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Abstract. Log-polar images have been being used for pattern recogni-
tion and active vision tasks for some years. These images are obtained
either from true retina-like sensors or from conventional cartesian im-
ages by software conversion. From the hardware perspective, the design
of such log-polar retinae faces its own technological limitations. In the
case of software remappers, however, their very flexibility has led to
many researchers to use them with little or no justification of the choice
of the particular log-polar layout. In this paper, a set of design criteria
are proposed, and an approach to choose the parameters involved in the
log-polar transform is described. This kind of design not only could be
used in simulation software, but also could act as design guidelines for
artificial hardware-built retinae.
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1 Introduction

Motivation. After its biological foundations [12], the log-polar image representa-
tion has been adopted in fields of computer vision such as pattern recognition [16]
and active vision [4]. Three basic techniques exist for obtaining log-polar images:

– Hardware retinae, which involve the design and manufacture of very spe-
cialized sensors which directly yield log-polar frames [6, 17, 9].

– Software remappers, which implement the log-polar transform by taking
as input conventional cartesian images [8, 3, 13].

– Virtual sensors, which simulates the log-polar mapping via special-purpose
hardware, also with cartesian images as input [7, 5].

The main challenge faced by the first choice (true log-polar sensors), relates to
technological obstacles during their design and fabrication, which, in part, have
been overcome over time [11]. In contrast, software-based simulations of the log-
polar transform have an amazing flexibility, allowing an easy implementation of
different log-polar models each with a variety of designs.

Traditionally, however, scarce attention has been paid to the selection or
justification of the proper values for the parameters of the log-polar transform.
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This fact seems particularly apparent in the case of software conversion, probably
due to the very nature of software.

Importance. Nevertheless, criteria for the design of the log-polar layout would
be of great help for the practitioners of computer vision interested in using log-
polar imagery. Furthermore, the choice of the log-polar geometry has an impact
on the performance of the algorithms used in certain tasks. Finally, this kind of
design guidelines might also benefit the conception of new silicon retinae.

Related Work. Among the scarce work addressing the topic of log-polar de-
sign, we can mention [2], where it is studied how log-polar mapping parameters
affect the performance of a vergence control algorithm. In [14], the log-polar
sensor design is driven by the relation between the geometry parameters and 3D
sensing precision requirements. Several alternatives for the more specific problem
of fovea design are proposed in [15]. Quantitative measures of the quality of log-
polar sensors are given in [10, 11]. Although not directly related to the geometric
design, these measures are useful for comparison between different sensors. The
importance of a good choice for the transform parameters is stressed and con-
sidered in [1].

Our Work and Structure of the Paper. With respect to these works, we pro-
pose a set of general design criteria, and a means to find the transform parameters
meeting these criteria. The rest of the paper is organized as follows. Section 2
describes the log-polar model and its parameters. This is the model on which
design criteria are discussed in Section 3. Based on these design considerations,
parameters of the transform can be selected as described in Section 4. Finally,
concluding remarks are given in Section 5.

2 Log-Polar Mapping

2.1 Definition and Basic Parameters

Among the different log-polar image representations proposed in the litera-
ture, we choose the central blind-spot model because of its interesting proper-
ties [13] (e.g., retinal rotations and scalings map both to simple shifts in the
cortical plane). Under this model, the log-polar coordinates are defined as:

(ξ, η) �
(

loga

(
ρ

ρ0

)
, θ

)
, (1)

with (ρ, θ) being the polar coordinates defined from the cartesian coordinates
(x, y) as usual, i.e., (ρ, θ) �

(√
x2 + y2, arctan y

x

)
. Because of the discretization,

the continuous coordinates (ξ, η) become the discrete ones (u, v) = (�ξ�, �q · θ�),
0 ≤ u < R, 0 ≤ v < S, with R and S being the number of rings and sectors
of the discrete log-polar image, and q = S

2π sectors/radian. The notation �z�
denotes the common floor operation, i.e., the largest integral value not greater
than z. Having chosen R, ρ0 (the radius of the innermost ring), and ρmax (the
radius of the visual field), the transformation parameter a is computed as a =
exp(ln(ρmax

ρ0
)/R). If the original cartesian image is sized M × N , ρmax can be
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(a) (b) (c) (d)

Fig. 1. Log-polar mapping: (a) grid layout example (10 × 16), (b) original cartesian
image (256×256), (c) cortical image (64×128), (d) retinal image (256×256) obtained
by the inverse mapping from (c)

defined as ρmax = 1
2 min(M, N), and the log-polar transform is centered at the

foveation point (xc, yc) =
(

M
2 , N

2

)
.

Illustrative Example. An example of a log-polar transformation is shown in
Fig. 1, from which several observations can be made. First of all, it can be ap-
preciated the much smaller size of the cortical image (Fig. 1(c)) compared to
the original uniformly-sampled image (Fig. 1(b)), which illustrates the data re-
duction property. Second, the small arrows radially disposed in the cartesian
image become magnified and parallel one to each other (see Fig. 1(c)), which
demonstrates how (i) visual acuity is higher in the fovea area, and (ii) rotations
become translations along the angular axis. Third, note in the retinal visualiza-
tion of the cortical image (Fig. 1(d)) how edges near the image center are much
sharper than edges at the periphery, because of the space-variant resolution.

2.2 Derived Properties

From the basic parameters involved in the log-polar transform, we define other
parameters which are a quantification of some properties of the log-polar layout.
These measures will later be used in Section 3 for formalizing the design criteria.

Log-Polar Image Size. It is simply the total number of pixels, i.e., N = R ·S.

Aspect Ratio of Receptive Fields. The aspect ratio of a geometric entity
is the ratio between its width and its height. Given that a receptive field (RF)
is not rectangular, its width is not well-defined. As an approximation, we can
consider its outer or its inner boundary as its width (or even a function of both
of them). Here, the length of the inner arc will be chosen as the RF’s width (see
Fig. 2).

With these considerations, for any RF at the same eccentricity u, we have
that its width will be given by (arc equals angle per radius):

w(u) =
2π

S
· ρu−1 =

2π

S
· ρ0 · au−1, (2)



Fig. 2. Geometric elements involved in the computation of the area and the aspect
ratio of receptive fields

and its height by

h(u) = ρu − ρu−1 = ρ0 · au − ρ0 · au−1 = ρ0 · au−1(a − 1). (3)

Therefore, the aspect ratio γ(u) =
w(u)
h(u)

is:

γ =
w

h
=

2π

S
· ρ0 · au−1

ρ0 · au−1(a − 1)
=

2π

S
a − 1

=
2π

S(a − 1)
. (4)

By observing Eq. 4, it can be noticed that the aspect ratio is not a space-
variant quantity: all RFs in a log-polar grid have the same aspect ratio. This
interesting result, however, does not hold in other log-polar models (e.g., in
Jurie’s model [8]).

Area of Receptive Fields. Because of the space-variant nature of the log-
polar geometry, RFs at different eccentricities cover a different surface. The area
of a RF can be found by computing the area of a circular annulus and then
dividing the result by the number of sectors. The area of a circular annulus at
eccentricity u is π · ρ2

u+1 − π · ρ2
u = π(a2 · ρ2

u − ρ2
u) = π · ρ2

u(a2 − 1). Then, the
area σ of a single RF will be a S-th part of this, i.e.:

σ(u) =
π · ρ2

u(a2 − 1)
S

. (5)

Oversampling. In a software-based implementation of the log-polar mapping,
RFs near the center (the fixation point) become much smaller than the cartesian
pixels (Fig. 3(b)). As a result, information contained in cortical images at the
center, where most pixels are, become highly redundant. This situation is known
as “oversampling”, because cartesian images are oversampled, i.e., sampled at
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(a) in the periphery (b) in the fovea

Fig. 3. Relative size between RFs and cartesian pixels: in (a) RFs (in dark solid lines)
are larger than cartesian pixels (in dotted lines); in (b) cartesian pixels (in dark solid
lines) are larger than RFs (in dotted lines)

a frequency higher than its maximum frequency. Undersampling also occurs
at periphery, where cartesian pixels and RFs happen to be in a many-to-one
relationship (Fig. 3(a)). However, this undersampling is not only desired, but it
is the very essence of the selective data reduction of discrete log-polar images.

The maximum oversampling occurs at the innermost ring (u = 0), and this
is the one which it is interesting to be quantified. Note that the area of a RF at
ring u, σ(u), is expressed as No. cartesian pixels

1 receptive field
. Because near the fovea (i.e., for

small u), this ratio tend to become smaller than the unity, we choose the inverse
of the area at u = 0 as the (maximum) oversampling, so that, its units become
No. receptive fields
1 cartesian pixel

, which is closer in meaning to the oversampling effect. Thus,
the oversampling is quantified as

o = σ(0)−1, (6)

i.e., the number of RFs covering a single underlying cartesian pixel.

3 Design Criteria

Limiting Computational Complexity. In computer vision applications, run-
ning time and memory space requirements are proportional to the number of
pixels of the images to be processed. Therefore, a simple way of bounding com-
putational resources can be modeled as N < Nmax, i.e., imposing that the size
of the log-polar image keeps under a certain value (Nmax), according to the
computational power available.

Having Unit Aspect Ratio RFs. In theory, it is possible to choose any combi-
nation for R and S. Even with the above constraint, there are many possibilities
for these parameters. However, not all of these combinations result in “good”
log-polar grids. As an example, see Fig. 4, where different layouts are shown,
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(a) 15× 60 (b) 40× 20 (c) 20× 40

Fig. 4. Log-polar grids with different aspect ratios in the RFs’ geometry: (a) γ < 1,
(b) γ > 1, (c) γ ≈ 1

which illustrate what the problem can be. In one case (Fig. 4(a)), pixels are too
much “elongated” (when R � S); in the other (Fig. 4(b)) , pixels are too much
“flattened” (when R � S). The problem in both cases is the same: the log-polar
pixels (actually, their associated receptive fields) have a “wrong” aspect ratio,
either too small or too big. We believe this is an undesirable feature when apply-
ing some operations on the image, because neighbor RFs would be at different
distances along the radial and angular directions. From a different point of view,
we might be interested in having comparable resolutions in both the radial and
angular axes.

Therefore, preserving the aspect ratio close to 1, i.e., having RFs approxi-
mately squared (Fig. 4(c)), allows local image processing operators be applied
correctly, and log-polar images mapped back to the cartesian domain are per-
ceptually better. Then, by forcing γ = w

h = 1, we have γ = 2π
S(a−1) = 1. To

fulfill this constraint, we can choose S as a function of R (or vice versa). As a is
already a function of R, we can write:

S =
2π

a − 1
� Sγ . (7)

Minimizing Oversampling. In some applications, oversampling is not de-
sirable or, at least, should not be too big. Ideally, null oversampling would be

achieved with o = σ(0)−1 =
(

π·ρ2
0(a2−1)

S

)−1

= 1. Then,

S = πρ2
0(a

2 − 1) � So. (8)

Preserving Small Objects Observable. The log-polar model considered in
this paper is characterized by having a central blind spot (as can be seen in
Fig. 1(a) and Fig. 4). This implies that objects centered in the visual field will
only be detectable if they are bigger than the sensor’s blind area. Therefore, if
objects with radius rmin are to be observed (at least partially), we should have
ρ0 < rmin.
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Having a Wide Field of View (FOV). Just one of the appealing properties
of log-polar images is that they offer a good compromise between three important
requirements: resolution, image size and FOV. The FOV’s width can be modeled
as ρmax.

4 Finding the Mapping Parameters

Free parameters. There are a total of six parameters Ψ = (R, S, ρ0, ρmax, a, q)
involved in the log-polar model. In principle, these are the parameters whose
values should be found. However, R, ρ0, ρmax, and a are related, so that each
of them can be found from the three others. Second, ρmax will be considered
a fixed parameter because: (i) the log-polar image is computed from cartesian
images, so the size of the latter gives the value for ρmax; (ii) this parameter only
affects the scale of the sensory layout. Third, q is a function of S. Finally, with
the design criteria considered above, S can be found from R. Therefore, only
two parameters remain free: R and ρ0.

Trading criteria. As usual with any design process, there are conflicting criteria:
to observe small targets, ρ0 should be small; to have small oversampling, ρ0

should be large. Therefore, a trade-off solution is required. We propose the use
of a user-selectable parameter, λ, which weighs the relative importance given to
these two criteria. Notice that these criteria were expressed as constraints on the
values of S (Eqs. 7 and 8). On the other hand, it can be shown that So < Sγ .
Then, we suggest to use the following combined constraint:

S = So + λ(Sγ − So), λ > 0.

Therefore, the lower λ is, the more importance is given to null oversampling.
The closer λ is to 1, the more importance is paid to unit aspect ratio RFs.
Regarding the aspect ratios, γ > 1, for λ < 1, and γ < 1 for λ > 1.

Algorithm. Going a step further, a mere user of the log-polar transformation
should be concerned as little as possible about particularities and details of
the log-polar model being used. Therefore, the user requirements should be ex-
pressed in terms of higher-level design criteria. To that end, we propose a simple
procedure (Algorithm 1) in which the input from the user is:

– Nmax, the approximate number of pixels for the resulting log-polar image;
– α, the allowable error between Nmax and the total number of pixels N found;
– rmin, the size of the smallest object that should be visible; and
– λ, the trade-off value weigthing small oversampling versus close-to-one aspect

ratio RFs.

This algorithm proceeds iteratively. Initially, an estimate is set for R from the
required Nmax (e.g., assuming R = S). At each iteration, a new set of mapping
parameters, Ψ , is computed, and R is updated from the newly found N , using
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ComputeMappingParameters(R, ρ0, λ) : Ψ(R, S, ρ0, ρmax, a, q)

a← exp(ln( ρmax
ρ0

)/R) // ρmax considered given a priori

So ← πρ2
0(a

2 − 1) // Null oversampling
Sγ ← 2π/(a− 1) // Unit aspect ratio RFs
S ← So + λ(Sγ − So) // Compromise solution
q ← S

2π

return Ψ(R, S, ρ0, ρmax, a, q)

FindGoodDesign(Nmax, α, rmin, λ) : Ψ(R, S, ρ0, ρmax, a, q)

ρ0 ← rmin/2 // Any convenient function of rmin

R← √Nmax // Any reasonable initial guess
repeat

Ψ ← ComputeMappingParameters(R,ρ0,λ)
β ← ΨR · ΨS/Nmax

R← R/β // Rectify estimate
until |β − 1| < α
return Ψ(R, S, ρ0, ρmax, a, q)

Algorithm 1: Finding the parameters of a log-polar layout from design criteria
formalized quantitatively

the amount of deviation, β, as a corrective factor. The process is repeated until
N and Nmax are close enough (according to how demanding the user has been
by specifying α). Notice that the value of a particular parameter of the 6-tuple
Ψ is denoted using the name of that parameter as a subindex (e.g., ΨR is the
value of R in Ψ).

Examples. Table 1 shows four examples of input parameters and results obtained
by using the algorithm described above. The resulting real values for R and S
have been rounded to the nearest integers, and o and γ have been approximated
to 2 decimal places.

Table 1. Design examples: input requirements and resulting parameters and measures

Input Criteria Results
Example Nmax rmin α λ R S N ρ0 o γ # iters.

1 2000 20 0.1 0.9 28 65 1820 10 1.03 1.00 13
2 2000 10 0.1 0.9 32 56 1792 5 3.20 1.08 127
3 2000 10 0.1 0.1 93 23 2139 5 4.04 7.77 3
4 4000 5 0.1 0.7 63 69 4347 2.5 26.62 1.41 1

In the first example, because rmin is relatively high, it was possible to have
both small oversampling and unit aspect ratio RFs. The total number of pixels
(N = 1820) differs in less than 10% (as specified with α = 0.1) from Nmax =
2000. In the second example, rmin is smaller, and it can be appreciated that
the algorithm takes longer (127 vs. 13 iterations) to find a good combination of
mapping parameters. It is interesting to appreciate that, because the criterion of
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having unit aspect ratio is stressed more than having low oversampling (because
λ = 0.9), we get a good aspect ratio (γ = 1.08), but oversampling has increased
(o = 3.2).

In the third example, less attention is paid to having unit aspect ratio RFs
(λ = 0.1), this resulting in a very high, unreasonable aspect ratio. In the fourth
example, an intermediate trade-off value λ = 0.7 is provided. This example would
be of a design meant for visualization purposes: higher number of pixels (Nmax =
4000), and small observable targets (rmin = 5). In this case, oversampling is not
an issue, because its effect is not visually perceivable, it only affects redundancy
in data in the log-polar image. Notice the very high oversampling we incur in
this case (o = 26).

Comments. The idea of an algorithm processing high-level design specifications
and yielding low-level mapping parameters is very attractive. In this sense, Al-
gorithm 1 represents an effort along the line of automating the design process.
However, because the procedure was basically driven to achieve a given total
number of pixels, other criteria could not easily be met at the same time, or
compromise solutions are not dealt conveniently. In practical terms, for certain
input requirements, this algorithm might not find a solution (and waste itera-
tions in the attempt), or give up with improvable solutions in just one or a few
iterations (like example 4 in Table 1).

5 Conclusions

Little effort has been paid in the past to a proper selection of the parameters of
the log-polar mapping, in particular when the transform is implemented in soft-
ware. After a brief description of a log-polar model, this paper examines possible
design criteria that should guide the choice of the values of the mapping param-
eters. A mathematical expression has been derived for each criterion. Then, it is
discussed how these design constraints could be met. Because the different cri-
teria lead to contradictory goals, only trade-off solutions are possible. Although
the design process can be completely trial-&-error-based, an algorithm has been
proposed to help designers and end users find reasonably adequate solutions.
Interestingly, the input are specified as high-level design requirements. Further
work could be directed to develop some algorithm which considers and explores
the design space more effectively.
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