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Abstract.  In this paper we present an automatic statistical intensity based-
approach for extracting the 3D cerebrovascular system from time-of-flight
(TOF) magnetic resonance angiography (MRA) data. The voxels of the dataset
are classified as either background tissues, which are modeled by a finite mix-
ture of one Rayleigh and two normal distributions, or blood vessels, which are
modeled by one normal distribution. We show that the proposed models fit the
clinical data properly and result in fewer misclassified vessel voxels. We esti-
mated the parameters of each distribution using the expectation maximization
(EM) algorithm. Since the convergence of the EM is sensitive to the initial es-
timate of the parameters, a novel method for parameter initialization, based on
histogram analysis, is provided. A new geometrical phantom motivated by a
statistical analysis was designed to validate the accuracy of our method. The al-
gorithm was also tested on 20 in-vivo datasets. The results showed that the pro-
posed approach provides accurate segmentation, especially those blood vessels
of small sizes.

1   Introduction

Large numbers of people suffer a major cerebrovascular event, usually a stroke, each
year. Serious types of vascular diseases such as carotid stenosis, aneurysms, and arte-
rio-venous malformations (AVM) may lead to brain stroke unless they are detected at
early stages. MRA is a non-invasive MRI-based flow imaging technique. Its wide
variety of acquisition sequences and techniques, beside its ability to provide detailed
images of blood vessels, enabled its use in the diagnosis and surgical planning of the
aforementioned diseases. There are three techniques commonly used in performing
MRA; TOF angiography, phase contrast angiography (PCA), and contrast enhanced
MRA (CE-MRA) [1]. Both TOF and PCA are non-invasive techniques, while CE-
MRA requires the injection of a contrast agent, commonly gadolinium. PCA provides
good background suppression and can quantify the flow velocity vectors for each
voxel. The TOF technique is not as quantitative but it is widely used clinically be-
cause it is fast and provides high contrast images, which is the main motivation be
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hind our work. Different approaches have been applied to the problem of vascular
segmentation in both 2D and 3D. Most of the 2D approaches are not applicable to 3D
images. 3D techniques can be classified under two main categories; topological and
statistical techniques. In early topological techniques vessels were detected by cylin-
der matching [2], [3]. A more generalized technique approximating the vessel cross
section by a polygon has been developed in [4]. The Vessel centerlines can be de-
tected using a multi-scale 3D filters [5], and has been modeled by a second order B-
spline, and then extracted using iterative tracking technique [6]. A geodesic active
contour and level set method has been proposed to segment MRA speed images [7],
[8]. Adaptive statistical segmentation method for extracting TOF-MRA is presented
in [9]. Two different statistical models for segmenting PCA are suggested in [10],
[11]. Both speed and phase information provided by PCA are fused together to extract
vessels [12].  In this paper, we present a new TOF intensity-based statistical model
that will fit the clinical data properly and provides more accurate segmentation, espe-
cially for small size blood vessels. The parameters of the proposed model are esti-
mated using the EM algorithm. An automatic method for selecting the initial estimate
of the model parameters necessary by the EM is provided to ensure its convergence.
A geometrical phantom motivated by a statistical analysis was designed to validate
the results.

2   Statistical Segmentation

To the best of our knowledge, there is only one related work [9] that segmented blood
vessels from TOF datasets using a statistical approach. In that study, the TOF data
histogram was divided into three regions, based on voxel intensity. The lowest inten-
sity region corresponds to cerebrospinal fluid (CSF), bone and the background air.
The middle intensity region corresponds to brain tissues, including both the grey and
white matter, and parts of the eyes. The third high intensity region corresponds to
subcutaneous fat, and arteries. A normal distribution is used to model each of the low
and middle intensity regions, while a uniform distribution is used to model the vessel
class as shown in Fig. 1(a). We have tested various probability density models for the
low intensity range of the TOF histogram, and found that the Rayleigh distribution
provides an accurate fit when compared with the normal distribution proposed by [9],
as shown in Fig. 1(b). Theoretically, the vessel intensities are uniformly distributed
over the high intensity range motivated by the physical model provided by [10], but
since the starting point of that range is unknown it is extended over the whole inten-
sity range [9]-[12]. When we first modeled the vessel class by a uniform distribution,
we found that the decision level exceeds the expected value found from manual seg-
mentation by 5 to 15 pixels, which lead to the exclusion of small branches. Thus, the
assumption that vessels exist in the low intensity range biases the fitting process,
which lead to inaccurate decision level value as well. Using a normal distribution as a
model to the vessel class reduced the absolute error between the observed data histo-
gram and the proposed model and improved the decision level. These improvements
resulted because the class peak exists in the upper part of the high intensity region,
thus ensuring very low contribution by its long left tail to the low and middle intensity
regions.  Modeling the middle intensity region by one normal distribution, leads to an
accurate fitting at both ends of the histogram but not at the middle as marked by the
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circle in Fig. 1(b). To correct this problem, an additional normal distribution is used.
Hence, the middle intensity region is modeled by a mixture of two normal distribu-
tions.  Since we are interested only in segmenting blood vessels we assume that the
TOF dataset consists of only two major classes, background and vessels, where back-
ground includes both the low and middle intensity regions. Thus, a mixture of three
distributions (one Rayleigh and two normal) models the background class, while a
normal distribution models the vessel class, as shown in Fig. 1(c).
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Fig. 1. (a) Model by [9] (b) Inaccuracy of Rayleigh and two normal. (c) The proposed model
(accurate fitting) (d) Initial histogram of each distribution

The total probability density function of the mixture is given by Eq. (1)

)()()()()( 332211 xfwxfwxfwxfwxf GGGGGGRR +++= (1)

                                     Background Signal Vessel Signal

The functions ),(),(),( 21 xfxfxf GGR and )(3 xfG are the Rayleigh and normal

density functions, respectively. The quantities ,,, 21 GGR www  and 3 Gw are the class

proportions which sum is unity. The maximum a posteriori (MAP) classification of a

voxel ix  to the vessel class can be obtained by the following equation:
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3   Parameter Estimation

There are eleven parameters in Eq. (2) that needs to be estimated before applying the

segmentation; ,,,, GlGlR wβw µ and  2
Glσ ]3,1[ ∈∀ l , where β  is the Rayleigh

mode. We estimated those parameters using the EM algorithm [13]-[14]. In the lit-
erature there is a closed form for the update equations of the mean and variance of the
normal distribution and the proportion of any distribution [14]. The update equation
for the mode of the Rayleigh distribution at iteration 1+k can be derived by maxi-
mizing the conditional expectation with respect to it; that is,
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where kΘ is the estimate of the Rayleigh parameters at iteration k . N is the total
number of voxels in the data volume. The EM algorithm is an iterative technique that
starts with an initial estimate of the model parameters. During its operation it searches
for those parameters that maximize the conditional expectation, thus it may converge
to local maxima if the initial values of the parameters are not selected properly [14].
Thus, we developed an automatic method for choosing them. The initial values of the
parameters are set according to Table 1. Let )(xh be the normalized observed histo-

gram and )(xhinit
R and )(1 xhinit

G be the initial histograms of the Rayleigh and normal

distributions, respectively, as defined by Eq. (4). Let 1peakI and 2peakI  be the inten-

sities at which )(xh  achieves its two global peaks, and minI  be the intensity at

which )(xh achieves its minimum value between those peaks as shown in Fig. 1(d).

2peakI  and minI can be achieved by smoothing )(xh couple of times.

)|(.)( init  2βxfCxh RR
init
R =  where,

)|(

)(
init 2

1

1

βIf

Ih
C

peakR

peak

R =

),|(.)(   2
11111
init

G
init
GG

init
G xfCxh σµ= where, 

),|(

)(
  2
1111

11
1 init

G
init
G

init
GG

init
Gres

f

h
C

σµµ
µ

=

(4)

RC and 1C of Eq. (4) ensure that the peaks of the initial histograms have the same

height as )(xh . The residual histograms are calculated according to Eq. (5).
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The unit step ensures that init
G1µ  and init

G2µ  have values greater than 1peakI and

init
G1µ , respectively. Once the parameters are estimated, Eq. (2) is used in classifica-

tion.

Table 1. The initial parameter values needed by the EM algorithm

Parameter Value
init
G1µ minI
init
G2µ 2peakI
init
G3µ Calculated using MLE from the last 3% of the high intensity data

of the observed histogram
init β 1peakI , the value at which Rayleigh achieves maximum value.

init
G

  2
1σ Calculated using MLE from the samples in the region

]1,1[ ∆+∆− init
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  2
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G

  2
3σ Calculated using MLE from the last 3% of the high intensity data

of the observed histogram
init
Gw 3

Set to 3% because the proportion of the vessels in the volume
ranges from 1% to 5%.

init
Rw The area of )(xh covered by )(xhinit

R ,
init
Gw 2 The area of )(xh covered by )(2 xhinit

G ,
init
Gw 1 1- init

Rw - init
Gw 2 - init

Gw 3

4   Evaluation of Segmentation

In MRA segmentation, it is quite
difficult to devise validation criteria
because the actual shape of the 3D
vessels is unknown and even expert
radiologists differ in the evaluation.
Thus, to validate the accuracy of our
method, we created a geometrical
phantom of blood vessels with vary-
ing cross sections such that its histo-
gram and mixture component propor-
tions mimic the real TOF data. The
vessel phantom is drawn by hand in a
512x512 image with a constant inten-
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   Fig. 2. Accurate fitting of the phantom
histogram using the proposed model.
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sity 3Gµ such that its proportion is 1%, as shown in Fig. 3(a). The background signal

is generated as follows: three types of voxels are randomly generated over the image
of a constant intensity, ,, 1GR µµ  and 2Gµ of proportions 1, GR ww , and

2Gw respectively. Thus, the histogram of the ground truth phantom consists of im-

pulses at intensities
2,1, GGR µµµ , and 3Gµ . We then reshaped it to form the TOF

signature histogram as follows: we added three independent normal noise components

of zero mean and variance  2
Glσ with proportions Glw to the voxel intensities marked

by Glµ , which will imply ),(~ 2
GlGllG σµ [1,3] ∈∀ l . We also replaced each voxel

marked with Rµ by a Rayleigh noise of mode
1peakIβ =  to form a Rayleigh distribu-

tion. The parameters used in the phantom design are the average values of those ex-
tracted from the EM approach as applied to real data of several patients. This analysis
is also applicable to 3D phantoms. The phantom histogram is shown in Fig. 2. Fig.
3(a) is a zoomed version of the phantom. Fig. 3(b) shows the phantom with added
noise. Fig. 3(c, d) shows the phantom segmentation by our method without and with a
connectivity filter[11], respectively. The absolute error between the ground truth and
the segmented phantom of Fig. 3(a, d), respectively, was 10%. The reason behind this
large error is that during phantom fabrication we distributed the voxels of the vessels
normally over the whole intensity range while practically they are distributed only
over the high intensity range. Thus, when we distributed them uniformly over the
upper half of the intensity range but still modeled by a normal distribution, the error
was reduced to 3%, as shown in Fig. 3(e, f).

(a) (b) (c) (d) (e) (f)

Fig. 3. (a) Zoom in of the ground truth phantom (b) Noisy phantom. (c, d) Segmentation with-
out and with connectivity filter, respectively, assuming that the voxels of the vessels are dis-
tributed normally over the whole intensity range. (e, f)  same as (c, d) except that voxels are
distributed uniformly over the upper half of the intensity range.

5   Results

Dataset were collected using a Picker 1.5T Edge MRI scanner. It consists of
512x512x93 axial slices with slice thickness 1 mm, TR = 27 ms, TE = 6 ms. The
average processing time taken by our method is approximately 1 minute on a single
400 MHz processor, Onyx2 SGI supercomputer. The proposed segmentation ap-
proach is tested on an in-vivo 20 datasets, where three of them are shown in Fig. 4.
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The segmentation results with and without the connectivity filter are shown in Fig.
4(b, c), respectively. To show the accuracy of the results, a comparison is done with
the maximum intensity projection (MIP) images, as shown in Fig. 4(a). TOF is sensi-
tive to short T1 tissues such as subcutaneous fat, which appears in the segmented vol-
ume obscuring vessels as shown in the first row of Fig. 4(b). Therefore, to eliminate
the fat, we select one or more (if the tree is not connected) seed points inside the vas-
cular tree, then apply  the connectivity filter [11], which is based on region growing
algorithm in 3D. The results have also been validated by our neurosurgeon and radi-
ologist. They agreed that the proposed method was successful in showing most of the
vessels details, especially small ones.

(a) (b) (c)

Fig. 4. Each row represents a patient (a) MIP image (b) Segmentation (c) Segmentation +
connectivity filter
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6   Conclusion and Future Work

In this paper we suggested a new statistical intensity-based technique for segmenting
blood vessels from TOF-MRA data. The proposed model accurately fits the observed
data histogram and gives high quality of segmentation validated by a geometrical
phantom; analysis of is also applicable to 3D images. Although TOF-2D acquisition
has good suppression of background tissues (lower middle peak) more than 3D acqui-
sition, our segmentation technique is still applicable to both of them. We also pre-
sented an automatic method based on histogram analysis to choose the initial values
of the parameters necessary by the EM to ensure its convergence. Currently we are
integrating a Markov Random Field (MRF) model to the segmentation process to take
into account the contextual information of neighboring pixels.
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