,. If the cardinal of [ra]{fl}(x) is two then x is a double point in GY,.
(see section HI).

When x is a double point in G/, then its associated code is the superposition
(the union of the sets of arrows) of the code in G that were affected to the points
that transform to x via [r,]. An example of G’ that denotes colors using arrows
is presented on figure

4 Elementary Properties

During all this article, we are going to consider that a € [0...7/4]. We are
going now to present first some basic fundamental properties. Proofs have been
omitted. They are available in [7].

— Two V,-neighbors can not be two holes.
— In G, each color contains exactly of 3 or 4 different non null-arrows.
If it is only 3 arrows then it means that there is one null-arrowf].

3 The one that has not been rotated.
4 And not that two arrows merge.
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Fig. 2. Sample representation of the G’ coloration for a random angle (o =
0.54977832rad). The set of arrows inside a cell ¢ = [[p]] " represents the value G’([p]).
The background color behind the arrows is function of the number of points that have
an image in the discretization cell. Finally, the axis have also been a bit darkened.

— In G/, each color contains exactly of 0,4, or 6 different non null-arrows. If
it is 0, the point considered is a hole, if it is 4 then it is a normal point,
and finally, if there are 6 arrows, then it is a double point (issued from two
3-arrows symbol in G,). It is important to note that two non null-arrows
merge.

— The application o — G, is injective from the [0...7/4] to P(A)Z".

— The colorations admit a central symmetry for all angles except a numerable
set called special angles, which will be presented later in this text.

— In G, there exists a application that maps a color, to the arrow that denotes
only the position of a specified neighbor (U(x), R(x), L(x) or D(x)).

5 Algebraic Properties

A window is the products of intervalsﬁ on Z. We will denote by [ps,ps +
Sz[zX [Py, Py + Sylz the window located at p and of size s; it contains s,.s,
points of Z2.

We define a pattern as a function of a window [0, s, [z %[0, s,[z to the colorset
Q. Let C be a coloration and 7 a pattern of size (s;,s,). If there exists a point

® We denote intervals on Z by [a, b[z.
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Fig. 3. In the figure above, we see an example of a map that binds a frame in the torus
to it’s associated symbol. If the image of a point p by {rs} is in a the frame I, then
Go = s. Of course, the arrows in the symbol indicate the location of the cells where
the rotated neighbors of that point are.

p € Z? such that for all 0 < t, <'s, and for all 0 < t, < s,, we have C(p+1t) =
7(t), then we say that the pattern m appears (at p) in the coloration C.

We define the torus T = (R/Z)?, we will often use {.} as a projection on
this torus. And generally when we represent it we will represent it from —% to
% such that the {0} is placed at the center of the square representing the torus.
Therefore we can identify this representation of the torus and a discretization
cell. We define a frame as products of projections of real intervals on the torus T.

The following theorem is fundamental, due to the fact that it will be at the
basis of all the analysis of the colorations.

Theorem 1 (Fundamental Theorem). There exists a partition Iy, ..., I, of
the torus into a subset of generally 25 frames of the torus T such that for all
Go(x) there exists a frame f; such that for all ¥, Go(¥) = Go(x) if and only if
{ra(@)} € fi.

Proof. (elements of proof)

Without lost of generality, we will focus only on the position of the right
neighbor p + i of point p, and only on the question: “Is this neighbor mapped
by [ra] on the same vertical coordinate as p or not?”

We have [r,](p) 1= [ro](p+1)-i, if and only if {ro}(p)-i+ 3 < 1—cos(a).
Therefore that splits the torus in two frames according to a vertical line located
at x = 1 — cos(a).

We will obtain the same kind of results for the other quotient colorationdd.
Finally we obtain of 4 vertical lines and 4 horizontal lines that splits of the torus

(generally in 25 parts when no lines are merged).

5 Considering the positions of others neighbors (U(x), L(x), D(x), R(x)), relatively to
me in one of the two directions i or j.
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The partitions we present (fig. Bl) are easily built by attaching a rotated unit
vector to each corner of the square, and by splitting the unit square vertically
and horizontally on the other end of that vector. The construction lines are
dashed. a

Corollary 1 (Fundamental theorem for G'). There exists a partition I, . . .,
I, and I I/ I I of the torus T into frames such that G, (x) = n if and only

217 7127 7137 T1g

if vy € ri”H (@), ({ra} () € L or {ra}(y) € I).
The proof relies on similar ideas.

Theorem 2 (Fundamental theorem for patterns in G, (resp. G)). To
any pattern w that appears in the coloration G, (resp. Gl ), it is possible to
associate a frame I, such that the pattern w appears in G4 at a position p if
and only if {p} € L.

Moreover, for all size vector s, the set of patterns of size s partition the torus.

Proof. We consider a rectangular pattern 7, appearing at pg in a coloration
G, and of size s. The pattern appears: for all t, with 0 < t, < s, and 0 <
t, < sy, we get Go(p +t) = 7(t) . Using the fundamental theorem,for all
t, with 0 < t, < sy and 0 < t, <s,, {ra(Pp+1t)} € Ij(nty)- In addition,
{.} is a morphism for addition, therefore for all t, with t, < s, and t, < s,,
{ra(@)}+{ra(t)}) € {L(x(t))}: and thus {ra(p)} € {L;((t)) —ra(t)}. Finally
we pose Ir, = Not, <s, No<t, <s, {Lf(r(t)) —Ta(t)}. The last statement rewrites
into m appears at p, if and only if {ro(p)} € Ir,. I, is a frame, and we know
that it is not emptyll, therefore we know that it has a non null area.

Moreover, it is obvious that for differents two patterns 71, mo of the same
size s, fr, U fx, = 0. Finally, if there can not be a point of the torus without a
pattern of size s associated, therefore the set of patterns of size s partition the
torus. U

Corollary 2 (Fundamental theorem for G’(extension)). There ewists
frames that signal if there is hole on a neighboring cell.

6 Study of Periodicity and Quasiperiodicity

A coloration C' is quasi-periodical if and only if for all patterns 7 that appears
in C, there exists a size of window s, such that m; appears in all windows of size
S.

We introduce the two vectors i, = 74(i) and j, = r4(j). We consider G the
abelian group generated by: Zi + Zj + Zi, + Zj,- We note that G is invariant by
integer translation and rotation of angle 7/2.

G’ is the subgroup of {G} of T. The subgroup is generated by {i, } and {j.}

" Tt appears at po, {ra(po)} € I, .
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The application {.} is a one-to-one map from G’ to G N F', where F is a unit
window [3, 3 + 1[x[y,7 + 1] in R% Let p € R?, p € G if and only if {p} € G'.
G’ can equivalently be introduced as the set of points of {r,(p)} for all p € Z2.

We are going to investigate the structure of G, we define the set Sg so
{I|v||,v € G\{(0,0)}}. We can consider the two following cases: either inf(Sg) =
lo, and ly # 0, either inf(Sg) = 0.

6.1 The Case inf(Sg) = lp, and [y # 0, the Discrete Case
We are in the case where the lower bound of Sg is not null.

Proposition 1. Let ly be this lower bound. There exists a vector e of G which
has ly as norm.

Proof. We consider the compact crowtfd of depth [lp,lp + €]. There exists a se-
quence of vectors of G such that the norms of the vectors converges to Iy, and
thus a vector vg. There exists an extracted subsequence that converges. The se-
quence of the difference between two consecutive terms of this sequence converge
to 0, if the bound will not have been reached, from the previous sequence we
would extract an arbitrary small element. Thus we would have a contradiction.

O

Proposition 2. We define € = r;/5(e); we have G = Ze + Ze'. In addition,
G’ is finite.

Proof. Let’s assume that there is an element k of G outside G = Ze + Ze'. We
are in a two dimensional space therefore, that would generate a smallest vector
in G, which would contradict the minimality of e. G’ is finite since GNT is finite
and {.} is a one-to-one map to G'. 0

Theorem 3. If G’ is finite then the colorations G, and G., are periodical.

Proof. Since G’ is finite, there exists a constant K such that K{e} =0 in G'.

Let’s stands that e = ael + bej + cein + dejo. Which gives to us: {e} =
ce{in} + de{ja}. Moreover c2 + d? # 0 if and only if G is not included in Z2
(which does not occur if we suppose o # 0 module 7/2).

Let = be a point of Z2. {r,(x+ Kcei+ Kdej)} = {ra(x)+Kcein+Kdejo} =
{ra(x)}+ Kce{in}+ Kde{jo} = {ro(x)} + K{e} = {ro(x)}. This proves that
coloration G is periodical of period Kcei+ Kdej. Using € in a similar process,
we find that the coloration is periodical of period: —Kdei—+ K cej. Therefore the
coloration is periodical (using the fundamental theorem 1). U

G’ is assumed to be discrete, the coloration is periodical. There exists con-
stants K7 and Ko such that K;{e}+ K2{e’} = {i}. One may project the vector
e and € on one dimension of the space. Hence, one may view this equation as

8 the set: Biy+e \ Bi,, where B, is the opened ball of radius z
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one where the two unknowns are cos(a) and sin(«) (all others parameters are
integers). This implies that cos(«) and sin(«) are both rationnal. And thus that
« is a Pythagorean angldl. There are particular cases of Pythagorean, for which
discrete rotation is bijective, for more details have a look at [6]. Conversely, when
« is Pythagorean,cos(«) and sin(«) are rationnal, G is discrete, all points are
separated and G’ is finite.

6.2 The Case Where inf(Sg) = 0, the Dense Case

We are in the case were the lower bound of Sg is null. For all € > 0, there exists
a vector v, of G such that ||v¢|| < e. Thus, there exists in G a grid formed by
squares of side less than e. In addition G is a dense subset of R2.

Theorem 4. For all angle o € [0...7/4]r, if inf(Sg) = 0 then G4 is quasi-
periodical.

Proof. We consider G, = [—1...1]3 N (e.Z + €.Z) the set generated by linear
composition of e. and e,, (orthogonal vectors in G with a norm less or equal
to €), and for which the components on i, j are less than 1. It has the property
that for all elements z of G’ and x of G, there exists an element y of G, such
{x+y} is at a distance at most € of z. All elements y of G. may be written so
Yy = ayi + byJ + Cyia + dyja.

G. is finite, so there exists constants C. and D., such that for all y € G., we
have |cy| < C¢ and |dy| < D.. Consider now a window F , of size 2C. x 2D,
centered on x. For all element y of G, there exists an integer element x’ of this
window such that {74 }(x’) — {ro}(x) = {y}. One may take x* = x + cyi+dyj.
In other words: {ry}(Fe x) contains {ry}(x) + {Gc}.

Let x be a point of Z2, and 7 a pattern of the coloration, this pattern 7
appears at p if and only if {r,}(p) is in fixed frame Z; of T (theorem 2). We
note that this Zy; contains a frame of size pu x p (without loss of generality, we
may suppose it square).

Thus if we consider € = /2, then we ensure that an element {y + r,(x)}
belongs to Zy; (because there will be one in any square of dimension p X ),
which will provide us an element x’ of F, x is such that {r,}(x’) is in Zp,. This
proves quasi-periodicity of G,.

More precisions on the quasiperiodicity can be added considering the continued

fraction development of cos(a) and sin(«), then using the three distance theorem
(see [9], a good survey is also [1]).

7 Asymmetrical Cases

Let « and o be two angles, we define a distance on colorations considering the
distance of the first point that differs in the two colorations:

? A Pythagorean angle is an angle o which may be written o = arctan($), where
(a,b,c) is Pythagorean triples, ie a,b,c € N and a’® +b®> = ¢*. Pythagorean angles
are angles for which both cosinus and sinus are rational.
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d(Ga, Go) = 27 nf{dER[|P||=d and PEZ*|Ga(P)#Car (P)}

We introduce the following function: st : [0,7/4]g — RT which to « asso-
ciates lime—0SUPy/eja—c ate AGas Gar). An angle a is stable if st(a) = 0. An
angle « is unstable if st(a) = k, k € RT\ {0}. Also we say that the configuration
is unstable. A configuration is special, if and only if, there exists a point p of Z?
that is mapped after transformation on the border of a discretization cell.

Proposition 3. For an angle «, the following propositions are equivalent:

— G, 1s special
— G 18 unstable
— G4 is asymmetric

Proof. The only interesting case is: unstable = special, all others implications
are immediate. If it is unstable, then it means that there is point p of 7,(Z?)
such that any slight variation in a would make change the cell’s it belongs to.
Therefore 7, (p) is on an edge of discretization cell. By definition, it means that
G, is a special configuration. d

As corollary we get that the pythagorean configurations are stable.

8 Conclusion

The quasi-periodicity of the colorations studied provide us with information on
the constraints of an algorithm that could generate the colorations.

It may be important to say that there is a simple algorithm which takes for
input a point p of the plane and the coloration induced by a discrete rotation
of angle a, and returns the image of p by discrete rotation.

As long as no finite memory automaton may generate a strictly quasi-
periodical sequence, and in order to provide the required input to the algorithm,
it will be necessary to study in depth the simple cases formed by the periodical
and special colorations.

To answer the previous question, it is also possible to explore these colorations
from a combinatoric viewpoint basing our researches on studies of bi-sturmian
sequences(see [I0], [5], [4]). Discrete rotations may also be considered as an
alternative interpretation of patterns issued from a particular class of 4-to-2
quasi-periodic tilings.

Finally, one may define similar colorations in order to study any quasi-
isometry — particularly, quasi-affine transformations. In ongoing research, we will
compare these colorations with the ones generated by other kinds of rotations,
such as E. Andreés’s rotations (see [2]) or variants of rotation by circles.
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