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Abstract. In surgical simulations, the two most popular approaches to
model soft tissues are Finite Element Method (FEM) and Mass-Spring
System (MSS). Main advantages of FEM are accuracy and realism. Fur-
thermore, the model allows the direct integration of experimentally ob-
tained biomechanical tissue parameters. However, computation times re-
main high, limiting real-time application of the method. In contrast to
this, the main advantage of MSS is low computational complexity and
simple implementation. These factors make the latter method highly at-
tractive for virtual reality based surgical simulators. However, the speci-
fication of system parameters for a MSS (masses, spring constants, mesh
topology) is not straightforward and remains a major difficulty of the
approach. In this paper, we propose a solution to this problem based
on evolutionary algorithms - our current focus being the determination
of mesh topology. We use reference models to obtain the topology of a
MSS. First results demonstrate, that the exact recovery of isotropic and
anisotropic reference mesh configurations is possible.

1 Introduction

Realistic behavior and real-time capability are two main features required for sur-
gical training simulators. These contradictory requirements pose a major prob-
lem to soft tissue modeling. While high accuracy is needed to achieve realism,
highly complex models usually lead to increased computation times.

Primarily two approaches are proposed in the literature for modeling soft tis-
sues in medical applications. The first one is the Finite Element Method, which
provides a rigorous representation of soft tissue physics based on continuum
mechanics. An advantage of the method is the possibility to directly integrate
material parameters resulting from soft tissue measurements into the calcula-
tions. Different levels of accuracy for deformation simulation have been realized
with this method, ranging from elastic linear [8] to nonlinear anisotropic systems
[14]. Nevertheless, high computation times still remain an obstacle for real time
applicability of the method.

The second approach is Mass-Spring Systems, introduced in [I6]. These con-
sist of a mesh of mass points connected by elastic links. System movement is
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evaluated by integrating the fundamental law of dynamics. Due to the simplic-
ity of the motion equations, the MSS is computationally attractive for medical
simulators. Various applications have already used nodal systems to simulate
soft tissues, for instance [I] simulates the cutting operation of deformable tissue
based on mass-spring models and [5] models fat tissue in a craniofacial surgery
simulator. However, one has to keep in mind, that a MSS represent a discrete
model which only roughly approximates the true physics governing the deforma-
tion of an object [7]. Also [3] mentions, that it is delicate to validate deformations
of a MSS with experimental biomedical data, since such a system does not rely
on continuum mechanics. Nevertheless, the question which degree of realism is
needed for achieving training effects when using a simulator still remains unan-
swered [9]. Assuming that a decision was made for using a MSS, a significant
problem remains - the assignment of system parameters. Length, stiffness and
transfer function of springs, mass distribution and mesh topology have to be
defined. A usual approach to obtain a desired deformation behavior is the man-
ual iterative tuning of a MSS. However, this process is tedious and does not
guarantee to find an optimal solution.

In this paper we suggest a different approach to the problem. The main idea
is to approximate the behavior of a physically accurate reference model (such
as a FEM system) by adjusting the system parameters of the MSS. Since some
attempts have already been made to determine mass distribution and spring
constants, we direct our initial focus of the parameter adjustment process to
the mesh topology. Usually, regular meshes are used in the majority of ap-
proaches using a MSS for tissue deformation. However, tissue characteristics
like anisotropies or inhomogeneities already require adjustments at the level of
the topology. Also in [I0] the importance of an appropriate mesh topology has
been identified. Meshes with identical mass and spring constants still behave
quite differently depending on the overall topology. In the following we will de-
scribe the identification of the MSS topology by using a genetic optimization
algorithm.

2 Previous Work

Few approaches have already been proposed to automatically identify parameters
of phenomenological tissue deformation models.

In [13] and [T5], a neuro-fuzzy network is designed to simulate the behavior
of soft tissues. Linguistic terms defined by if-then rules are used to specify tissue
characteristics and so initialise a neural network. The system parameters are
then adjusted based on a fuzzy system. Unfortunately, this concept implies that
the user manually has to tune the initialization of the parameters.

In [II] an evolutionary strategy is applied to identify spring parameters for
a cloth model. The basic idea is to optimize a cost function, which measures the
difference between the behavior of a predicted and a reference model.

Other ongoing research compares the deformation behavior of FEM and MSS.
Recent work shows that assigning the same stiffness to all springs fails to simu-
late even a uniform elastic tissue [6]. In the case of triangulated spring meshes,
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they propose to specify the stiffness values proportional to triangle area and
Young’s modulus. These concepts were later applied to simulate soft tissue [2].
Biomechanical properties of real rat liver are measured and the experimental
data are exported into their model.

The use of simulated annealing for identification of spring parameters from
a reference model is suggested in [4]. Moreover, a method is proposed to obtain
a homogeneous point and mass distribution.

All the MSSs described in these works have a predefined topology, usually
regular, tetrahedral or hexahedral lattices. However, no research regarding the
topology design according to the deformation behavior of MSS has been at-
tempted so far.

3 Topology Identification

3.1 Overview

The main idea of our approach for identification of MSS mesh topology is com-
parison of the deformation behavior of a training model with a known reference
system. The ground truth can be based on any deformation approach. However,
for the time being we only compare two MSSs, since in this case the exact solu-
tion is known. It also has to be mentioned, that since we focus on the topological
design, we assume constant mass distribution and spring stiffness for the time
being. A cost function will be defined which measures the difference between the
training and the reference model and an optimization is carried out based on
the genetic algorithm approach.

3.2 Genetic Algorithm

Genetic algorithms are based on the evolution of species. They consist of
populations of individuals, each of the latter representing a potential solution to
a problem - in our case the mesh topology. The optimization principle consists
in evolving the population by means of the three following genetic operators:

Selection. This operator selects within the population a pair of individuals
(parents) with a preselected probability. In our case, the selection strategy
is based on the roulette wheel approach.

Crossover. This method consists in generating a new pair of individuals (off-
springs) from the parents by concatenating the prefix of one parent with
the suffix of the other one. The selected parents undergo a crossover with a
prefixed probability. In our experiments we obtained the best results with a
crossover value of 30%.

Mutation. This operator changes randomly the value of one or more genes of
the genome. A genetic algorithm can be quite sensitive to this parameter.
For values larger than 5%, the role of mutation becomes predominant and
disturbs system convergence. The probability of mutation in our case is 1%.
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The evolution of the system by means of these genetic operators converges to
a population in which all the individuals are identical. This unique species rep-
resents the best solution of the problem. In our approach we used a C++ library
for genetic algorithms, which was developed at the Massachusetts Institute of
Technology [17]. Before starting the optimization an appropriate cost function
measuring the fitness of an individual has to be selected.

3.3 Cost Function

Our cost function is based on the standard formulation of a MSS. We define
different load cases on the mesh and compute the static deformations. The equi-
librium position of a MSS is determined by Newton’s first law of motion.

Fext + Fint =0

where Feoxt represents the external forces applied to the system, such as forces
exerted by surgical tools or gravity, and Fi,t corresponds to internal forces re-
sulting from the tension of the springs. We introduce a binary variable c;; defined
by

~_ J 1if the points P; and P; are linked by a spring
@5 = 9 0 otherwise

This variable is used to represent the different topologies of the training mesh.
If P; is the i*" point of the mesh, the internal force F; applied to P; is now
obtained by
X;—X;
Fi = =3 sene) Kisous (11X — X = e ==0yy)

where k;; is the stiffness of the spring between points P; and P; with natural
length /;;, X; and Xj represent the coordinate vectors of points F; and P;, and
N (1) is the set of points connected to point P;. The total internal forces with m
points are expressed as

Fint - Zi:o Fi

We can now define the cost function as the difference between the deformation
of a training MSS M with a topology defined by the values of a;; and a reference
model R.

f(ao1, 02, a3, ...) = Yo [ XB — XM|12

where XP is the equilibrium position of the i point of R and XM is the equilib-
rium position of the i*" point of M. The best topology of M can now be obtained
by minimizing the cost function. Since the function f is not differentiable and the
number of variables can become very high depending on the number of connec-
tions considered for M, the most appropriate method to optimize f is a genetic
algorithm based approach.
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3.4 Topology Optimization

After selecting the cost function, the genetic algorithm has to be initialized.

Genome. The genome (or individual) is a string of bits which represents a
potential topology of the mass-spring model. The size of the string depends
on the number of neighbors we allow for each node. This number defines the
search area for optimizing the connections to the node under consideration.

Population. We noticed that population sizes of larger than 20 individuals did
not improve the results, but instead increased computation times. Therefore,
the population consists of 20 genomes.

Initializing. The population is initialized with random binary values. The
points XM of the training model are initialized with the positions of the
reference model. We assume the number of nodes of M is equal to the one of
R and each point of R has a corresponding point in M. Other topology in-
formation of the reference model R is not used. Since our initial experiments
are carried out in 2D, we allow at most 8 neighbors for each node.

In order to catch the elastic behavior of the reference model R, we apply
representative load cases to it. The row A of the array in Figure [l shows the dif-
ferent equilibrium positions of an example model while applying different loads.
The first column contains the model without loads and the second one shows
deformations under stretching loads. Shearing forces are represented in the third
column and compression forces in the last one. From this set of load cases, the
genetic algorithm has to find a topology of M which approximates all the defor-
mations of R. Our experiments have shown, that incorporation of all load cases
into the genetic algorithm from the start of the process gives the best results.
Therefore, we extend the cost function over all the deformations (n forces)

flaor, aos, a3, ) = 25—y Sy X — XMI?

where Xf‘k is the position of the i*” point of R in the k*" configuration.

The topology identification is obviously computational expensive. For each
individual of the population, we have to compute 7 different equilibrium positions
of M and compare them with those of R. The first experiments with a reference
and model mesh defined by 5x5 points and 72 springs, provided a solution in
about 3 hours on SUN Workstation with eight UltraSparc-111+ CPUs at 900 MHz
with 15 GBytes of shared memory. However, we are currently in the process of
optimizing this step and initial results show computation times of around 30
mins.

4 Experimental Results

In this section, we show the results obtained by comparing two MSSs in order
to verify the ability of the genetic algorithm to recover different known mesh
topologies. Experiments were carried out for two different regular models char-
acterizing linear isotropic and anisotropic deformations. The last experiment
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At rest |Stretching loads Shearing loads Qompres—
sion
A
B
C

Fig.1. Row A corresponds to the reference model. Rows B and C are two different
results given by the genetic algorithm (20 individuals, mutation rate 1%, crossover rate
— 30%)

shows the results obtained for an irregular reference mesh (a cross-section of a
kidney).

Four independent trials to obtain the regular isotropic mesh have been carried
out. In three cases, the optimization fully recovered the topology of the reference
mesh in about 400 iterations as shown in row B of Figure[Il In these cases the
cost function reaches zero. However, in one case shown in row C the algorithm did
not converge to zero after the maximum number of 1000 iterations. While only
a suboptimal solution missing a few links has been found the global behavior
remains close to that of R. This is also illustrated by the resulting low cost
function value reached (0.01). The evolution of the cost function for one optimal
and the suboptimal case is depicted by Figure 2

Evolution of the

Fig. 2. Evolution of cost function for optimal and suboptimal'¢

Figure Bl displays the results with a mesh characterizing an an‘fﬂort‘",, pic de-
formation. Again, out of four experiments the algorithm was able to|recoyer-th

topology in three cases. The resulting solutions are shown bygrows B and C, ™

0.1 |

cost fu
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At rest  |Stretching loads Shearing loads Qompres—
sion
A
B
C

Fig. 3. The first row corresponds to the reference model. Row B and C show the results
given by the genetic algorithm (20 individuals, mutation rate 1%, crossover rate = 30%)

Fig. 4. First row: Reference model (cross-section of kidney). Second row: Result

respectively. Figure Bl depicts the result for an irregular mesh with the same
genetic parameters defined previously. In this case not all connections are recov-
ered. However, the global behavior remains closely similar to the observations
on the reference.

5 Conclusion and Future Work

We have proposed a method based on a genetic algorithm to identify the topology
of MSSs by comparing its behavior with the one of a known reference model.
Our algorithm was able to fully or almost perfectly recover the topology of the
MSSs. Spring connections characterizing linear isotropic as well as anisotropic
deformations were successfully identified.

These initial experiments were realized with a mass spring reference model
in order to verify the ability of the genetic algorithm to find an a priori known
ground truth. The next step will be the use of a FEM model as the reference
model. Moreover, we also plan to integrate the full dynamic behavior of the de-
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formations into the genetic optimization calculations in order to further improve
the recovery process. Finally, we will extend the approach to the third dimension.

Acknowledgment. This research has been supported by the NCCR Co-Me of
the Swiss National Science Foundation.

References

1.

10.

11.

12.

13.

14.

15.

J. Brown, S. Sorkin, J.C. Latombe, K. Montgomery, and M. Stephanides. Algo-
rithmic tools for real-time microsurgery simulation. Medical Image Analysis, 6(3):
289-300, September 2002.

C. Bruyns and M. Ottensmeyer. Measurements of soft-tissue mechanical properties
to support development of a physically based virtual anima model. In MICCAI
2002, pages 282-289, 2002.

H. Delingette. Towards realistic soft tissue modeling in medical simulation. Tech-
nical Report 3506, INRIA Sophia-Antipolis, Septembre 1998.

Oliver Deussen, Leif Kobbelt, and Peter Tucke. Using simulated annealing to
obtain good nodal approximations of deformable objects. In Computer Animation
and Simulation 95, pages 30-43. Springer-Verlag, 1995.

Keeve E., Girod S., and Girod B. Craniofacial Surgery Simulation. In 4th In-
ternational Conference on Visualization in Biomedical Computing VBC’96, pages
541-546, Hamburg, Germany, September 22-25 1996.

A. Van Gelder. Approximate simulation of elastic membranes by triangulated
spring meshes. Journal of Graphics Tools, 3(2): 21-42, 1998.

S. F. F. Gibson, G. Mirtich, and B. Mirtich. A survey of deformable modeling in
computer graphics. Technical Report 97-19, MERL, November 1997.

E. Gladilin, S. Zachow, P. Deuflhard, and H.C. Hege. A biomechanical model for
soft tissue simulation in craniofacial surgery. In Medical Imaging and Augmented
Reality (MIAR), pages 137-141, 2001. Hong Kong, China.

M. Harders, R. Hutter, A. Rutz, P. Niederer, and G. Székely. Comparing a
Simplified FEM Approach with the Mass-Spring Model for Surgery Simulation,
(MMVR’2003).

J.C. Latombe. Modeling human-body soft tissues for surgical applications, Febru-
ary 1999. Research Proposal, Robotics Laboratory Stanford.

J. Louchet, X. Provot, and D. Crochemore. Evolutionary identification of cloth ani-
mation models. In Computer Animation and Simulation ’95, pages 44—54. Springer-
Verlag, 1995.

Z. Michlewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1999.

A. Niirnberger, A. Radetzky, and R. Kruse. A Problem Specific Recurrent Neural
Network for the Description and Simulation of Dynamic Springs Models. In IEEE
International Joint Conference on Neural Networks 1998 (IJCNN '98), pages 468—
473, 1998. Anchorage, Alaska.

G. Picinbono, H. Delingette, and N. Ayache. Non-linear and anisotropic elastic
soft tissue models for medical simulation. In ICRA2001: IEEE International Con-
ference Robotics and Automation, pages 1370-1375, Seoul Korea, May 2001.

A. Radetzky, A. Niirnberger, and P. Pretschner. Elastodynamic shape modeler: A
tool for defining the deformation behavior of virtual tissues. RadioGraphics 2000,
20(1): 865-881, January-March 2000.



58 G. Bianchi, M. Harders, and G. Székely

16. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models.
Computer Graphics (Proc. SIGGRAPH’87), 21(4): 205-214, 1987.
17. M. Wall. Galib: A C++ Library of Genetic Algorithm Components, 1999. MIT.



	Introduction
	Previous Work
	Topology Identification
	Overview
	Genetic Algorithm
	Cost Function
	Topology Optimization

	Experimental Results
	Conclusion and Future Work



