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Abstract. We are in the process of constructing a high resolution, high
signal to noise ratio (SNR) dynamic MRI dataset for the human heart
using methodology similar to that employed to construct a low-noise
standard brain at the Montreal Neurological Institute. Several high reso-
lution, low SNR magnetic resonance images of 20 phases over the cardiac
cycle were acquired from a single subject. Images from identical phases
and temporally adjacent phases were registered, and the image intensities
were averaged together to generate a high resolution, high SNR dynamic
magnetic resonance image volume of the human heart. Although this
work is still preliminary, and the results still demonstrate residual arti-
facts due to motion an sub-optimal alignment of interleaved image slices,
our model has a SNR that is improved by a factor of 2.7 over a single
volume, spatial resolution of 1.5 mm3, and a temporal resolution of 60
ms.

1 Introduction

Magnetic resonance imaging (MRI) involves a compromise between spatial res-
olution, signal to noise ratio (SNR), and acquisition time, among other factors.
In the case of cardiac MRI, this compromise is further complicated by both
heart motion and the fact that the images are typically acquired under breath-
hold conditions. This compromise usually results in images with high in-plane
resolution in two dimensions, but anywhere from 6 mm to 10 mm thick slices.
Although super-high resolution may not be required for diagnosing many car-
diac diseases, image guided surgery (IGS) would benefit from high resolution
isotropic 3D images. The application of IGS to neurosurgery has benefited from
the availability of a high resolution brain model [1,2]. Since heart surgery often
requires a level of precision similar to that required for neurosurgery, we believe
that cardiac IGS [3] can benefit from a high resolution, high SNR dynamic heart
model.

Linear or higher order interpolation is traditionally used to re-sample a non-
isotropically sampled volume, to one that is sampled uniformly in all directions
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[4,5]. Interpolation algorithms can infer general changes in intensity, but they
inevitably blur detail such as valvular function and wall motion, which could be
important in IGS. In addition, it is difficult to assess the efficiency of such pro-
cedures without a high resolution “gold standard” image with which to compare
the results.

In this paper, we report on a technique to generate a high SNR MR heart
model with 1.5 mm isotropic voxels. The model is based on a large number of high
resolution images of one subject, registered and intensity-averaged to improve
SNR. The model is still under construction with more image sets currently being
collected, and at least 12 complete 4D series planned, in addition to a number of
miscellaneous complementary images. As this dataset evolves, it will be possible
to use it in a manner similar to the “average brain” developed at the Montreal
Neurological Institute, which has found extensive use as both a standard model
and a repository for anatomical and electro-physiological atlas data [6]. The
heart model will be available as a research tool in the development of cardiac
IGS, and will also provide data that can be used to validate techniques such as
interpolation and segmentation procedures. Eventually, several models will be
constructed, to represent variations in heart morphology.

2 Method

2.1 Image Acquisition

Images of a healthy volunteer were acquired on a 1.5 T GE CVi scanner (GE med-
ical systems, Milwaukee). Each complete 3D MR image consisted of 75 coronal
slices (1.5 mm thick,) with an in-plane resolution of 1.5 mm. A single imaging
session consisted of acquiring twenty prospectively gated, segmented gradient
echo T1-weighted images at each slice location with the following scan sequence
specifications: 256 × 128 image matrix; 8 views per segment; 4 signal averages
(NEX); flip angle 20 degrees. Breath-holds were 42 seconds in duration. Each
acquisition was interleaved so that every third slice was acquired in sequence.
The time to acquire a complete 4D representation of the cardiac cycle was ap-
proximately 2.5 hours. Coronal images were acquired since this minimized the
number of slices needed to cover the entire heart, thus minimizing scan time.
To date, four complete 4D series, each consisting of 20 3D volumes, have been
acquired.

2.2 Image Processing

Because the image slices exhibit high resolution in all three dimensions, two
major obstacles must be dealt with; image misalignment due to independent
breath-holds, and relatively low SNR. Slight variations in lung volume in differ-
ent breath-holds result in misalignment of the coronal images, when a 3D volume
is viewed in the sagittal or axial plane (see Figure 1a). The maximum observed
shift between coronal slices was 9 mm in the superior-inferior (SI) direction,
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based on the location of the diaphragm and 4.5 mm in the left-right (LR) direc-
tion, based on the location of the ventricular septum. Variations in lung volume
between breath-holds can also cause tissue motion in the anterior-posterior (AP)
direction, but since the images were acquired in the coronal plane, tissue move-
ment in the AP direction result either an under- or over-sampling of data in a
particular part of the volume, (i.e., because of differences in inspiration volume
between breath-holds, nominally adjacent slices may sample the same slice of
the volume.)

(a) Before misalignment correction (b) After misalignment correction

Fig. 1. Sagittal slice from a 3D cardiac image at end diastole before and after mis-
alignment correction.

Breath-Hold Related Misalignment. Breath-hold related misalignments are
minimized by using high resolution isotropic single slice images acquired sagit-
tally and axially and employed as “ground truth” representing the expected
appearance of the 3D volume in these planes. Since most motion caused by
breathing variations occurs in the superior-inferior (SI) direction [7,8], the sagit-
tal slice was registered first, using rigid body registration, to the appropriate
location in the 3D volume. A line-by-line mean squared difference (MSD) best
fit in the SI direction was computed. The resulting transformation was then ap-
plied to each slice in the full 3D volume. The process was then repeated using the
“ground truth” axial slice, but with tighter constraints on the maximum LR shift
allowed. Breath-hold related inaccuracies in the AP axis could not be corrected
in this manner, since signal in this dimension was either lost or duplicated, as
discussed earlier. The averaging process provided the only compensation possible
in this dimension.
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Image Averaging. After correcting for breath-hold misalignments, the SNR
was improved by a combination of image registration and image intensity av-
eraging. An elastic image registration algorithm developed in our laboratory
[9] was used for this purpose. The acquisition of multiple MRI volumes of the
heart throughout the cardiac cycle allows unique opportunities when using the
averaging process to improve SNR. For example, images from different phases
can be registered (“temporal registration”) or images representing the same car-
diac phase, but acquired during different sessions can be registered (“atemporal
registration”). Both of these strategies were employed in our procedure.

The registration and averaging strategy was based on Guimond [10] and
Frangi [11]. In their work, one image from the pool of images to be averaged
is randomly selected to be the target. All other images are then registered to
the target image, and the image intensities are averaged together. In order to
minimize any bias caused by the choice of initial target image, the averaged
image is then used as the target, with all source images being registered to
this average volume. The process is iterated until a sufficient level of similarity
is achieved between the input and output averaged images. Given the coronal
slice misalignment caused by breath-hold variations, this process was modified
slightly as follows.

Let Ij
k represent a 3D cardiac image, where superscript ‘j ’ represents the

image acquisition session, while ‘k ’ represents the cardiac phase of the 3D vol-
ume. For a given image acquisition session, all 20 phases for a coronal slice are
acquired during the same breath-hold. Thus, for example, the breath-hold re-
lated misalignments in I1

20 are identical to those in I1
19, and so on. As a result,

any misalignments remaining after the breath-hold correction method explained
previously would not be averaged out after temporal registration. Consequently,
a preliminary model was constructed using only atemporal registration. Images
I1
20, I3

20, and I4
20 were registered to I2

20. The registered images were averaged to
form the atemporal averaged model.

The atemporally registered model minimized the presence of any misalign-
ments which remained after breath-hold correction. In order to further increase
the factor by which SNR was improved, images of temporally adjacent phases,
as well as images representing the same phase in the cardiac cycle, were then
registered to this preliminary model. The resulting images were then averaged
together. This process was iterated to achieve an acceptable level of convergence.
In total, atemporal averaging was based on 4 images per phase. Combined with
temporally adjacent phases, this yielded a total of 12 images averaged together
for each phase. Using this approach, SNR should be increased by a factor of√

12 or 3.46. As was mentioned earlier, a total of at least 12 complete 4D series
are planned, which will effectively generate 36 images available to be averaged,
resulting in an improvement in SNR by a factor of 6.

2.3 SNR Measurement

Signal was measured from the left ventricular cavity. Since regions outside the
chest were not imaged, noise was measured from a region inside the lungs. Since
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noise was measured in essentially a no-signal region where noise is rician rather
than gaussian, SNR was calculated based on Henkelman [12] and Kaufman [13]
where the factor of 1.5 is included to account for underestimation of the noise
standard deviation when measured in air in a magnitude image:

SNR =
mean(signal)

1.5 × stddev(noise)
. (1)

(a) sagittal view (b) coronal view

Fig. 2. The sagittal and coronal views of the model at end diastole, based on intensity
averaging of twelve 3D volumes.

3 Results and Discussion

Our breath-hold misalignment correction technique was effective in aligning the
coronal slices along the boundary defined by the pulmonary artery. Some mis-
alignment remained, particularly near the apex of the heart along the diaphragm,
where a shift of between 1mm and 3mm could be observed in the sagittal plane.
This suggests the heart undergoes a slight change in shape, and not simply a
change in location as a result of different breath-holds. It should also be noted
that the first data series (shown in Figure 1a) contained the poorest alignment;
by comparison subsequent series have required very little correction.
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(a) axial view (b) oblique view

Fig. 3. Axial view and a sample oblique view of the model at end diastole, based on
intensity averaging of twelve 3D volumes.

Table 1. Changes in SNR for images acquired at end diastole.

Image SNR Factor of improvement
I1
20 26.0 0

A1
20 51.6 1.98

Final Model 70.7 2.7

A comparison of Figure 1a with Figure 2a provides a clear visual example of
how intensity averaging can improve SNR as well as detail. The SNR in the raw
3D volumes for the end-diastole images ranged from 31.3 to 24.7. The atemporal
average model improved SNR by a factor of 1.98 (Table 1); the expected result
for averaging 4 images was 2. The factor of SNR improvement for the 12-image
averaged model was 2.7. Averaging 12 images together produced slightly less im-
provement than was expected. Improved breath hold correction techniques and
further modifications to the elastic registration algorithm may yield higher SNR
values. At present, our averaging algorithm applies only to the image intensities;
computing an average shape, as outlined in Guimond [10] and Frangi [11], may
also improve the overall results.
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