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Abstract. The main purpose of our work is the typing of concurrent,
distributed and mobile programs based on the actor programming model,
that is non-uniform behaviour concurrent objects communicating by
asynchronous message passing. One of the key difficulties is to give a
precise definition of ”message not understood” errors in this context. In
this paper, we investigate temporal logic and model-checking based tech-
nologies for an asynchronous message passing process calculi. We focus
on non uniform input interfaces for processes, and then define a tempo-
ral logic tailored to their description and analyses. This logic deals with
infinite-state systems, as mailboxes of actors are unbounded multisets of
messages, but yet happens to be decidable. We use our logic to specify
possible communication errors in actor-based programs in order to give
precise and sound definition of type disciplines.

Introduction
The development of the telecommunication industry and the generalization of
network use bring concurrent and distributed programming in the limelight. In
that context, programming is a hard task and, generally, the resulting appli-
cations contain much more bugs than usual centralized software. As sequential
object oriented programming is commonly accepted as a good way to build soft-
ware, concurrent object oriented programming seems to be well-suited for pro-
gramming distributed systems. Since non-determinism resulting from the unre-
liability of networks makes it difficult to validate any distributed functionality
using informal approaches, our work is focused on applying formal type systems
to improve concurrent object oriented programming.

To obtain widely usable tools, we have chosen to use the actor model pro-
posed by Hewitt in [HBS73] and developed by Agha in [Agh86]. This model is
based on a network of autonomous and cooperative agents (called actors), which
encapsulate data and programs, communicating using an asynchronous point to
point protocol. An actor stores each received message in a queue and when idle,
processes the first message it can handle in this queue. Besides those conventions
(which are also true for concurrent objects), an actor can dynamically change
its interface. This property allows to increase or decrease the set of messages an
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actor may handle, yielding a more accurate programming model. This model,
also known as concurrent objects with non uniform behaviour (or interface),
has been adopted by the telecommunication industry for the development of
distributed and concurrent applications for the Open Distributed Computing
framework (ITU X901-X904) and the Object Description Language (TINA-C
extension of OMG IDL with multiple interfaces). Due to behaviour change, it
may happen that a message cannot be handled by its target in some execution
path (a sequence of behaviours the actor can assume) and could be handled in
some other path. Such messages are called orphan messages.

Type systems for concurrent objects and actors, with uniform or non-uniform
behaviours, have been the subject of active research in the last years ([RV00],
[Nie95], [Kob97], [Pun96], [NNS99], [FLMR97], [Bou97] and their more recent
works). Two opposite approaches have been followed: explicit and implicit typ-
ing. Explicit types (see [RR01,CRR02]) may provide more precise information
but are sometimes very hard to write for the programmer (they might be much
more complex than the program itself). We advocate the use of implicit typing,
i.e. type inference, as it is simpler to use.

In a first approach, our type systems were defined using Cap, an actor cal-
culus derived from asynchronous π-calculus and Cardelli’s Calculus of Primi-
tive Objects (see [CPS96]). Two type systems were developed: the former (see
[CPS97]) is based on usual object type abstractions and catches all functional
and communication errors but only trivial orphans, the latter detects a large set
of orphans but requires a much more complex type abstraction (see [CPDS99]).

Despite several unsuccessful attempts to provide formal definitions for the
various kinds of orphan messages we are interested in ([CPDS99] and [DPCS00]),
most of the time, the best definition we could give was: orphan messages are the
messages detected by our analyses which was neither satisfying nor useful. The
purpose of this paper is to present a decidable temporal logic dedicated to the
specification of orphan messages which we use to compute various notions of
input capacities for actors.

We initially give a short description of Cap, a primitive actor calculus used
to define our static analyses.

1 Cap: A Primitive Actor Calculus

Various encodings of concurrent objects in the π-calculus or similar formalisms
have been proposed [Wal95,PT97]. Message labels and actors mail addresses are
usually both expressed using names. Therefore, the typing of encoded programs
generally leads to type information which does not reflect the structure of the
original program. The authors defined in [CPS96] the Cap calculus in order to
overcome these constraints.

As in the π-calculus [Mil91] and in the ν-calculus [HT91] the basis of the
calculus is the name representing the actors mail addresses. Following Abadi
and Cardelli’s calculus of Primitive Objects [AC94], actor’s different behaviours
are represented by mutually recursive records of methods only accessible by
communication.
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Cap does not follow all the principles of Agha’s actors, but provides be-
haviours and addresses as primitives that allow to express very easily actor
programs. We will assume some restrictions on Cap programs in order to define
our analyses in a strict actor framework.

The remaining part of this section is devoted to a quick introduction to Cap
syntax (a more precise presentation of the calculus and its semantic are available
in [CPS96,CPS97]).

1.1 Cap Syntax

As a first example of a Cap expression, we construct a term corresponding to
the “one-slot buffer” beginning with an empty state which is sent a put message.

νa, b(a � [ put(v) = ζ(e, se)(e � [get(c) = ζ(e′, sf )(c � rep(v) ‖ e′ � se)])]
‖a � put(b))

First, we create the two actor names a and b using the ν operator. An actor
is built (via �) by the association of an address (a) and a behaviour. In the
previous example, the behaviour of a has two states recursively defined (via ζ).
The first state (the empty buffer) only understands one put message and then
switches to the second state (the full buffer) where it can understand only one
get message. Before switching back to empty, it sends (via �) the value coming
from the corresponding put request to the argument of the get message.

When an actor accepts a message, ζ(e, s) binds the actor’s address to e (called
ego) and its current behaviour to s (called self ). This operator is inspired by the
ς defined by Abadi and Cardelli [AC94] to formalize self-substitution in objects.
In our context, the capture of self and ego is used to formalize behaviour changes
without introducing a fixpoint operator.

To define Cap syntax the following sets are used: V ar an infinite set of
variable symbols (x,xi,ei,si ∈ V ar) and Label a finite set of feature labels (mi ∈
Label). Sequences of symbols are represented by a tilde (̃ ).

A configuration is a concurrent combination of actors and messages sent to
actors. Their set C is built by the following grammar:

C ::= ∅ | C ‖ C | νx.C | x � T | x � m(T̃ ) | (C)
T ::= [mi(x̃i) = ζ(ei, si)Ci]i∈I | x | (T )

The configurations C represent respectively: an empty process, processes in
parallel, creation of actor’s name, an actor named x waiting for a message (input
transition) with T as its current behaviour and finally a message labelled m with
its parameters T̃ sent to an actor x (output transition).

The terms T are either behaviours (between brackets) or variables. A be-
haviour is a set of reactions Ci to the labelled messages mi (with their parameters
x̃i) that an actor can handle at a given time.

Syntactically, the sharing of the same address by several different actors is not
forbidden. So, we will assume that Cap programs respect a linearity hypothesis:
actors are not allowed to change the behaviour of other actors and only one



Temporal Logic Based Static Analysis for Non-uniform Behaviours 97

behaviour is associated to an actor at each time (changing behaviour is only
expressed using the ego variable: we will write a � [mi() = ζ(ei, si)C ‖ ei � bi]
and not a � [mi() = ζ(ei, si)C ‖ a � bi]). Moreover, in this paper, values in
parameters are only names of actors and not behaviours; this point will be
discussed in conclusion.

2 Computation of the Interface of an Actor

The interface or behavioural type of an actor shall merely denote a finite-state
transition system, where each state (respectively each transition) corresponds
to an input-waiting state of the actor (respectively a label of an understood
message at this current state). Thus we abstract away output events, as well
as dynamic creation of actors, and even messages contents. Of course, as such,
our analysis here is not intended to deal with properties of a complete actor
(or process-calculi) term, but to focus on the specific input part of such a term.
We insist on the fact that we don’t provide in this paper any type discipline
for a full actor language (as it is the main subject of some of our past papers
[CPS97,CPDS99]).

A first part describes the translation of an actor term into a behavioural type.
Then a finite-state transition system for these types is defined, as an operational
semantics. We are indeed interested in the product system Mailbox × Control,
where Mailbox represents the set of possible mailbox contents, i.e. multisets of
labels and Control is the first transition system. Then we give the operational
semantics of this product system, which we shall further call an asynchronous
transition system. Due to the unbounded nature of the mailbox, this system is
an infinite-state system, but yet from any given initial state, only a finite number
of steps can occur, until the mailbox is empty or we are stuck in a state where
input capabilities don’t match the mailbox content.

2.1 Behavioural Types

We adopt the TyCO syntax for behavioural types [RV00], i.e. types that de-
note the possible sequences of method invocations for a given actor. We recall
here the grammar of behavioural types (without the “‖” operator and message
parameters):

Definition 1 (Behavioural Types).

α ::= Σi∈Imi.αi | Σi∈Iτ.αi | µt.α | t | O

The labelled sum Σi∈Imi.αi gathers together several method types to form
the type of an actor that offers the corresponding set of methods. O denotes the
sum with the empty indexing set.

The silent sum Σi∈Iτ.αi is used to represent the internal non-determinism of
an actor (a choice for instance). As soon as this choice is carried out, the actor
behaves according to one of the types αi.
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2.2 Extraction of Behavioural Types

In this section, we present how to extract behavioural types from a Cap pro-
gram. The principle is to keep only information related to the actors’ input
capacities. The type of each actor is produced and then analysed (represented
by the function O). We ignore the sending of messages and the parameters (as
they are not behaviours).

As the creation of names and the installation of behaviours are separated,
we have to carry a list of associations (variable of actor �→ behavioural type)
produced by the x � T configurations and then to extract the right behavioural
type in the creation configurations νx.C. The list of associations is represented
by ML lists (the operator ”::” adds an element to a list and ”@” merges two
lists).

The configurations and the terms are typed in an environment ∆ containing
the self variables of each behaviour. The analysis of a term only returns one
behavioural type, considering the linearity hypothesis we have made.

The following rules describe the process of extracting behavioural types and
are explained thereafter:

∆ � ∅ : O ∆ � x � m(T̃ ) : O
∆ � C1 : l1 ∆ � C1 : l2

∆ � C1 ‖ C2 : l1@l2

∆ � C : l E(x, l) = (α, l′) O(α)
∆ � νx.C : l′

∆ � T : α
∆ � x � T : [x �→ α]

∆, si : α � Ci : li E(ei, li) = (αi, [])
[mi(x̃i) = ζ(ei, si)Ci]i∈I : µα.Σi∈Imi.αi ∆ � x : ∆(x)

E(x, l) = (α′, l′)
E(x, y �→ α :: l) = (α′, y �→ α :: l′) E(x, x �→ α :: l) = (α, l) E(x, ∅) = (O, ∅)

The empty configuration as well as the sending of message have the null type
O. The parallel configuration gathers the associations from the two configura-
tions.

The typing of the name creation consists in typing the configuration and then
in extracting the behavioural type of this name, which is then analysed by the
system described in the next sections (function O). The resulting configuration
returns the trailing associations. The installation of a behaviour produces a list
with one element: the association of the variable x and the behavioural type
resulting from the analysis of the term T (considering our hypothesis).

A reaction to a message is typed in an environment containing the self as-
sociated with the final type of the behaviour. The type of the next behaviour
is extracted from the list of associations li which contains at least one element
(the next behaviour is precised or not and an actor can’t install a behaviour on
another actor). This point is expressed by enforcing the outcome of the function
E to be the empty list. Finally, the behavioural type is expressed by a fixpoint
and gathers all the branches of the behaviour expression.



Temporal Logic Based Static Analysis for Non-uniform Behaviours 99

The type of a variable is given by the environment ∆ if it represents effectively
a behaviour (as we consider correct programs according to the first type system
of [CPS97]).

The extraction function E(x, l) gives the behavioural type associated with x
in the list l, if it exists, or the null type O instead. It also returns the tail of the
list (without the association concerning x).

Example. According to this system, the one-slot buffer has the following simple
type: µα.get.µα′.put.α.

We can remark that we have not used the sum type with anonymous transi-
tions. This type is required for languages allowing a kind of choice (for instance
the conditional statement if ).

2.3 Operational Semantics of Behavioural Types

We give a semantics of the types via a labelled transition relation where l de-
notes an element of Label ∪ {τ}. A label mi - a basic transition - corresponds to
the invocation of a method with name mi whereas the label τ denotes a silent
transition that corresponds to an internal hidden computation.

Our transition rules for the control part take the form Γ � p
l−→q, where Γ

is an environment of (recursive) behaviour definitions, p and q are behaviours
(α-terms), and l is the label of the transition, mi or τ . The term Γ [t] denotes
the definition p associated to the variable t in Γ , this association being denoted
t �→ p.

Definition 2 (Transition rules for processes control part).

j ∈ I

Γ � Σi∈I li.αi
lj−→ αj

Γ � Γ [t] l−→ p

Γ � t
l−→ p

Γ ∪ {t �→ p} � t
l−→ q

Γ � µt.p
l−→ q

2.4 Operational Semantics of Asynchronous Systems

We can now build the product system of control transitions and data transitions.
the transition rules take the form Γ � (p, ω) m−→(p′, ω′) where ω (respectively ω′)
is the mailbox (i.e. a set of messages) relative to p (respectively to p′). Therefore
τ -transitions have been discarded.

Definition 3 (Transition rules for asynchronous processes).

Γ � p
m−→ q

Γ � (p, ω ∪ {m}) m−→ (q, ω)
Γ � p

τ−→ q Γ � (q, ω) m−→ (q′, ω′)
Γ � (p, ω) m−→ (q′, ω′)

When not necessary, we shall merely ignore the environment part (Γ ) of
transition systems and consider only systems where Γ is abstracted away.
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2.5 About Mailboxes

A mailbox, i.e. a multiset of labels, may be seen as a strictly positive integer
vector (or equivalently as a function) in N

Label, and we feel free to omit this
coercion and to test membership of mailbox in constraint solutions when clear
from the context. In the remaining, the main issue about these multisets will be
to determine whether it is possible or not to define their possible values within
Presburger arithmetics (additive integer arithmetics), i.e. as Presburger formulas
about their components as integer vectors. The set Label always depends upon
a given actor term under analysis, in which the number of different labels is
obviously finite and known.

3 Expressing Input Capabilities of Asynchronous Systems

The type we extract from an actor is not the end of the road, as we must now
work out the possible meanings of message-not-understood like errors, with in
mind the ability to devise type systems from these definitions.

The dedicated logic we propose to explore these issues is a very expressive
mix of CTL-like temporal features (see [CES86]) to specify future behaviours and
Presburger arithmetics (see [Pug91]) to specify mailbox contents, well suited to
expressing pervasive and important properties relative to existence of reduction
paths and emptiness of mailbox. We first define the grammar F of such proper-
ties.

3.1 Logic for Asynchronous Systems (LAS)

Definition 4 (The temporal logic LAS).

F ::= ∃� F | ∃© F (temporal operators)
| ¬F | F ∨ F | true (boolean operators)
| ∃⇑ F | ∃x.F | E ≥ E (arithmetical operators)

where E denotes an expression belonging in Presburger arithmetics. As usual,
the other standard relational operators (=, 
=, >,≤ and <) can easily be retrieved
from boolean operations and ≥.

Variables occurring in arithmetical expressions are either fresh quantified
integer variables (introduced with ∃x . . .) or label variables denoting the number
of corresponding messages (with the same label) in the mailbox. For a constraint
e1 ≥ e2, the term [[e1 ≥ e2]] shall denote its set of integer solutions.

Then, we give the satisfaction relation of our logic with respect to the un-
derlying transition system.

Definition 5 (Satisfaction relation for LAS). The satisfaction relation be-
tween a configuration (p, ω) and a formula f , denoted (p, ω) � f , is the smallest
fixpoint of the following structural inductive rules on f :
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∃ω′ : (p, ω ∪ ω′) � f
(p, ω) � ∃⇑ f

∃(p′, ω′) : � (p, ω)−→∗(p′, ω′) : (p′, ω′) � f
(p, ω) � ∃� f

(p, ω) 
� f
(p, ω) � ¬f

∃(p′, ω′) : � (p, ω)−→(p′, ω′) : (p′, ω′) � f
(p, ω) � ∃© f

(p, ω) � f [K/x]
(p, ω) � ∃x.f

(p, ω) � f1
(p, ω) � f1 ∨ f2

(p, ω) � f2
(p, ω) � f1 ∨ f2

ω ∈ [[e1 ≥ e2]]
(p, ω) � e1 ≥ e2 (p, ω) � true

As usual, we shall sometimes identify a formula f with the set of configurations
where f holds, i.e. its denotation [[f ]]�λp.{ω | (p, ω) � f}

From these operators, we can further define the following abbreviations for
practical purposes:

Definition 6 (Derived operators of LAS).

blocked � ¬∃© true empty mb �
∧

m∈Label(m = 0)
f1 ∧ f2 � ¬(¬f1 ∨ ¬f2) f1 ⇒ f2 � ¬f1 ∨ f2

∀⇑ f � ¬∃⇑ ¬f ∀x.f � ¬∃x.¬f

∀� f � ¬∃� ¬f

Moreover, we shall say that a formula f is “downward-closed”, whenever
formula ∃⇑ f ⇒ f holds.

4 Decidability of Model-Checking in LAS

We state here very succinctly that for any formula f ∈ LAS and any behavioural
type p, [[f ]](p) is Presburger definable, i.e. the set of label multisets (or mailbox
contents) satisfying [[f ]](p) is definable as a formula in Presburger arithmetics.
It follows that model-checking LAS formulas with respect to behavioural types
is decidable because model-checking in Presburger arithmetics is decidable too.

This section is organised as follows. First, we recall Presburger definability
of flattened regular languages. Then, we handle the LAS operators.

4.1 Flattening Regular Languages

Definition 7 (Multiset interpretation of words). For a given word w (i.e.
a finite string of letters), we note w� its “flat” interpretation as the multiset
of its letters, whatever their original order in w. Also, we define its pointwise
extension to sets of words (i.e. languages).

Now we state that for any regular language W , W � is a semilinear set, and
as such is Presburger definable.
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Theorem 1 (W � belongs in Presburger arithmetics). For any regular lan-
guage W , W � is a semilinear set, i.e.

W � �
⋃

i∈I

{vi + Mi.κ | vi ∈ N
Label ∧ Mi ∈ N

Label×di ∧ κ ∈ N
di}

(where di, vi and Mi are non-trivially derived from W ) and is therefore Pres-
burger definable.

Proof (reference). This result is known since the original works of Parikh, see
[Esp95] for a complete insight.

4.2 Example

To get the reader used to flattening regular languages, we illustrate this operation
on a small artificial example. Starting from:

W = a.(b.(c + d))∗ + e

we get:
W � = (a.(b.(c + d))∗ + e)� = (a.(b.c)∗.(b.d)∗ + e)�

from which, applying theorem 1, we finally get I = {1, 2}, d1 = 2, d2 = 0 and:

v1 = (1, 0, 0, 0, 0) v2 = (0, 0, 0, 0, 1)

M1 =
(

0, 1, 1, 0, 0
0, 1, 0, 1, 0

)

M2 = ()

or equivalently, using Presburger arithmetics:

(a = 1 ∧ b = c + d ≥ 0 ∧ e = 0) ∨ (a = b = c = d = 0 ∧ e = 1)

4.3 Computing Denotation for Full LAS

Theorem 2 (LAS belongs in Presburger arithmetics). Given a LAS for-
mula f and a behavioural type p, [[f ]](p) is Presburger definable.

Proof (reference). A proof for similar concerns (namely CTL logic for Basic
Parallel Processes) can be found in [Esp97]. In particular, the proof for the
∃� operator uses theorem 1. Adapting the proof to our systems and logic is
straightforward.

5 Expressivity of LAS: About Orphan Messages

Here, with the help of our expressive logic LAS, we explore different properties
whose common goal is to avoid communication errors.

A pervasive feature will be the downward-closedness of these properties,
which ensures that we can use them in type systems. Indeed, the same way
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that a behavioural type is merely an abstraction of real input behaviours, the
set of messages that will effectively be received by any actor cannot be com-
puted very precisely in the general case. In order to devise a type system, we
need to compute an upper approximation of incoming messages, which we some-
how match against input capabilities (see [CPS97,CPDS99]). So, in the end, as
an actor will receive no more messages than computed, and usually strictly less,
a simple solution is to use a downward-closed input language, so that we avoid
many spurious typing errors.

The different properties exposed in this section will be illustrated by the
one-slot buffer example and a more complex one µq0.a.(d + b.µq2.(a.q2 + c).q0)
pictured as a finite state transition system in the following figure 1.

q0 q1 q2 q3

a b

d

c

a

Fig. 1. A small example.

This example could represent a classic application with a main control loop
with a little inner loop (with message a) and an exit branch (with message d).

We give results, i.e. [[f ]] where f is the property under scrutiny, only for the
initial state of our example systems, and as flattened regular expressions (except
for the first example).

5.1 Strongly Safe Input Language

A very natural idea that comes first to mind is to rule out any configuration
that may lead to a blocked situation, where mailbox is not empty and yet no
further reduction is ever possible. A simple formula suffices to express this strong
requirement:

Strong � ∀� (blocked ⇒ empty mb) ≡ ∀�empty mb

This property entails a very fine-grained analysis of input capabilities, and there-
fore is very valuable for an end-user. We may slightly decrease its acuteness, by
taking its downward closure ∃⇑ Strong.

Examples. For the one-slot buffer, we obtain for [[Strong]](α):

get ≥ 0 ∧ get ≥ put − 1 ∧ put ≥ get

which can be represented by the flattened regular expression:

((put.get)∗ + put.(put.get)∗)�
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For example of figure 1, we obtain for [[Strong]](q0):

(Λ + a + a.b + a2.b.a∗ + a.b.c + a2.b.c + a.d)�

First, whether the system will take the exit branch or stay within the main
loop depends on the presence of a message d.

Second, assuming we are stuck in the main loop, the inner loop adds a major
constraint because we can decide to handle message a either in state q0 or in
state q2. So we can send at most two messages a with b and c, because otherwise
we could get stuck in state q0 with b and/or c orphan messages.

Without the inner loop, the result becomes:

(a + a.d + a.(a.b.c)+ + (a.b.c)∗ + a.b.(a.b.c)∗)�

expressing that the actor may loop the main loop any number of times (except
if message d is sent).

Discussion. As a conclusion, this property is indeed too strong as for instance
it doesn’t allow interferences between nested loops, as illustrated by our example
1. This stems from the fact that our formula requires that every message should
be handled in every computation path from the initial state of an actor, whereas
in real life, input/output communication patterns may ensure a strict sequence
of messages, that will be received one at a time. So, as a conclusion, the Strong
property is not really suited to build a loose enough type system, one that would
allow real life applications to be well-typed.

Moreover, a type system would enjoy better properties if well-typedness of
a given system would imply well-typedness of each of its sub-process taken in
isolation. For instance, the correctness of a process should not rely upon its
environment sending a message that unblocks the treatment of otherwise orphan
messages already present in an actor’s mailbox.

The following alternative definitions of input languages we shall retain for
designing type systems does reflect this simulation of an angelic environment that
provides unblocking messages when needed. They are also downward-closed sets
of messages, i.e. every subset of a solution is a solution too.

5.2 First Orphan-Free Input Language

This input language is only a rephrasing in our logic of earlier works presented for
instance in [CPDS99]. As this language suffers from some important weaknesses,
it is mentioned here mainly for historical reasons, and in witness of our claim
for the expressivity of our logic.

First(m) � ∀m0.m0 = m ⇒ ∀⇑ ∀d.d = m − m0 ⇒ ∀� ∃⇑ ∃� m ≤ d

Sketchily, this property ensures that an actor will have at any time the ability to
treat any message m in its mailbox, provided that a kind environment may send
unblocking messages during the execution. For finite branches, this property boils
down to computing multiset intersection of such paths. The full input language
is then the intersection of First(m) for every label m.
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Examples. The result for the one-slot buffer is not a surprise, because of its lin-
ear behaviour: (get∗.put∗)�. For example of figure 1, we find: (Λ + a + d + a.d)�

that doesn’t allow to loop the main loop even if no message d is ever sent.

Discussion. Our present formulation doesn’t do justice to the simplicity of the
original framework, whose computation only involved a simple greatest fixpoint,
instead of a rather complicated formula. Yet, our formula may be computed with
respect to every label independently, which makes it worthwhile for complexity
and efficiency issues. This property has already been used in a type system for
the full Cap actor’s language, despite the fact that finite branches dominate the
computation, no matter how many loops may exist. In practice, this drawback
totally prevents programmers from using exit branches, so that only actors with
a finite or a forever cycling lifetime may get well typed. Moreover, finite branches
with no common message (for instance, a choice between two different messages)
are systematically ill-typed, because the intersection of all finite paths is empty
in this case.

5.3 Second Orphan-Free Input Language

This last input language is currently the best answer as it fulfills our require-
ments. It involves a slight extension of our logic, because we need to compute a
greatest fixpoint. This fixpoint obviously needs to be well defined and computed
within a finite amount of time.

Definition 8 (Greatest fixpoint in LAS). For any LAS property scheme
F (X) where X is a property variable, then we define νX.F (X), provided the
following constraints hold:
1. X only occurs nested inside an even number of “¬” operators. F (X) is then

monotonous, and least as well as greatest fixpoints are then well defined.
2. F (X) is downward-closed. Computation of greatest fixpoint (starting from

X0�true) then terminates, because there is no infinite strictly decreasing
chains in N

Label.

Theorem 3 (νX.F (X) is Presburger definable). Any term νX.F (X) sat-
isfying the previous conditions is Presburger definable.

Proof (sketch). During fixpoint computation, the first iterate (true) is obviously
Presburger definable, and each new iterate is itself Presburger definable from
the previous one. Termination is obtained by deciding implication between two
successive iterates.

Now, we define our second language. We base our definition on three sim-
ple facts. First, an empty mailbox should always be accepted. Second, adding
some unblocking messages to an accepted configuration should lead to another
accepted configuration, whatever the execution path. Third, added messages
should not be orphan, i.e. one execution path that can handle all added mes-
sages should exist:

Second � νX.∃⇑ (∃� empty mb ∧ ∀� X)
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Examples. The one-slot buffer has the same result: (get∗.put∗)�. For example
of figure 1, we get: (d + a.d + a∗.b∗.c∗)� so, either the exit branch is followed or
the actor accepts any number of messages a,b and c. Without the inner loop,
the result is still the same as we doesn’t take deadlocks into account, indeed
in this case our angelic environment can always safely solve such deadlocking
configurations, i.e. without sending some other orphan message.

Discussion. This property has a very simple expression, and this time we can
cope with finite branches and loops without losing precision, or computing a
severe under-approximation. This is the right choice, as shown in the next sec-
tion, under the assumption that fixpoint computations will never be too much
resource demanding to be a part of an intensively used type system.

6 Orphan-Free Input Language and Full Type Discipline

In order to embed our input languages in a full type discipline, we should state
some continuity and subject-reduction properties of the type system. Unfortu-
nately, we lack room to put forward our ideas about typing actors and invite the
interested reader to consult [CPS97,CPDS99].

Nevertheless, we can state invariance properties which should help the reader
to convince himself about the possibility of using our Second input language to
state subject-reduction properties dedicated to ruling out communication errors
in real executions of actor configurations.

The following theorem handles blocked as well as unblocked configurations,
expressed at the level of behavioural types. The first case represents one execu-
tion step, whereas the second one deals with blocked configurations. As shown
in our earlier works, systems that may get stuck in a blocked configuration may
still get well-typed, under our assumption of an angelic environment.

Theorem 4 (Second is invariant). For any configuration (p, ω), message label
m and p′, we have:

p
m−→p′ (p, ω ∪ {m}) � Second ∧ ¬blocked

(p′, ω) � Second
(p, ω) � Second ∧ blocked

(p, ω) � ∃⇑ (Second ∧ ¬blocked)
Proof (omitted).

Our last theorem states the absence of a kind of communication errors called
static orphan messages, namely messages which, once in an actor’s mailbox,
would never get a chance to be treated, whatever the (angelic) environment put
in parallel.

Theorem 5 (Second implies orphan-free). For any configuration (p, ω), we
have:

(p, ω) � Second
(p, ω) � ∃⇑ ∃� empty mb

Proof (omitted).
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Conclusion

As a conclusion, we have achieved to devise an interesting general purpose logic
to express behavioural properties, for some restricted kind of infinite-state sys-
tems. Our logic is expressive enough to rephrase many past and current studies
about behaviours of actor programs. For the time being, we only deal with in-
put capabilities, but it seems that it can be extended to handle transducers, i.e.
input/output devices. Moreover, modeling message contents, as long as we only
allow them to denote behaviours as well as addresses, is planned for future work.
The main issue in this case will be to deal with the possibility for behaviours
to send messages to global addresses, leading to rather intricate scope extrusion
problems. As far as we know, our logic is quite unique and we haven’t found yet
any tool dealing with a similar logic of the same behavioural kind. Therefore we
decided to implement a prototype model-checker for LAS, on top of a decision
procedure for Presburger arithmetics [Pug91]. In a rather user-friendly fashion,
our prototype logs every calculation it makes, as a sequence of literally written
Presburger equations, so that the user can trace the computational meaning
of its specification, if needed. The generated log file can serve as a basis for
step-by-step debugging purposes for instance.

From a theoretical viewpoint, our work on LAS can be extended to handle
full TyCo types, including the “‖” operator, as it is partially shown in [Esp97].
We can therefore apply our present work (including our full type discipline not
presented here) to other concurrent programming languages, such as Pict [PT97].
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