Checking Consistency in UML Diagrams:
Classes and State Machines*

Holger Rasch and Heike Wehrheim

Universitat Oldenburg, Department Informatik
26111 Oldenburg, Germany
{rasch,wehrheim}@informatik.uni-oldenburg.de

Abstract. One of the main advantages of the UML is its possibility to
model different views on a system using a range of diagram types. The
various diagrams can be used to specify different aspects, and their com-
bination makes up the complete system description. This does, however,
always pose the question of consistency: it may very well be the case that
the designer has specified contradictory requirements which can never be
fulfilled together.

In this paper, we study consistency problems arising between static and
dynamic diagrams, in particular between a class and its associated state
machine. By means of a simple case study we discuss several definitions
of consistency which are based on a common formal semantics for both
classes and state machines. We furthermore show how consistency checks
can be automatically carried out by a model checker. Finally, we examine
which of the consistency definitions are preserved under refinement.

1 Introduction

The UML (Unified Modeling Language) [21] is an industrially accepted stan-
dard for object-oriented modelling of large, complex systems. The UML being a
unification of a number of modelling languages offers various diagram types for
system design. The diagrams can roughly be divided into ones describing static
aspects of a system (classes and their relationships) and those describing dy-
namic aspects (sequences of interactions). For instance, class diagrams fall into
the first, state machines and sequence diagrams into the second category. While
in general it is advantageous to have these different modelling facilities at hand,
this also poses some non-trivial questions on designs. The different views on a
system as described by different diagrams are not orthogonal, and may thus in
principle be inconsistent when combined.

While it is an accepted fact that consistency is an issue in UML-based sys-
tem development, appropriate definitions of consistency are still an open research
topic. In this paper we propose and discuss definitions of consistency between
static and dynamic diagrams, more precisely, between a class and its associated
state machine. We aim at a formal definition of consistency, and thus will first

* This research is partially supported by the DFG under grant OL 98/3-1.

E. Najm, U. Nestmann, and P. Stevens (Eds.): FMOODS 2003, LNCS 2884, pp. 229-243, 2003.
© IFIP International Federation for Information Processing 2003

230 Holger Rasch and Heike Wehrheim

give a formal semantics to both class definitions and state machines. This in par-
ticular requires the use of a formal specification language for classes to precisely
fix the types of attributes and the semantics of methods. Since the UML does
not prescribe a fixed syntax for attributes and methods of classes we feel free to
choose one. Here, we have chosen Object-Z [19], an object-oriented specification
language appropriate for describing static aspects of systems.

Since we aim at a formal definition of consistency we need a common semantic
domain for classes and state machines in which we can formulate consistency.
This common semantic domain is the failures-divergences model of the process
algebra CSP [14, 18]. This choice has a number of advantages: on the one hand
a CSP semantics for Object-Z is already available [9, 19, 20], on the other hand
CSP has a well developed theoretical background as well as tool-support in the
form of the FDR model checker [12]. For (restricted classes of) state machines
a CSP semantics has already been given in [5]; we give another one for a simple
form of protocol state machines in this paper. The first step during a consistency
check is always the translation of class description and state machine into CSP.

The translation gives us the CSP descriptions of two different views on a
class: one view describing attributes of classes and the possible effects of method
execution (data dependent restrictions) and another view describing allowed
orderings of method executions. These two descriptions are the basis for several
consistency definitions. The property of consistency should guarantee that the
two restrictions imposed on the behaviour of (an instance of) a class are not
completely contradictory. There might, however, be different opinions as to what
this means, ranging from “there is at least one possible run of the model” to
“every method should always eventually be offered to the environment”. The
various forms of consistency are formally specified, and on the case study it is
discussed what the effects of requiring such forms of consistency are. Our second
focus is on tool-supported consistency checks: for each definition we show how
the FDR model checker can be employed to automatically carry out the check.

During the development process a model may gradually be altered towards
one close to the actual implementation domain. When consistency has been
shown for a model developed in earlier phases, successive transformations of the
model should preserve consistency if possible. In a formal approach to system
development refinement is most often used as a correctness criterion for model
evolutions. The question is thus whether the proposed consistency definitions
are preserved under refinement. In our case, there are two notions of refinement
to be considered: data refinement in the state-based part and process refinement
(viz. failures-divergences refinement in CSP) in the behaviour-oriented part. For-
tunately, we can restrict our considerations to process refinement since data re-
finement in Object-Z is known to induce failures-divergences refinement on the
CSP processes obtained after the translation [20, 15]. For each of the definitions
we hence either prove preservation under refinement or illustrate by means of a
counterexample that preservation cannot be achieved in general.

The paper is structured as follows. In the next section we introduce the
small case study and give a brief introduction to Object-Z. Section 3 explains

Checking Consistency in UML Diagrams: Classes and State Machines 231

the translation of both the class and the state machine into CSP. The result of
this translation is the basis for defining and discussing consistency in Sect. 4.
Finally, Sect. 5 presents the results on preservation under refinement.

2 Case Study

The small case study which we use to illustrate consistency definitions concerns
the modelling of an elevator class. It is a typical example of a class with a model
that contains a static part (attributes and methods) as well a dynamic part
which describes allowed orderings of method executions.

The static class diagram of the elevator specification shown in Figure 1 mod-
els the class with its attributes and methods.

Elevator

requests : set of Floor
pos : Floor
tar : Floor

request (f : Floor)
start()
passed()

Fig. 1. Class Elevator

Its attributes are requests (to store the current requests for floors), pos (the
current position of the elevator) and tar (the next target). It has a method
request (to make requests for particular floors), a private method start (to start
the elevator once there is a pending request) and a method passed which is
invoked when the elevator is moving and has passed a certain floor.

The Object-Z specification below! gives a more precise description of this
class. It formally specifies the types of the attributes and the semantics of meth-
ods. For each method we give a guard (an enabling schema) defining the states
(i.e. valuations of attributes) of the class in which the method is executable and
an effect defining the effects of method execution on values of attributes.

The specification starts with the definition of type Floor.

minFloor, maxFloor : Ny Floor == minFloor..maxFloor
minFloor < mazFloor

The class specification itself consists of an interface, a state schema, an initiali-
sation schema and enable and effect schemas for methods. The interface consists
of the method of the class itself (with keyword method) plus those called by the
class (keyword chan). Input parameters of methods are marked with 7.

! To be more specific, it is the Object-Z part of a CSP-OZ specification [9].

232 Holger Rasch and Heike Wehrheim

When an enabling schema for a method is left out it corresponds to a guard
which is always true. Effect schemas refer to the values of attributes after exe-
cution of a method by using primed versions of the attributes. The A-list of a
method specifies the attributes which are changed by method execution.

— Elevator
method request : [f7 : Floor]
method passed, start

chan closeDoor, openDoor
chan stop, up, down

_Init

requests : F Floor
pos, tar : Floor

pos = tar = minFloor
requests = &

~enable_up enable_down —
pos < tar pos > tar

—enable_stop

pos = tar

_enable_start

requests # &

—effect_request

A(requests)
f?: Floor
f? # pos =
requests’ = requests U {f7}
I? = pos = requests’ = requests

_enable_passed

pos # tar

_effect_start

_effect_passed

A(tar, requests) A(pos)
pos > tar = pos’ = pos — 1

pos < tar = pos’ = pos + 1

tar’ € requests
requests’ = requests \ {tar’}

_enable_openDoor _enable_closeDoor

pos = tar

pos # tar

This is the static part of the model, specified by a class diagram. It fixes all data-
dependent aspects of the class. Next, we model the dynamic view on an elevator.
Figure 2 shows the state machine for class Elevator. This is an extended protocol
state machine, which in addition to specifying the order for calls to the methods
of the corresponding class also includes the methods called by (instances of) the
class.

It consists of two submachines in parallel. The first submachine specifies the
allowed sequences in the movements of the elevator. First, the elevator starts
(this means picking a target from the available requests), the door is closed, and
the elevator is send either up or down. During movement some floors are passed
and eventually the elevator is stopped and the door opened again. Requests can
be made at any time, thus the state machine specifying requests is concurrent
to the movements state machine. This completes the model for class Elevator.

Checking Consistency in UML Diagrams: Classes and State Machines 233

start

passed

o . request?f

Fig. 2. Protocol of class Elevator

3 Translation into the Semantic Model

The first step in checking consistency of class definitions and state machines is
their translation into a common semantic domain. The semantic domain we have
chosen here is a semantic model of the process algebra CSP2. Instead of directly
giving a (trace based) semantics to classes and state machines we translate them
into CSP. This way the result remains readable and is furthermore amenable to
checks with the FDR model checker for CSP.

3.1 Translation of the Object-Z Specification

The translation of class Elevator follows a general translation scheme for Object-
Z developed in [11]3. The basic idea is that a class is translated into a param-
eterised process. The parameters of the process correspond to the attributes of
the class. For each method of the class (like passed) and each method called by
the class (like closeDoor) a separate channel is used*. Parameters and return
values are encoded as data sent on the channels.

Each method is translated to a recursion of the main process, guarded by
the event prefix (e —) corresponding to the method and possibly modifying the
process parameters according to the effect schema of the method. All enabled
methods are offered to the environment using external choice (O). Not offering
the disabled methods, i.e. the translation of the enable schemas, is achieved by
using guards (b &). Internal nondeterminism (1) possibly needed for updating
the state space or choosing parameters for method calls is always ‘below’ the
external choice and must not influence the set of offered events. Finally, the Init
schema is translated by specifying the initial process parameters. Again, this

2 CSP has several semantic models. For the general semantics the failures-divergences
model is used, but some of the checks studied here use less powerful models.

3 This is a partial map; some abstractions cannot be handled. It can be automated.

4 Method calls are modelled as CSP communication.

234 Holger Rasch and Heike Wehrheim

requires a nondeterministic choice over all possible valuations, if there is more
than one.

The result of this part of the translation is shown below. The attributes pos,
tar and requests of the Object-Z are represented by the process parameters p,
t and R, respectively®. The notation T <« b 3 E is the operator notation of
conditional choice meaning ‘if b then T else E’.

PROCyz = Z(minFloor, minFloor,)

Z(p,t,R) = p =t & openDoor — Z(p, t, R)
O p # t & closeDoor — Z(p, t, R)
Op=t&stop— Z(p,t,R)
Orequest?f — Z(p, t, RU{f} «f #p> R)
OR#2&(M, start = Z(p, ', R\ {t'}))
Op#t&passed > Z(p+1Lp<tPp—1tR)
Op<t&up— Z(p,t,R)
Op>t&down — Z(p,t,R)

3.2 Translation of the Protocol State Machine

Now the protocol state machine for class Elevator has to be translated to CSP as
well. While in general it is a non trivial task to translate a UML state machine
to CSP, a simple translation scheme exists for state machines which obey the
following constraints:

— simple events, no guards, no actions,

no interlevel transitions,

— only completion transitions from compound states,
disjoint event sets in concurrent submachines,

— no pseudo states besides initial states®.

Many, if not most, protocol state machines already obey these constraints”, so
we do not regard them as severe restrictions in this context.

Translation. Let SM be the state machine. For any pseudo, simple or com-
pound state s of SM let Cs denote the set of all direct successors of s with respect
to completion transitions and T the set of all pairs (e, ¢) of direct successors
t of s reached via a transitions triggered by e. For any submachine M of SM
(including the top level state machine Mi,p,) let Zps denote the set of initial
states for M. Now a translation function ¢ from states and (sub-)machines to
CSP process definitions can be defined®:

5 The renaming keeps the CSP expression small and otherwise has no meaning.

8 This implies that the history mechanism is not used.

" They often use guards, but in CSP-OZ enable schemas are used instead.

8 The special processes SKIP and STOP represent termination and deadlock; |||
denotes parallel composition without synchronisation (interleaving) and ; denotes
sequential composition.

Checking Consistency in UML Diagrams: Classes and State Machines

(M)

P, =SKIP

PSZ (e7t)e7;€4)Pt

Py = [_Itec Py

Py = (171 Pas); (T, Po)
«C, #@» STOP)

Py = te€ly Py

235

if s is a final state,

if s is a simple state and C; = &,

if s is a simple state and C; # @
or s is an initial state,

if s is a compound state with
submachines M;, 1 < i < n.

for any (sub-) machine M of SM.

After calculating and combining the process expressions ¢(s) and (M) for
all states s and all (sub-) machines M of SM, the CSP semantics of SM can
now be computed by evaluating Py, using one of the CSP models.

Since the protocol state machine in Fig. 2) satisfies the constraints given
above, it can be translated using the scheme above. This yields the following
process definitions (to the right an equivalent simplified version of each process
body is shown):

P,
Pur,
Py,

2

Py =

Py

Ps =

Py
Ps
Pg
P
Py
Py

Py =

|—|i€{1} Py
|_|i€{3} Py

ic{9} Py
[—|i€{2} Py
(|||i€{172} PMJ% ((I_ltez Pt)
€@ # 2% STOP)
|—|i€{4} Py
ety © 7 P
D(e,t)e{(closeDoor,e)} ¢ Py
D e vetupn, oy € 7
D(e,t)E{(passed,7),(stop,8)} ¢ Py
D(e,t)E{(openDoorA)} ¢ by
|_|ie{10} P
] e — P,

(e,t)e{(request?f,10)}

= (Pu, || Pasy); STOP

= start — P5

closeDoor — Pg

up — P; O down — Py

= passed — P7 O stop — Pg
= openDoor — P4
= Pio

= request?f — Py

With PROCsy = Pu,,, we now have a CSP translation of the state machine
part of the specification. Simplifying it again, the readable (but equivalent) ver-
sion of PROCgy; looks like this:

236 Holger Rasch and Heike Wehrheim

PROCsy = Py ||| Pro
P, = start — closeDoor — (up — P; O down — Pr)
P; = passed — Py O stop — openDoor — Py
Pi1g = request?f — Pig

3.3 Resulting Specification

As a last step in the translation of the Object-Z class and its protocol state
machine the processes obtained for each one are put in parallel

PROC = PROCy || PROCsy
X

synchronising on the set X' of all events (methods, including parameters) speci-
fied in the Object-Z class using method or chan declarations. In this case parallel
composition can be viewed as a conjunction, that is PROC accepts a method
call (sent or received) iff both PROCy and PROCsy, accept it. This is the in-
tended semantics of the combined specifications with respect to UML protocol
state machines, i.e., the protocol state machine restricts possible behaviour.

4 Notions of Consistency

Using the example given above we now discuss different notions of consistency
for specifications consisting of Object-Z classes and protocol state machines. We
only refer to the result of the translation, the semantics of PROC.

What does consistency mean in our context? Informally, consistency here is
about how the explicit specification of sequences of method invocations in the
state machine and the implicit specification through the enabling conditions in
the Object-Z part fit together. Formally, it is some property of PROC. In the
sequel we present several possible definitions of consistency and for each of them
develop a technique for proving it using the FDR model checker (in case of finite

state specification)®.

4.1 Basic Consistency

When talking about consistency it is beneficial to view parallel composition of
CSP processes as conjunction. So the consistency of PROC is the consistency of
‘PROCZ AN PROCSs),’. It is immediately clear that if this ‘formula’ is not satisfi-
able, the corresponding specification is inconsistent. Translated to the terms of
the semantic model this means: PROC will always deadlock, i.e. any sequence
of events offered to PROC will lead to deadlock. Seen the other way round: for
the specification to be satisfiable it suffices to have at least one trace of PROC
not leading to deadlock.

9 We only consider reactive systems without termination; to use these for systems
which include finite behaviour, termination has to be mapped to an infinite iteration
of some extra event.

Checking Consistency in UML Diagrams: Classes and State Machines 237

Definition 1. A specification consisting of an Object-Z class and an associated
state machine has the property of satisfiability iff the corresponding process in
the semantic model has at least one non-terminating run.

This property can be automatically checked as follows. We assume X' to be the
alphabet of the class (i.e. all events occurring in PROC), the event acc not to be
in ¥, and PROC to be given in machine readable CSP so that the FDR model
checker can be used. In CSP, properties are checked by comparing the system
process with another CSP process specifying the property. The comparison is
a refinement test in one of the models of CSP: traces, failures or failures and
divergences. For our first property we use the following property process INF,
parameterised in the event (or method) m under consideration:

INF(m) = m — INF
For checking satisfiability we test whether
PROC[acc/m]| C INF (acc)

holds. The process INF(acc), only executing acc events, is a trace refinement of
PROC in which all events are renamed to acc if PROC contains at least one
nonterminating run. Performing this check for our elevator example tells us that
the specification is satisfiable.

Satisfiability does, however, not exclude the case that the specification dead-
locks. Since in general deadlock occurs several steps after performing the ‘wrong’
event, successful usage of the system specified would amount to guessing one
trace from the infinite set of traces. This is clearly not a sufficient form of con-
sistency.

For a specification to have basic consistency we thus require PROC to be
deadlock free; after any sequence of events performed by PROC there has to
be at least one event to continue the sequence, that is, no trace may have X
(the set of all methods) as the refusal set. This can be regarded as the standard
notion of consistency in the context of behavioural specifications and is used by
other authors as well, for instance [7, 6], where it is applied to the behaviour of
different entities of a model acting together.

Definition 2. A specification consisting of an Object-Z class and an associated
state machine has the property of basic consistency iff the corresponding process
in the semantic model is deadlock free.

Using the FDR model checker for CSP it can now be checked whether the ex-
ample is consistent according to Def. 2 (by using FDR’s predefined test for
deadlock-freedom). The result is, that PROC for the example given is indeed
deadlock free, so the specification has the property of basic consistency.

4.2 Execution of Methods

Now that we have defined a first form of consistency we again look at our example
to see whether this is sufficient. Consider the following sequence of events on
PROC starting from the initial state.

238 Holger Rasch and Heike Wehrheim

Z(0,0,2)
request.1 — Z(0,0,{1})
start — Z(0,1,9) [requests # &]
closeDoor — Z(0,1,9) [pos # tar]
up — Z(0,1,9) [pos < tar]
request.l — Z(0,1,{1})
passed — Z(1,1,{1}) [pos # tar]
stop — Z(1,1,{1}) [pos = tar]
openDoor — Z(1,1,{1}) [pos = tar]
start — Z(1,1,9) [requests # @]

At this point the elevator should be able to perform closeDoor, but this method
is only enabled if pos # tar, so the only method enabled at this point is request.
Since request does not modify pos or tar this condition will endure infinitely. This
means, the only possible trace after this prefix is (request)”. The specification
has the property of basic consistency but still the combination of state-based
part and protocol state machine prevents certain executions which we expect
from the elevator. What we additionally need are certain forms of liveness of
methods.

As a first approach we might require that every method specified in the
interface of the class can be executed at least once.

Definition 3. A specification consisting of an Object-Z class and an associated
state machine has the property of method executability iff in the corresponding
process in the semantic model every method is executed at least once.

Executed at least once means that there is some trace in which an event cor-
responding to the method occurs. In FDR this can be checked as follows. We
define a tester process

ONCE(m) =m — STOP
and check the trace inclusion
PROC \ (2 \ {m}) T+ ONCE(m)

This test has to be carried out for every method in the interface of the class.
Since in the above example trace of the elevator method closeDoors has already
been executed, this definition does however not have the desired effect: Our
specification has the property of method executability for all methods in the
interface of Elevator.

Although method executability is a weak requirement on specifications, it is a
fundamental one: it amounts to the detection of ‘dead code’ in the specification,
i.e., if a method m fails this test, anything can be substituted for it without
changing the semantics of the specification. This is almost always an error.

A stronger definition might require that all methods (or at least certain
methods marked to be live) should be executed infinitely often:

Checking Consistency in UML Diagrams: Classes and State Machines 239

Definition 4. A specification consisting of an Object-Z class and an associated
state machine has the property of method liveness iff in the corresponding process
in the semantic model every method will always eventually be executed again.

This requirement is close to the definition of impartiality of [17] (or unconditional
fairness of [13]) which states that every process in a concurrent system takes
infinitely many moves. Clearly, method liveness is not fulfilled by our example.
It can be tested using again the property process INF' defined above:

INF(m) Crp PROC \ (2\ {m})

There is still some drawback in this strong liveness requirement. For object-
oriented systems it is not adequate to require that methods are always executed
since an execution requires a request from the environment, and there might
well be traces on which a method is never executed simply because it is never
requested. What we really would like to have is liveness with respect to an
offering of methods to a client of the class.

Definition 5. A specification consisting of an Object-Z class and an associated
state machine has the property of method availability iff in the corresponding
process in the semantic model every method will always eventually be enabled
again.

Unfortunately, this kind of unconditional liveness is not expressible within the
failures-divergences model. We have to approximate it by a form of bounded
availability, fixing an upper bound N on the number of steps in between two
offerings of a method.

OFFER(i,m) = (1 ev — OFFER(N,m))

EvCY ev€ BEvUu{m}

O0i>0%& l_lEvgx\{m} DeveEv ev — OFFER(i — 1, m)
After at most N steps process OFFER(N, m) reaches a state in which method
m is not refused. Regarding the other events the process can freely choose to
refuse as well as execute them. The check for bounded method availability of m
is then

A last remark on this test concerns efficiency. Since process OFFER contains a
choice over all possible subsets of X' the state space of OFFER will be exponen-
tial in the size of the class’ alphabet. For larger specifications this might make
it unrealistic to actually carry out the check. Fortunately, for this test all events
besides m in OFFER(N,m) and PROC can be regarded as equivalent, so re-
naming can be used to reduce the size of the alphabet to two, without changing
the outcome of the test. Giving the reduced form as actual input to FDR results
in clearly reduced runtime comparable to the other checks.

Summarising, we have proposed and discussed five definitions of consistency
which can be used for classes and associated state machines. Which ones are

240 Holger Rasch and Heike Wehrheim

actually used depend on the designer of the specification. In our opinion, basic
consistency and method executability should always should always be fulfilled.
The extended liveness conditions are in general not to be used for all methods,
since some kinds of methods, e.g., those performing initialisation, are not in-
tended to have these properties in the first place. Since this cannot be inferred
from the specification as it is now, it might be useful to include additional ele-
ments in the diagrams to indicate the intentions of the modeller with respect to
the intended behaviour.

5 Consistency-Preserving Transformation

Having established consistency in early phases of system development it is de-
sirable to preserve it during successive model evolutions. In a formal approach
to system development model evolutions from high-level specifications to lower-
level ones are supported by the concept of refinement [4]. Refinement defines
correctness criteria for allowed changes between different levels of abstraction.
With regard to consistency refinement should preserve consistency, or rather
the other way round: consistency should be defined such that it is preserved
under refinement. In the sequel we will examine which of our five definitions of
consistency are preserved under refinement.

Since we have a state-based and a behaviour-oriented part there are in princi-
ple two kinds of refinement to be considered: process refinement in CSP, defined
as inclusion in the failures-divergences model, and data refinement, proven via
simulation rules between classes. Fortunately, data refinement in Object-Z in-
duces failures-divergences refinement on its CSP semantics [20, 15, 10]. Hence it
is sufficient to study preservation of consistency under process refinement. In the
sequel we let refinement stand for failures-divergences refinement.

We pass through our definitions in the order in which they are defined in the
last section. For the first one we get:

Proposition 1. Satisfiability is not preserved under refinement.

This fact can be illustrated by the following CSP process P over the alphabet
Y ={a,b, ¢} representing some process PROC"

P=a— STOP
M b— Run

Run = Devez\{a} ev — Run
P has the property of satisfiability: a nonterminating run is b, ¢, ¢, ¢, Consider
now the process P’ defined as a — STOP. P’ is a failures-divergences refinement
of P (due to the internal choice at the start of P), but is has no nonterminating
run.
Concerning basic consistency we get a better result. The following proposition
follows from standard CSP theory.

Proposition 2. Basic consistency is preserved under refinement.

Checking Consistency in UML Diagrams: Classes and State Machines 241

Concerning the execution of methods there is one negative and two positive
results.

Proposition 3. Method executability is not preserved under refinement.

Starting with the same process P which we used for the counterexample about
satisfiability we now refine it to a process P” = b — Run. Process P has the
property of method executability for all methods in X, including a. P” is a
refinement of P but allows for no execution of a.

The stronger requirements of method liveness and availability are however
preserved:

Proposition 4. Method liveness and method availability are preserved under
refinement.

Proof. Referring to the processes used for checking these two requirements the
results easily follow from transitivity of refinement and monotony of all CSP
operators with respect to refinement.

Together with the discussion in the last section this gives strong hints as to
what a reasonable definition of consistency might be. Basic consistency should
always be fulfilled in order to achieve a meaningful model. This should be com-
plemented with liveness and/or availability of methods, where, however, it might
make sense to restrict these requirements to some of the methods.

For the state machine part of a model we can then classify one kind of
consistency preserving transformations via refinements: whenever we replace a
state machine SM1 by a state machine SM2, consistency is preserved if the CSP
process belonging to SM2 is a process refinement of that of SM1. An interesting
point for further research would be to find classes of transformations on state
machines which induce refinements, as for instance [5] shows the connection
between some notions of statechart inheritance and refinement. For the state-
based part of the model (the class) data refinement is a consistency preserving
transformation.

6 Conclusion

In this paper we discussed consistency for specifications consisting of an Object-
7Z class describing the data aspects of a class and an associated state machine
describing the allowed sequences of method calls. By means of a translation to
a common semantic domain a semantics was given for the whole specification,
which enabled a number of consistency definitions. For every such definition we
proposed a technique for automatically checking it with a model checker, and
we furthermore showed which of the definitions are preserved under refinement.

Related Work. For the UML, consistency is a heavily discussed topic, see
for instance the workshop on “Consistency Problems in UML-based Software
Development” [16]. The approaches in this workshop discuss a wide variety of
consistency issues arising in UML, ranging from mainly syntactic ones to others

242 Holger Rasch and Heike Wehrheim

involving a semantic analysis of the model. The work closest to ours is that of
[7,6] who also use CSP as their semantic basis (and FDR for model checking).
However, whereas they are comparing different behavioural views of a UML
model (state machines and protocols in UML-RT) we define consistency between
a static and a dynamic diagram.

The basis for our work is CSP-OZ, an integration of Object-Z and CSP,
which — together with the translation of state machines to CSP — allows for a
common analysis of state-based and behaviour-oriented views. Besides CSP-OZ
there are a number of other integrated specification languages around, for an
overview and comparison of integrations of Z and process algebras see [9].

Consistency of different views is (or has been) an issue in other areas as
well, especially in the ODP ISO reference model which allows for a specifica-
tion of distributed systems by different viewpoints. The approaches taken there
are, however, different from ours. [8,1] achieve consistency by transformations
between viewpoints, [2] define consistency between viewpoints by the existence
of a common implementation of both viewpoints (using a variety of possible
implementation/refinement relations). The latter approach has also been taken
by Davies and Crichton for defining consistency between sequence diagrams and
system models in UML [3] (also using CSP as a semantic domain). While for
the comparison of sequence diagrams specifying certain scenarios of a system a
refinement based consistency definition seems reasonable (in order to find out
whether the system sometimes/always exhibits the scenario), for class and state
diagrams it might turn out to be inadequate: Since both the traces model and
the stable failures model of CSP have top elements with regard to the respective
refinement order, a common refinement always exists, whereas a specification,
which is consistent according to some of our definitions, typically does not have a
common refinement in the failures-divergences model. Moreover, in our opinion
our consistency definitions more naturally capture a practitioners point of view
on consistency.

References

1. C. Bernardeschi, J. Dustzadeh, A. Fantechi, E. Najm, A. Nimour, and F. Olsen.
Transformations and Consistent Semantics for ODP Viewpoints. In Proceedings
of Second IFIP conference on Formal Methods for Open Object-based Distributed
Systems - FMOODS’97. Chapman & Hall, 1997.

2. H. Bowman, M.W.A. Steen, E.A. Boiten, and J. Derrick. A formal framework for
viewpoint consistency. Formal Methods in System Design, 21:111-166, 2002.

3. J. Davies and Ch. Crichton. Concurrency and Refinement in the Unified Modeling
Language. Electronic Notes in Theoretical Computer Science, 70(3), 2002.

4. J. Derrick and E. Boiten. Refinement in Z and Object-Z, Foundations and Advanced
Application. Springer, 2001.

5. G. Engels, R. Heckel, and J. Kiister. Rule-based Specification of Behavioral Con-
sistency based on the UML Meta-Model. In Martin Gogolla, editor, UML 2001.
Springer, 2001.

10.

11.

12.
13.
14.
15.

16.

17.

18.
19.

20.

21.

Checking Consistency in UML Diagrams: Classes and State Machines 243

G. Engels, R. Heckel, J. M. Kiister, and L. Groenewegen. Consistency-preserving
model evolution through transformations. In J.-M. Jézéquel, H. Hussmann, and
S. Cook, editors, UML 2002 — Model Engineering, Concepts, and Tools, volume
2460 of LNCS, pages 212-226. Springer-Verlag, 2002.

G. Engels, J. Kiister, R. Heckel, and L. Groenewegen. A Methodology for Spec-
ifying and Analyzing Consistency of Object-Oriented Behavioral Models. In 9th
ACM Sigsoft Symposium on Foundations of Software Engineering, volume 26 of
ACM Software Engineering Notes, 2001.

K. Farooqui and L. Logrippo. Viewpoint Transformation. In Proc. of the Interna-
tional Conference on Open Distributed Processing, pages 352—562, 1993.

C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS 97), volume 2, pages 423-438. Chapman & Hall, 1997.

C. Fischer and S. Hallerstede. Data-Refinement in CSP-OZ. Technical Report
TRCF-97-3, University of Oldenburg, June 1997.

C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR. In
K. Araki, A. Galloway, and K. Taguchi, editors, Proceedings of the 1st International
Conference on Integrated Formal Methods (IFM), pages 315-334. Springer, 1999.
Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Man-
ual, Oct 1997.

N. Francez. Fairness. Texts and Monographs in Computer Science. Springer, 1986.
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

M.B. Josephs. A state-based approach to communicating processes. Distributed
Computing, 3:9-18, 1988.

L. Kuzniarz, G. Reggio, J. L. Sourrouille, and Z. Huzar, editors. UML 2002 — Work-
shop on Consistency Problems in UML-based Software Development, volume 06 of
Blekinge 10T Research Report, 2002.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, Justice and Fairness: The Ethics
of Concurrent Termination. In G. Goos and J. Hartmanis, editors, Automata,
Languages and Programming, number 115 in LNCS, pages 264 —277. Springer,
1981.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers,
2000.

G. Smith and J. Derrick. Refinement and verification of concurrent systems speci-
fied in Object-Z and CSP. In M. Hinchey and Shaoying Liu, editors, Int. Conf. of
Formal Engineering Methods (ICFEM), pages 293-302. IEEE, 1997.

OMG Unified Modeling Language specification, version 1.5, March 2003.
http://www.omg.org.

	1 Introduction
	2 Case Study
	3 Translation into the Semantic Model
	3.1 Translation of the Object-Z Speci.cation
	3.2 Translation of the Protocol State Machine
	3.3 Resulting Speci.cation

	4 Notions of Consistency
	4.1 Basic Consistency
	4.2 Execution of Methods

	5 Consistency-Preserving Transformation
	6 Conclusion
	References

