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Abstract. We study long-running transactions in open component-
based distributed applications, such as Web Services platforms. Long-
running transactions describe time-extensive activities that involve sev-
eral distributed components. Henceforth, in case of failure, it is usually
not possible to restore the initial state, and firing a compensation pro-
cess is preferable. Despite the interest of such transactional mechanisms,
a formal modeling of them is still lacking. In this paper we address this
issue by designing an extension of the asynchronous π-calculus with long-
running transactions (and sequences) – the πt-calculus. We study the
practice of πt-calculus, by discussing few paradigmatic examples, and
its theory, by defining a semantics and providing a correct encoding of
πt-calculus into asynchronous π-calculus.

1 Introduction

Web Services technology intend to provide standard mechanisms for describing
the interface and the services available on the web, as well as protocols for locat-
ing such services and invoking them (cf. WSDL standard [7]). A relevant feature,
which is usually overlooked by Web Services, is the mechanism for their reuse
when complex tasks are carried out. It is often the case, in business-to-business
processes, to define new processes out of finer-grained subtasks that are likely
available as Web Services. Therefore it is reasonable to forecast an extension
of the Web Service standard, which supports the definition of complex services
out of simpler ones – the so called Web Services choreography. Indeed, several
proposals that describe Web Services choreography have been already set up:
BPML [6] by BPMI.org, XLANG [18] and BizTalk [14] (a visual specification
environment for XLANG) by Microsoft, WSFL [13] by IBM, BPEL4WS [9] by a
consortium grouping BEA, IBM, Microsoft, and others), etc. The W3C Web Ser-
vices Choreography Working Group is expected to present the Recommendation
for the Web Services choreography specification for November 2003.

Most of these proposals use long-running transactions as a mechanism for
describing loosely-coupled activities. On the contrary, traditional transactions in
databases have been devised to compose tightly-coupled activities. These trans-
actions are addressed by the keyword “ACID” to refer to the four properties
that they guarantee – Atomicity, Consistency, Isolation, and Durability.

When the activities involved in a transaction are loosely-coupled, the ACID
properties adapt badly. In particular, serializability (Isolation) requires that dif-
ferent activities have the same effect whether they are executed in sequence or
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in parallel. Usually, this is enforced by locking the resources used by each activ-
ity until the transaction commits. In the context of Web Services, the processes
involved in a transaction may belong to different companies, and there is no
chance to lock resources of other companies. Additionally, commercial transac-
tions usually last long periods of time, even months, and it is not feasible and
not reasonable to block resources so long. For similar reasons, Atomicity (“all
or nothing”), and the two-phase commit protocol to enforce it, become imprac-
ticable in the case of long-term commercial transactions.

One immediately ends up in weakening the notion of rollback: in a business
process, the provider might decide that rollback will not cancel all the operations
carried out. The cancellation of an airplane booking, for instance, may lead to
the payment of a fee; the interactions with non-transactional resources, which
do not support an “absolute” mechanism of rollback, make failures extremely
complicated, and to be dealt with ad-hoc ways. Overall, web transactions or,
better, long-running transactions, miss serializability, due to the absence of locks
on resources, and possess a lightweight notion of atomicity enforced by ad-hoc
rollbacks, called compensations.

Despite the interest in long-running transactions, there is not yet a common
agreement about their meaning. The above proposals for Web Services choreog-
raphy have slightly different interpretations of long-running transactions, which
may be hardly pointed out due to the informal nature of the documents, and
to the complexity of parsing implementations (see the following subsection of
related works).

In this paper we propose a formal approach to the description of long-running
transactions. In particular, we consider Microsoft BizTalk, and the long-running
transactions therein, and we define a formal model and an implementation. The
other notions of long-running transactions could be defined as well in similar
ways, and compared with the semantics of BizTalk. This is a considerable future
work.

Long-running transaction in BizTalk have two associated activities: the fail-
ure process and the compensation process. There are two kinds of transactions:
those without inner transactions and the others. The first case is simpler: if the
transaction fails, the failure process is executed. In the second case, if a trans-
action with inner transactions fails, the compensations of the inner transactions
must be executed before activating the failure process of the enclosing transac-
tion. Namely, after failure, the compensations can be activated in any possible
order, independently of the order in which the corresponding transactions com-
pleted. Therefore, the programmer must explicitly describe inter-dependencies
among compensations, to avoid undesired schedules by the run-time system.

In our formal analysis we proceed as follows. We introduce a core language
with BizTalk transactions, the πt-calculus, and we define its operational seman-
tics. It turns out that πt-calculus is an extension of the asynchronous variant [4]
of the π-calculus [15]. We then report some paradigmatic examples of long-term
business activities. Afterwards we implement πt-calculus in the asynchronous
π-calculus, thus providing a further definition of the meaning of BizTalk trans-
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action. Finally we demonstrate that this meaning conforms with the operational
semantics of πt-calculus.

The choice to extend π-calculus with transactions, rather than other process
calculi, is due to XLANG, which is the language implementing the orchestra-
tion services of BizTalk and whose definition has been strongly influenced by
π-calculus. As regards our compilation, it is compositional, and therefore easily
amenable to a distributed implementation. In this sense, our result may be read
as a correctness proof of a distributed implementation of long-running transac-
tions.

1.1 Related Works

Long-running transactions have been introduced in “data processing applica-
tions” in [12, 11], where they were called saga. Sagas are possibly nested pro-
cesses with a monitor and a compensation. When a saga fails, if it doesn’t contain
nested sagas, the compensation of the previously completed sagas are executed
in the reverse order of composition. If the saga contains nested sagas, and a
nested saga fails, the compensations of the successfully terminated sibling sagas
are executed in the reverse order of commit. In this case, the monitor of the
enclosing saga is notified of the abort.

Web services languages, such as WSFL [13], XLANG [18], and BPEL [9],
support long-running transactions with flexible failure managements. In these
languages, an aborted transaction raises an exception that is catched by a suit-
able programmable handler. When the handler is omitted, a failure activates the
compensation of the completed transactions in the reverse order of commit. This
mismatches with BizTalk semantics.

Other contributions to the definition of long-running transactions arise in
“web transaction protocols”, which define models for orchestrating loosely-
coupled web services by means of a defined set of transaction messages. In
particular, the W3C Tentative Hold Protocol (THP) [16], uses an architecture
with two actors: clients and resources. The clients send temptative holds to
resources, requesting information about existing holds, cancelling holds, and re-
trieving stored informations. The resources use a programmable “rule engine
entity” for their management. Another protocol is the OASIS Business Transac-
tion Protocol (BTP) [10], which supports nesting of transactions as in BizTalk.
OASIS introduces the notion of cohesion to bear different outcomes from partic-
ipants to a transaction. In partiular, a transaction may succeed even if some of
its inner transactions fail, provided that a minimal number of sub-transactions
have succeeded.

1.2 Structure of the Paper

In Section 2 we define the syntax and operational semantics of the πt-calculus.
In Section 3 we report examples of long-running transactions described in πt-
calculus. In Section 4 we discuss the encoding of πt-calculus into asynchronous
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π-calculus. Section 5 contains some conclusive remarks and a comparison with
the related literature.

2 Syntax and Semantics of πt-Calculus

2.1 The Syntax

The syntax of the πt-calculus uses a countable set of names N ranged over by x,
y, u, v, . . .. Tuples of names are written ui∈1..p

i or simply ũ. In order to support
process constant definitions, we assume given a set of process constants ranged
over by K, K ′, . . ..

A process (or an agent) in πt-calculus is defined by the following syntax:

P ::= done success
| abort error
| x〈ũ〉 output
| x(ũ).P input
| P | P parallel
| P ; P sequence
| (x)P new
| K(ũ) invocation
| t(P, P, P, P ) transaction

The new operator (x)P and the input prefix operator x(ũ).P are binders
for the names x and ũ, respectively. We omit the standard definitions of free
variables and bound variables of processes, noted fv(·) and bv(·), respectively. For

each process constant K we assume given a single constant definition K(ũ)
def
= P

where ũ is a sequence of pairwise different names and P is a process. If the list of
parameters is empty, we omit the surrounding parenthesis, e.g. we use K instead
of K().

The processes output, parallel, new, and invocation, are as usual [15]. To
enlight the notation we sometime write (x1 . . . xn)P instead of (x1) . . . (xn)P . As
usual, we also abbreviate the parallel of Pi for i ∈ I, where I is a finite set, with
∏

i∈I Pi. The processes done and abort do nothing except manifesting a successful
or erroneous termination – to be used inside a transactional context. The input
process has an explicit continuation. The sequence process P ; Q forces a temporal
order between the two operands: process Q will be activated only after successful
completion of P . It is worth to notice that our sequential composition operator,
even if similar to other operators of the tradition of process algebras (see e.g.
the operator · of ACP [2]), is new due to the presence of two different kinds of
process termination, represented by the processes done and abort respectively.
As we will discuss in the following, these two processes are treated differently
when they appear as first operand of the sequential composition operator.

The process t(P, F, B, C) defines a transaction; in particular, P is the main
process – the body –, to be executed in a transactional way; F and B are, re-
spectively, the failure manager and the failure bag, to be executed if a failure
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occurs; and C is the compensation, to be executed in case an enclosing trans-
action fails. Only the main process, the failure manager, and the compensation
are considered in BizTalk specifications. The further argument – the “failure
bag” – is a repository to store the compensations of the enclosed transactions
that complete while the enclosing transaction is still running. This repository
has been added for semantic reasons, to describe the behaviour of (successfully)
terminating transactions.

Process contexts are processes with a hole inside. Contexts are ranged over
by C[ ] and are defined by the following grammar:

C[ ] ::= [ ]
| C[ ] | P
| C[ ]; P
| (x)C[ ]
| t(C[ ], P, P, P )

We use C[P ] to denote the process obtained by substituting the hole inside C[ ]
with the process P .

2.2 Structural Congruence

Structural congruence, written ≡, equates all processes we will never want to
distinguish for any semantic reason.

Definition 1. Structural congruence, written ≡, is the least congruence over
processes, which contains α-renaming, and the following equations:

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
(P ; Q); R ≡ P ; (Q; R)
(x)(y)P ≡ (y)(x)P (x)(P | Q) ≡ P | (x)Q x /∈ fv(P )
(x)(P ; Q) ≡ (x)P ; Q x /∈ fv(Q)

(x〈ũ〉 | P ); Q ≡ x〈ũ〉 | P ; Q

done | P ≡ P abort | abort ≡ abort
done; P ≡ P abort; P ≡ abort

K(ṽ) ≡ P{ṽ/̃u} if K(ũ)
def
= P

t((x)P, F, B, C) ≡ (x)t(P, F, B, C) x /∈ fv(F ) ∪ fv(B) ∪ fv(C)
t(x〈ũ〉 | P, F, B, C) ≡ x〈ũ〉 | t(P, F, B, C)
(t(done, F, B, C) | P ); P ′ ≡ t(done, F, B, C) | (P ; P ′)

The first group of equations is almost standard: let us discuss the not stan-
dard ones. Notice that the rule (x)(P ; Q) ≡ (x)P ; Q if x /∈ fv(Q), is necessary
(in combination with α–renaming) to allow restrictions to float at top level. The
equation (x〈ũ〉 | P ); Q ≡ x〈ũ〉 | P ; Q floats outputs outside sequences, since they
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have no continuation. Equations done | P ≡ P and done; P ≡ P specify that done
is the identity of parallel and sequence; abort | abort ≡ abort states that a process
is aborted when all its parallel components are aborted; abort; P ≡ abort speci-
fies that an aborted process is such, regardless of the continuation. The equation
t(x〈ũ〉 | P, F, B, C) ≡ x〈ũ〉 | t(P, F, B, C) allows to move outputs from inside a
transaction to the outside environment and vice-versa. The intended semantics is
the following. If a transactional process emits a message, this message traverses
the transaction boundary, until reaching the corresponding input. In case the
transaction fails, recoveries for this output may be detailed inside the processes F
and B. The equation (t(done, F, B, C) | P ); P ′ ≡ t(done, F, B, C) | (P ; P ′) al-
lows to float successfully terminated transactions outside parallels and sequences.
We observe that t(done, F, B, C) is not equal to done because, if an enclosing
transaction fails, then the compensation C must be fired to accomodate possible
inconsistencies (see the next rule (t-done)).

2.3 The Reduction Relation

The reduction relation of πt-calculus is the least relation satisfying the rules in
Table 1,

Table 1. The reduction rules of πt-calculus

(red) x〈ṽ〉 | x(ũ).P → P{ṽ/̃u}
(t-done) t(t(done, F, B, C) | P, F ′, B′, C′) → t(P, F ′, B′ | C, C′)

(t-abort) t(abort, F, B, C) → B; F

(context)
P → P ′

C[P ] → C[P ′]

(lift)
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

The rules (t-done) and (t-abort) deserve some discussion. (t-done) mod-
els the successful completion of a transaction t(done, F, B, C). In this case, the
compensation C must be recorded in the failure bag of the enclosing transaction,
if any, to account for possible failures of the latter. If the outer transaction fails,
rule (t-abort) specifies that the failure manager must be executed after the
compensation of every enclosed transaction.

2.4 Comparison with the π-Calculus

It is interesting to observe that the πt-calculus is essentially an extension of the
π-calculus. Indeed, we can obtain the latter from the former simply by eliminat-
ing the sequence operator P ; Q, the transactional process t(done, F, B, C), the



130 Laura Bocchi, Cosimo Laneve, and Gianluigi Zavattaro

process abort, and by interpreting the process done as the empty process 0 of
the π-calculus. Actually it is also possible to encode the former into the latter,
and we will study the encoding in section 4.

3 Examples

In the examples we use an extension of the calculus that comprises conditionals,
boolean values, and boolean variables. Namely, we consider the operator:

if (a = k) then P else Q
where k = 0 or k = 1, and a is a boolean variable. The semantics of the condi-
tionals is the standard one.

3.1 Authentication

The first example describes a server that authenticates its clients exploiting a cer-
tification authority. The are four actors: the client (Client), the server (Server),
the certification authority (Auth), and a law authority (Law) used to notify
abuses.

We focus on the behaviour of the server: on reception of a request (which
includes the identity of the client id, and its certificate cert), the server asks the
certification authority to check the validity of the received certificate. Therefore,
the server waits for an answer, that may be either 1 or 0, depending on success
or failure, respectively. In the case of success the server executes the required
activity, on the contrary it communicates the abuse to the law authority. The
following channels are used:

– req is the channel between Client and Server ;
– check is the channel between Server and Auth;
– resp is a channel created by the Main process and passed to the Server : this

channel is used to communicate the result (success or failure) of the certifi-
cate check (the same technique will be used also in the following examples);

– ntf is the channel between Server and Law ;
– abuse is a local channel used to store data concerned with the abuse of

certificates.

We are now in place to specify the above process in πt-calculus:

Server = (abuse)t(Main , Fail , done, done)
Main = req(task , id , cert).

(resp)(check 〈id , cert , resp〉 |
resp(a).if (a = 1) then Execute(task ) else (abuse〈id , cert〉 | abort)
)

Fail = abuse(id , cert).ntf 〈id , cert〉
where Execute is a program constant (that we leave unspecified) representing
the execution of the task. It is important to note that the transaction is used
here merely as a facility for exception management.
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3.2 Flight or Train Booking
This second example has been introduced to discuss that, when an abort process
is reached, the failure process is not activated immediately, but the termination
of parallel threads is waited. This is particularly useful in transactions, composed
by concurrent activities, in order to give a chance to any activity to terminate
successfully its task even if some other fails.

We consider a travel agency (Travel) that books a certain number of flights:
each reservation is managed by a process Reserve. The reservations may succeed
or fail. At the end of all the reservation subtasks, if at least one of them has
failed, a failure process is started which reserves trains instead of failed flight
reservations.

We exploit the following names:
– bookF is a channel shared between the travel agency and the flight company;
– dest and resp are names fresh for each process Reserve: dest indicates the

destination while resp is the channel to be used to indicate the success or
failure of the reservation (using 1 or 0, respectively);

– train is a channel used to store, in the case of flight reservation failure, the
request for an alternative train reservation;

– bookT is a channel shared between the travel agency and the train company.

We are now in place to specify the booking process:

Travel = t(Flight , Train , done, done)
Flight = Reserve | Reserve | . . . | Reserve
Reserve = (dest)(resp)( bookF 〈dest , resp〉 |

resp(a).if (a = 1) then done else (train〈dest〉 | abort) )
Train = train(dest).(bookT 〈dest〉 | Train)

As described above, the failure of one of the Reserve processes does not influ-
ence the concurrent activities; the failure process starts only on termination of all
the Reserve processes. This is ensured by the rule (t-abort) that activates the
failure bag and the failure manager only when the main process is (structurally
congruent to) the process abort.

3.3 Flight and Hotel Booking
In this third example we decribe a transaction (Journey) composed of the se-
quence of two transactions: the first books a return flight ticket, the second
reserves a hotel room for the nights between the arrival and the departure dates.

The first transaction has a compensation process which is responsible for can-
celling the flight reservation. We use the two process constants Ticket(dest,a,d)
and Room(dest,a,d) to represent the two transactions: dest is the destination
while a and d are the arrival and departure dates, respectively. We consider the
existence of three channels:

– bookF and bookH used to ask for a flight or a room booking, respectively. In
both cases, the request may either succeed or fail;

– cancelF is used to ask for the cancellation of a flight reservation.
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The booking requests may either succed or fail: also in this case we use the
boolean values 1 and 0 to denote these two possible outcomes, respectively.

We are now in place to present the formal specification of the Journey pro-
cess:

Journey = t(Ticket(dest , a, d);Room(dest , a, d), done, done, done)
Ticket(dest , a, d) = (resp) t( bookF 〈dest , a, d, resp〉

| resp(ack).if (ack = 1) then done else abort,
done, done, cancelF 〈dest , a, d〉 )

Room(dest , a, d) = (resp) t( bookH 〈dest , a, d, resp〉
| resp(ack).if (ack = 1) then done else abort,
done, done, done )

Notice that an equivalent behaviour is obtained placing the flight cancellation
request cancelF 〈dest , a, d〉 as failure of the second transaction. However, the
process specification we have reported supports better modularity because all
the activities related to flight reservation, as well as cancellation, are all inside
the same transaction.

4 The Encoding of the πt-Calculus
into the Asynchronous π-Calculus

In this section we demonstrate that πt-calculus may be encoded into the asyn-
chronous π-calculus. We recall that the latter is indeed a subcalculus of the
former (see section 2.4), therefore we avoid any redefinition. The encoding is a
partial function [[−]]−,−

−,−. The process [[P ]]z,w
x,y , such that x, y, z, w �∈ fv(P ), uses

the channels x, y, z and w respectively to signal successful termination without
compensations, erroneous termination without compensations, successful termi-
nation with compensation and erroneous termination with compensation. The
termination of P could have compensations if there are transactional contexts
defined in it.

In the definition below we use the constants M and Nzw
xy defined as follows:

M(c, c′, c′′) = c(x, y, z, w). (xL, yL, zL, wL, xR, yR, zR, wR)(
c′〈xLyLzLwL〉 | c′′〈xRyRzRwR〉
| Nzw

xy (xL, yL, zL, wL, xR, yR, zR, wR)
)

Nzw
xy (xL, yL, zL, wL, xR, yR, zR, wR) =

xL().(xR().x〈〉 | yR().y〈〉 | zR(cR).z〈cR〉 | wR(cR).w〈cR〉)
| yL().(xR().y〈〉 | yR().y〈〉 | zR(cR).w〈cR〉 | wR(cR).w〈cR〉)
| zL(cL).( xR().z〈cL〉 | yR().w〈cL〉

| zR(cR).(c′′′)(z〈c′′′〉 | M(c′′′, cL, cR))
| wR(cR).(c′′′)(w〈c′′′〉 | M(c′′′, cL, cR)))

| wL(cL).(xR().w〈cR〉 | yR().w〈cR〉
| zR(cR).(c′′′)(w〈c′′′〉 | M(c′′′, cL, cR))
| wR(cR).(c′′′)(w〈c′′′〉 | M(c′′′, cL, cR)))
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The purpose of M and Nzw
xy is discussed next. Actually we focus on M , because

Nzw
xy is similar. The process M(c, c′, c′′) multiplexes the compensation request

coming from c towards c′ and c′′, which are the channels for invoking compen-
sations of two parallel subprocesses, let us call them L and R. The subprocesses
L and R may return four different kinds of signals, namely xL, yL, zL, wL and
xR, yR, zR, wR, with sixteen different combinations. The interesting combina-
tions are when L returns on zL or wL, and R returns on zR or wR, namely when
L and R return a compensation to activate in case of failure. In these cases a
new multiplexer must be triggered, henceforth the recursive invocation of M . We
remark that, for the correctness of M and N , it is necessary there are exactly
two messages: one on channels xL, yL, zL, wL and the other on xR, yR, zR, wR.

Definition 2. The process [[P ]]z,w
x,y , such that x, y, z, w �∈ fv(P ), is defined by the

equations below (the definition of MP is the last one). We always assume that
new names introduced by the encoding never clash with free names of the encoded
process.
[[done]]z,w

x,y = x〈〉 [[abort]]z,w
x,y = y〈〉

[[u〈ṽ〉]]z,w
x,y = u〈ṽ〉 | x〈〉 [[u(ṽ).P ]]z,w

x,y = u(ṽ).[[P ]]z,w
x,y (x, y, z, w �∈ ṽ)

[[(u)P ]]z,w
x,y = (u)[[P ]]z,w

x,y (u �∈ x, y, z, w)

[[P ; Q]]z,w
x,y = (x′, y′, z′, w′)( [[P ]]z

′,w′
x′,y′

| x′().[[Q]]z,w
x,y

| y′().y〈〉
| z′(c).MQ(c, z, w)
| w′(c).w〈c〉

)

[[P | Q]]z,w
x,y = (xL, yL, zL, wL, xR, yR, zR, wR)(

[[P ]]zL,wL
xL,yL | [[Q]]zR,wR

xR,yR

| Nzw
xy (xL, yL, zL, wL, xR, yR, zR, wR)

)

[[t(P, F, B, C)]]z,w
x,y = (x1, y1, z1, w1)(

[[P ]]z1 ,w1
x1 ,y1

| x1().(c)(z〈c〉 | c(x1y1z1w1).[[C]]z1 ,w1
x1 ,y1 )

| y1().[[B; F ]]z,w
x,y

| z1(c).(c
′)(z〈c′〉 | c′(x1y1z1w1).[[C]]z1 ,w1

x1 ,y1 )
| w1(c).(x

′, y′, z′, w′)
(xL, yL, zL, wL)
(xR, yR, zR, wR)(

c〈xLyLzLwL〉 | [[B]]zR,wR
xR ,yR

| Nz′w′
x′y′ (xL, yL, zL, wL, xR, yR, zR, wR)

| x′().[[F ]]z,w
x,y

| y′().y〈〉
| z′(c′).MF (c′, z, w)
| w′(c′).w〈c′〉

)
)
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[[K(u1, . . . , un)]]z,w
x,y = Kπ(u1, . . . , un, x, y, z, w)

Kπ(v1, . . . , vn, x, y, z, w) = [[P ]]z,w
x,y (assuming K(v1, . . . , vn)

def
= P )

where the definition of the constant MP is the following:

MP (c, z, w) = (x′, y′, z′, w′)( [[P ]]z
′,w′

x′,y′

| x′().z〈c〉
| y′().w〈c〉
| z′(c′).(c′′)(z〈c′′〉 | M(c′′, c, c′))
| w′(c′).(c′′)(w〈c′′〉 | M(c′′, c, c′))

)

Let us clarify the behaviour of [[·]]z,w
x,y , according to the shape of the argument.

If the argument is done, a signal on x is emitted, meaning the successful
termination without compensations.

If the argument is u〈ṽ〉, the successful termination signal is in addition with
the message on u.

If the argument is abort, a signal on y is emitted, representing the failure
without compensation.

If the argument is u(ṽ).Q or (x)Q the encoding is homomorphic and successes
and failures are passed to the encoding of Q.

If the argument is P ; Q, the encoding of P is executed and, in case of success-
ful completion, the encoding of Q is performed afterwards (we observe that the
encoding of Q is always underneath an input). In case there are compensations,
the process MQ is called, as discussed above.

If the argument is P | Q, the encodings of P and Q are performed in parallel
and the results are collected by the agent N .

If the argument is t(P, F, B, C), the encoding of the body P is executed.
There are several cases. In case of success (with or without compensations),
the process [[t(P, F, done, C)]]z,w

x,y emits on z the compensation triggering the
encoding of C (inner compensations are discarded). In case of failure without
compensations, we must perform the encoding of the agent B before the failure
manager F . In case of failure with compensations then the failure manager F
must be executed after the other compensations. Remark that this last case is
very similar to the sequential composition.

If the argument is K(u1, . . . , un), we use a twin constant Kπ that carries four
additional arguments, namely the channels for signaling success and failure. The
definition of Kπ is the expected encoding of the definition of K.

4.1 Correctness of the Encoding

We assess the correctness of the encoding of πt-calculus with respect to the se-
mantics defined in section 2. Since the previous encoding yields π-calculus agents
that show up several deadlocked subprocesses (see the definitions of sequence,
parallel, or transaction), we require an extensional semantics that is, as far as
the π-calculus is considered, insensitive to deadlocked processes. To this aim we
introduce (weak) barbed equivalence [17].
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Definition 3. Let P ↓ x be the least relation satisfying the rules below.

x〈ũ〉 ↓ x
P | Q ↓ x if P ↓ x or Q ↓ x
P ; Q ↓ x if P ↓ x
(y)P ↓ x if P ↓ x and x �= y
t(P, F, B, C) ↓ x if P ↓ x
P ↓ x if Q ↓ x and P ≡ Q

If P ↓ x we say that P has a barb on x.
Notice that, this definition of barb is different from the standard one [17]

because we are closing the relation by structural equivalence. The usual definition
by induction on the syntax is hard in our case because of the sequence operator.
We remark that the above barb does not allow to discriminate between the
processes done and abort, even though a transaction context behaves differently
when filled with them. Actually this is not an issue since the barbed congruence
semantics (not discussed in this paper) is enough discriminating to separate done
and abort.

Definition 4. A (weak) barbed bisimulation is a symmetric binary relation S
between agents such that P S Q implies:

1. If P → P ′ then Q →∗ Q′ and P ′ S Q′.
2. If P ↓ x for some x, then Q →∗ Q′ and Q′ ↓ x.

P is barbed bisimilar to Q, written P
�≈ Q, if there exists some barbed bisimula-

tion S such that P S Q.
For instance, done

�≈ abort
�≈ (x)x〈u〉. The definitions of barb and barbed

equivalence coincide with those of π-calculus when processes are restricted to
π-calculus ones.

The correctness of the encoding [[P ]]z,w
x,y is formalized by the following result.

Theorem 1. Let P be a πt-calculus process. Then

1. P ↓ u if and only if [[P ]]z,w
x,y ↓ u and u �∈ {x, y, z, w}.

2. If P → Q then [[P ]]z,w
x,y →∗ �≈ [[Q]]z,w

x,y (provided that x, y, z, w do not clash
with fv(P ) and fv(Q)).

3. If [[P ]]z,w
x,y → Q then there is R such that P →∗ R and Q

�≈ [[R]]z,w
x,y .

Proof. (Sketch) (1) Since “↓” encompasses structural equivalence, one ends up
at demonstrating that, if P ≡ Q and [[P ]]z,w

x,y ↓ u, then [[Q]]z,w
x,y ↓ u. This is mostly

a straightforward analysis, except for the structural rules (x〈ũ〉 | P ); Q ≡ x〈ũ〉 |
P ; Q and (t(done, F, B, C) | P ); P ′ ≡ t(done, F, B, C) | (P ; P ′). Both cases
follow by the definition of the encoding and by a careful analysis whether P is
amenable to done or not.

(2) We analyze the basic reductions. Among them, the difficult case is (t-
done) because of the management of the failure bag. Let us discuss this case in
detail. On one side we have:

t(t(done, F, B, C) | P, F ′, B′, C′) → t(P, F ′, B′ | C, C′)
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On the other side we have:

[[t(t(done, F, B, C) | P, F ′, B′, C′)]]z,w
x,y

= (x1, y1, z1, w1)([[t(done, F, B, C) | P ]]z1,w1
x1,y1

| T xyzw
x1y1z1w1

(F ′, B′, C′))
(T xyzw

x1y1z1w1
(F ′, B′, C′) is the manager of transaction

that may be grabbed from definition 2)

= (x1, y1, z1, w1)(xL, yL, zL, wL, xR, yR, zR, wR)(
[[t(done, F, B, C)]]zL,wL

xL,yL
| [[P ]]zR,wR

xR,yR
| Nz1,w1

x1,y1

(xL, yL, zL, wL, xR, yR, zR, wR) | T xyzw
x1y1z1w1

(F ′, B′, C′))

→ (x1, y1, z1, w1)(xL, yL, zL, wL, xR, yR, zR, wR)(
(c)(zL〈c〉 | c(x′y′z′w′).[[C]]z

′,w′
x′,y′ | [[P ]]zR,wR

xR,yR

| Nz1,w1
x1,y1

(xL, yL, zL, wL, xR, yR, zR, wR) | T xyzw
x1y1z1w1

(F ′, B′, C′))

→ (xR, yR, zR, wR)([[P ]]zR,wR
xR,yR

|
(x1, y1, z1, w1)(c)(xR().z1〈c〉 | yR().w1〈c〉
| zR(cR).(c′′′)(z1〈c′′′〉 | M(c′′′, c, cR))
| wR(cR).(c′′′)(w1〈c′′′〉 | M(c′′′, c, cR))
| c(x′y′z′w′).[[C]]z

′,w′
x′,y′ | T xyzw

x1y1z1w1
(F ′, B′, C′)))

Therefore we are reduced to prove that

(x1, y1, z1, w1)(c)(xR().z1〈c〉 | yR().w1〈c〉
| zR(cR).(c′′′)(z1〈c′′′〉 | M(c′′′, c, cR))
| wR(cR).(c′′′)(w1〈c′′′〉 | M(c′′′, c, cR))
| c(x′y′z′w′).[[C]]z

′,w′
x′,y′ | T xyzw

x1y1z1w1
(F ′, B′, C′))

�≈ T xyzw
xRyRzRwR

(F ′, B′ | C, C′)

This follows by a close inspection of all the possible cases.
(3) The proof consists of picking some representative π-calculus processes

of the evaluation of [[P ]], and demonstrating that intermediate processes are
barbed bisimilar to the representatives. Representatives are processes where no
“bureaucratic reactions” is possible (these are the reactions due to the encoding).
Representatives are proved bisimilar to encodings of πt-calculus processes in a
way similar to that reported for the case (2).

This theorem is the basic result to relate barbed bisimulation in π-calculus
and in πt-calculus. It is well-known that this equivalence is not very interesting
because its discriminating power is weak. Nevertheless, our intended applica-
tion of such result is to infer barbed bisimulation congruence of πt-calculus –
which, on the contrary, is an interesting semantics – from barbed bisimulation
congruence of the encoded agents in π-calculus. This is a considerable result for
our calculus that requires a weighty effort (e.g. we should exploit an equivalent
labelled semantics characterizations [17]) that we leave for future work.
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5 Conclusions

Long-running transactions have recently received a renewed interest with the
advent of Web Services-based business interactions. Indeed, these transactions
are considered a valuable tool for business process modeling. In this paper, we
have formalized and studied the notion of long-running transactions incorporated
in Microsoft BizTalk [14], a visual environment for business process modeling.

We notice the absence, to the best of our knowledge, of formal specifications
and analysis of transactions in Web Services-based business process modeling.
The unique published work we are aware of is [5], devoted to the investigation
of ACID (short-lived) transactions in the context of BizTalk.

As future work, we plan to investigate more complex mechanisms for compos-
ing transactions; in particular, in our calculus a transaction obtained as parallel
composition of sub-transactions waits for the termination of all these trans-
actions before terminating itself. Other interesting composition operators, see
e.g. the pick constructur of XLANG [18], allows for the execution of one sub-
component only, chosen according to the occurrence of some specific event.
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