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Abstract. In multi-hop wireless networks, every node is expected to forward
packets for the benefit of other nodes. Yet, if each node is its own authority, then
it may selfishly deny packet forwarding in order to save its own resources. Some
researchers have proposed to introduce an incentive mechanism in the network that
motivates the nodes to cooperate. In this paper, we address the question of whether
such an incentive mechanism is necessary or cooperation between the nodes exists
in the absence of it. We define a model in a game theoretic framework and identify
the conditions under which cooperative strategies can form an equilibrium. As
the problem is somewhat involved, we deliberately restrict ourselves to a static
configuration.

1 Introduction

By definition, in multi-hop wireless networks, every node is expected to forward packets
for the benefit of other nodes. This is probably the most important difference of this
family of networks with respect to those that are more conventional, such as the Internet
or cellular networks.

As long as the whole network is under the control of a single authority, as is usually
the case in military networks or for rescue operations, this situation is not problematic
because the interest of the mission by far exceeds the vested interest of each participant.
However, if each node is its own authority, the situation changes dramatically: In this
case, the most reasonable assumption is to consider that each node will try to maximize
its benefits by exploiting the network, even if this means adopting a selfish behavior.
This selfishness can mean not participating in the unfolding of mechanisms of common
interest (e.g., route setup, packet forwarding, or mobility management), notably to spare
resources, including batteries.

Over the last few years, several researchers have proposed incentive techniques to
encourage nodes to collaborate, be it by circumventing misbehaving nodes [MGLB00],
by making use of a reputation system [BL02], or by relating the right to benefit from the
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network to the sense of the common interest demonstrated so far [BH03]. To the best of
our knowledge the only paper that focuses on the conditions of cooperation without any
incentive mechanism is [SNCR03], where the authors build up a theoretical framework
based on different energy classes.

In this paper, we study the problem of cooperation for the most basic mechanism,
namely packet forwarding. In order to do so, we define a model in a game theoretic
framework and identify the conditions under which an equilibrium based on cooperation
exists. As the problem is somewhat involved, we deliberately restrict ourselves to a static
configuration.

The rest of the paper is organized in the following way. In Section 2, we show
how packet forwarding can be modelled in a game theoretic framework. In Section 3,
we analyze the model introduced in Section 2. We provide our main results, stated as
theorems in Section 4 along with our simulation results. In Section 5, we present the
related work. Finally, we conclude the paper in Section 6.

2 Modelling Packet Forwarding as a Game

Connectivity graph. Let us consider an ad hoc network of n nodes. Let us denote the
set of all nodes by N . Each node has a given power range and two nodes are said to be
neighbors if they reside within the power range of each other. We represent the neighbor
relationship between the nodes with an undirected graph, which we call the connectivity
graph. Each vertex of the connectivity graph corresponds to a node in the network, and
two vertices are connected with an edge if the corresponding nodes are neighbors.

Routes. Communication between two non-neighboring nodes is based on multi-hop
relaying. This means that packets from the source to the destination are forwarded by
intermediate nodes. Such a chain of nodes (including the source and the destination) is
represented by a path in the connectivity graph, which we call a route. We assume that
one of the shortest paths is chosen randomly as a route for each source-destination pair.

Time. We use a discrete model of time where time is divided into slots. We assume
that both the connectivity graph and the set of existing routes remain unchanged during
a time slot, whereas changes may happen at the end of each time slot. We assume that
the duration of the time slot is much longer than the time of a packet relaying from the
source to the destination. This means that a node is able to send several packets within
one time slot.

Forwarding game. We model the packet forwarding operation as a game, which
we call the forwarding game. The players of the forwarding game are the nodes. In
each time slot t, each node i chooses a cooperation level pi(t) ∈ [0, 1], where 0 and 1
represent full defection and full cooperation, respectively. Here, defection means that
the node does not forward traffic for the benefit of other nodes and cooperation means
that it does. Thus, pi(t) represents the fraction of the traffic routed through i in t that i
actually forwards. Note that i has a single cooperation level pi(t) that it applies to every
route in which it is involved as a forwarder. We preferred not to require the nodes to be
able to distinguish the packets that belong to different routes, because this would require
identifying the source-destination pairs and applying a different cooperation level to
each of them. This would probably increase the computation significantly.
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Let us assume that in time slot t there exists a route r with source node s and
� intermediate nodes f1, f2, . . . , f�. The normalized value of the throughput τ(r, t)
experienced by the source s on r in t is defined as the fraction of the traffic sent by s on
r in t that is delivered to the destination. Since we are studying cooperation in packet
forwarding, we assume that the main reason for dropping packets in the network is the
non-cooperative behavior of the nodes. In other words, we assume that the network is
not congested and that the number of packets dropped because of the limited capacity
of the nodes and the links is negligible. Hence, τ(r, t) can be computed as the product
of the cooperation levels of all intermediate nodes:

τ(r, t) =
�∏

k=1

pfk
(t) (1)

The payoff ξs(r, t) of s on r in t depends on the normalized throughput τ(r, t). In general,
ξs(r, t) = u(τ(r, t)), where u is some non-decreasing function. In this paper, we assume
that u is linear and has the following form: u(x) = (G+L) ·x−L = G ·x−L · (1−x),
where G = u(1) > 0 represents the gain that s obtains if all its traffic sent on r in t
is delivered to the destination, and −L = u(0) < 0 represents the loss that s suffers if
nothing is delivered in t to the destination. Thus, we get that

ξs(r, t) = (G + L) · τ(r, t) − L (2)

For simplicity, we assume that every node in the network uses the same function u and
the same parameters G and L, which we assume to be independent of r and t.

The payoff ηfj
(r, t) of the j-th intermediate node fj on r in t is non-positive and

represents the cost for node fj to forward packets on route r during time slot t. It depends
on the fraction τj(r, t) of the traffic sent by the source on r in t that is forwarded by
fj . The value τj(r, t) is the normalized throughput on r in t leaving node j, and it is
computed as the product of the cooperation levels of the intermediate nodes from f1 up
to and including fj :

τj(r, t) =
j∏

k=1

pfk
(t) (3)

Let −C < 0 represent the forwarding cost for the first forwarder if it forwards all the
traffic sent by the source on r in t. The payoff ηfj

(r, t) of the j-th intermediate node is
then defined as follows:

ηfj (r, t) = −C · τj(r, t) (4)

Again, for simplicity, we assume that forwarding one unit of traffic costs the same for
every node in the network and that the parameter C is independent from r and t.

By definition, the payoff of the destination is 0. In other words, we assume that only
the source has a benefit if the traffic reaches the destination (information pushing). We
note however, that our model can be applied and all of our results hold in the reverse case
when only the destination benefits from receiving traffic; an example for this scenario
would be a file download.
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Table 1. Three special strategies. Here, we assume that σi takes as input a one dimensional vector
(i.e., a scalar)

Strategy Initial move Function
AllD (always defect) 0 σi(x) = 0
AllC (always cooperate) 1 σi(x) = 1
TFT (Tit-For-Tat) 1 σi(x) = x

The total payoff πi(t) of node i in time slot t is then computed as

πi(t) =
∑

r∈Si(t)

ξi(r, t) +
∑

r∈Fi(t)

ηi(r, t) (5)

where Si(t) is the set of routes in t where i is source, and Fi(t) is the set of routes in t
where i is an intermediate node.

Strategy space. In every time slot, each node i updates its cooperation level using a
strategy function σi. In general, i could choose a cooperation level to be used in time slot
t based on the information it obtained in all preceding time slots. In order to make the
analysis feasible, we assume that i uses only information that it obtained in the previous
time slot. More specifically, we assume that i chooses its cooperation level in time slot t
based on the normalized throughput it experienced in time slot t−1 on the routes where
it was a source. Formally:

pi(t) = σi([τ(r, t − 1)]r∈Si(t−1)) (6)

where [τ(r, t − 1)]r∈Si(t−1) represents the normalized throughput vector for node i in
time slot t − 1, each element of which being the normalized throughput experienced by
i on a route where it was source in t − 1. The strategy of a node i is then defined by its
strategy function σi and its initial cooperation level pi(0).

Note that σi takes as input the normalized throughput and not the total payoff received
by i in the previous time slot. The rationale is that i should react to the behavior of the
rest of the network, which is represented by the normalized throughput in our model.

There are an infinite number of strategy functions; we highlight three special cases
(in Table 1) that we will encounter later in the analysis [Axe84]. If the output of the
strategy function is independent of the input, then the strategy is called a non-reactive
strategy (e.g., always defecting and always cooperating in Table 1). If the output depends
on the input, then the strategy is reactive (e.g., Tit-For-Tat in Table 1).

Our model requires that each source be able to observe the throughput in a given
time slot on every route. We assume that this is made possible with sufficiently high
precision by using some higher level control protocol above the network layer.

3 Meta-model

In this section, we introduce a meta-model in order to formalize the properties of the
packet forwarding game defined in the previous section. Thus, we study the behavior of
the model through the analysis of the meta-model (i.e., a model of the model). Unlike
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Fig. 1. Example of dependency graph. In (a), the arrows represent the routes (e.g., there is a route
between nodes 1 and 4 passing through nodes 6 and 5). The corresponding dependency graph is
shown in (b)

in the model presented in the previous section, in the meta-model and in the rest of the
paper, we will assume that routes remain unchanged during the lifetime of the network.
In addition, we also assume that each node is a source on only one route.

Dependency graph. Let us consider a route r. The normalized throughput expe-
rienced (hence the payoff received) by the source on r depends on the cooperation
levels of the intermediate nodes on r. We represent this dependency relation between
the nodes with a directed graph, which we call the dependency graph. Each vertex of
the dependency graph corresponds to a network node. There is a directed edge from
vertex i to vertex j, denoted by the ordered pair (i, j), if there exists a route where i
is an intermediate node and j is the source. Intuitively, an edge (i, j) means that the
behavior (cooperation level) of i has an effect on j. The concept of dependency graph
is illustrated in Fig. 1.

Game automaton. Now we define the automaton A that will model the unfolding
of the forwarding game. The automaton is built on the dependency graph. We assign
a machine Mi to every vertex i of the dependency graph and interpret the edges of
the dependency graph as links that connect the machines assigned to the vertices. Each
machine Mi thus has some input and some (possibly 0) output links.

The internal structure of the machine is illustrated in Fig. 2. Each machine Mi consists
of a multiplication gate

∏
followed by a gate that implements the strategy function σi

of node i. The multiplication gate
∏

takes the values on the input1 links and passes their
product to the strategy function gate2. Finally, the output of the strategy function gate is
passed to each output link of Mi.

The automaton A works in discrete steps. Initially, in step 0, each machine Mi outputs
some initial value xi(0). Then, in step t > 0, each machine computes its output xi(t)
by taking the values that appear on its input links in step t − 1.

1 The multiplication comes from the fact that the experienced throughput for the source is the
product of the cooperation levels of the forwarders on its route.

2 Note that here σi takes a single real number as input, instead of a vector of real numbers as we
defined earlier, because we assume that each node is source on only one route.
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Fig. 2. Internal structure of machine Mi

Fig. 3. The automaton that corresponds to the dependency graph of Fig. 1

Formally, the operation of A can be described by a set of equations, where each
equation corresponds to a machine Mi. As an example, let us consider the automaton in
Fig. 3, which is the automaton that corresponds to the dependency graph of Fig. 1. Its
operation is described by the following set of equations:

x1(t) = σ1(x5(t − 1) · x6(t − 1))
x2(t) = σ2(x1(t − 1))
x3(t) = σ3(x4(t − 1))
x4(t) = σ4(x2(t − 1) · x3(t − 1))
x5(t) = σ5(x4(t − 1))
x6(t) = σ6(x1(t − 1))
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It is easy to see that by iteratively substituting the appropriate equations into each other,
the value of any output in any step can be expressed as a function of the initial values
xi(0). For instance:

x1(3) = σ1(x5(2) · x6(2))
= σ1(σ5(x4(1)) · σ6(x1(1)))
= σ1(σ5(σ4(x2(0) · x3(0))) · σ6(σ1(x5(0) · x6(0))))

Note that if xi(0) = pi(0) for all i, then in step t, each machine Mi will output the
cooperation level of node i in time slot t (i.e., xi(t) = pi(t)), as we assumed that the
set of routes (and hence the dependency graph) remains unchanged in every time slot.
Therefore, the evolution of the values on the output links of the machines (which, in fact,
represent the state of the automaton) models the evolution of the cooperation levels of
the nodes in the network. It also follows that the cooperation level pi(t) of any node i
in any time slot t can be expressed as a function of the initial cooperation levels of the
nodes. For instance:

p1(3) = x1(3)
= σ1(σ5(σ4(x2(0) · x3(0))) · σ6(σ1(x5(0) · x6(0))))
= σ1(σ5(σ4(p2(0) · p3(0))) · σ6(σ1(p5(0) · p6(0))))

In order to study the interaction of node i with the rest of the network, we extract
the gate that implements the strategy function σi from the automaton A. What remains
is the automaton without σi, which we denote by A−i. A−i has an input and an output
link; if we connect these to the output and the input, respectively, of σi (as illustrated
in Fig. 4) then we get back the original automaton A. In other words, the automaton in
Fig. 4 is another representation of the automaton in Fig. 3, which captures the fact that
from the viewpoint of node i, the rest of the network behaves like an automaton: The
input of A−i is the sequence xi = xi(0), xi(1), . . . of the cooperation levels of i, and
its output is the sequence yi = yi(0), yi(1), . . . of the normalized throughput values for
i.

By using the system of equations that describe the operation of A, one can easily
express any element yi(t) of sequence yi as some function of the preceding elements
xi(t− 1), xi(t− 2), . . . , xi(0) of sequence xi and the initial values xj(0) (j �= i) of the
machines within A−i. We call such an expression of yi(t) the t-th input/output formula
or shortly the t-th i/o formula of A−i. It is important to note that the i/o formulae of A−i

may involve any strategy function σj where j �= i, but they never involve σi. Taking the
automaton of Fig. 3 again, and extracting, for instance, σ6, we can determine the first
few i/o formulae of A−6 as follows:

y6(0) = x1(0)
y6(1) = σ1(x5(0) · x6(0))
y6(2) = σ1(σ5(x4(0)) · x6(1))
y6(3) = σ1(σ5(σ4(x2(0) · x3(0))) · x6(2))

. . . . . .
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Fig. 4. Model of interaction between node i and the rest of the network represented by the au-
tomaton A−i

Dependency loops. Node i has a dependency loop if there exists a sequence
(i, v1), (v1, v2), . . . , (v�−1, v�), (v�, i) of edges in the dependency graph. The existence
of dependency loops is important: If node i has no dependency loops, then the cooper-
ation level chosen by i in a given time slot has no effect on the normalized throughput
experienced by i in future time slots.

We define two types of dependency loops depending on the strategies played by the
nodes on the dependency loop. If all nodes j (where j �= i) on the dependency loop of
i play reactive strategies, then we talk about a reactive dependency loop of i. If, on the
other hand, there exists at least one node j (where j �= i) on the dependency loop of i
that plays a non-reactive strategy, then the loop will be a non-reactive dependency loop
of i.

4 Results

Our goal, in this section, is to find possible Nash equilibria [Nash50] and investigate the
conditions for them. The existence of a Nash equilibrium based on cooperation would
mean that there are cases in which cooperation is “naturally” encouraged, meaning
without using incentive mechanisms. In the following, we use the model presented in
Fig. 4. In Section 4.1, we present analytical results that define the best strategies for a node
under specific network conditions. In Section 4.2, we present the results of simulations
that we performed to estimate the probability that these conditions are satisfied by the
network.

4.1 Analytical Results

The aim of the nodes is to maximize the payoff that they accumulate over time. We
compute this cumulative payoff by applying the standard technique used in the theory
of iterative games [Axe84]: The cumulative payoff πi of a node i is computed as the
weighted sum of the payoffs πi(t) that i obtains in each time slot t:
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πi =
∞∑

t=0

[πi(t) · ωt] (7)

where 0 < ω < 1, and hence, the weights exponentially decrease with t. The value ω
is often called the discounting factor, as it represents the degree to which the payoff of
each time slot is discounted relative to the previous time slot.

Recall that Si(t) denotes the set of routes where i is the source, and Fi(t) denotes the
set of routes where i is an intermediate node. Since we assumed that the routes remain
static, Si(t) and Fi(t) do not change in time, and we will simply write Si and Fi instead
of Si(t) and Fi(t). In addition, since we assumed that each node is source on exactly
one route, Si is a singleton. We denote the single route in Si by ri. The cardinality of Fi

will be denoted by |Fi|. Let us assume that node i is an intermediate node on route r.
We denote the set of intermediate nodes on r upstream from node i including node i in
time slot t by Φ(r, i). If node i has a reactive dependency loop with some of its sources,
then we consider the shortest loop for each source. We denote the length of the longest
of such reactive dependency loops minus one by ∆i.

Theorem 1. If a node i does not have any dependency loops, then its best strategy is
AllD (i.e., to choose cooperation level 0 in every time slot).

Proof. Node i wants to maximize its cumulative payoff πi defined in (7). In our case,
πi(t) can be written as:

πi(t) = ξi(ri, t) +
∑

r∈Fi

ηi(r, t)

= [(G + L) · yi(t) − L] − C ·
∑

r∈Fi

∏

k∈Φ(r,i)

xk(t)

Given that i has no dependency loops, yi(t) is independent of all the previous cooperation
levels of node i. Thus, πi is maximized if xi(t) = 0 for all t ≥ 0. ��

Theorem 2. If a node i has only non-reactive dependency loops, then its best strategy
is AllD.

Proof. The proof is similar to the proof of Theorem 1. Since all dependency loops of
i are non-reactive, its experienced normalized throughput yi is independent of its own
behavior xi. This implies that its best strategy is not to forward. ��

Corollary 1. If every node j (j �= i) plays AllD, then the best response of i to this is
AllD. Hence, every node playing AllD is a Nash equilibrium.

In order to illustrate the case in which some nodes have no dependency loops, we
modify the network of Fig. 1. In the modified network, shown in Fig. 5, nodes 2 and 5
have no dependency loops.

In the case when the conditions of Theorems 1 and 2 do not hold, we could not
determine the best strategy of a node i in general, because it very much depends on the
particular scenario (dependency graph) in question and the strategies played by the other
nodes. However, in certain cases, the best strategy can be determined, as shown by the
following theorem:
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Fig. 5. A network with routes where nodes 2 and 5 have no dependency loops

Theorem 3. The best strategy for node i is TFT, if:

1. Node i has a reactive dependency loop with at least one of its sources. In addition,
for each of its sources s, either node i has a reactive dependency loop with s or i is
the first forwarder for s,

2. every other node j (j �= i) plays TFT, and
3. (G + L) · ω∆i > |Fi| · C.

The expression (G + L) · ω∆i > |Fi| · C means that the possible benefit for node
i must be greater than its maximal forwarding cost considering every source node with
which node i has a reactive dependency loop.

Because of space limitations we only provide the idea of the proof: We give an upper
bound for the total payoff of any node using the concept of dependency graph. Then,
we show that the node playing TFT reaches the maximum payoff defined by the upper
bound. The complete proof is provided in [FBH03].

Corollary 2. If conditions 1 and 3 of Theorem 3 holds for every node, then all nodes
playing TFT is a Nash equilibrium.

As an example, let us consider Fig. 1 again. If the third condition of Theorem 3 holds
for each node, then all nodes playing TFT is a Nash equilibrium for this network.

The first two theorems state that if the behavior of node i has no effect on its ex-
perienced normalized throughput, then defection is the best choice for i. In addition,
Corollary 1 says that if every node defects constantly, it is a Nash equilibrium. The
condition of Theorem 2 implies that it would be a naı̈ve approach to program all devices
with the strategy that always forwards (AllC), because this would make the network
exploitable by selfish participants. Instead, manufacturers should program a reactive
strategy into the devices. Theorem 3 and its corollary mentions the existence of a coop-
erative equilibrium (each node playing TFT). Yet, the conditions for this existence are
extremely stringent.
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Table 2. Parameter values for the simulation

Parameter Value
Number of nodes 100
Area type Torus
Area size 1500 m2

Radio range 250 m
Route length 4 hops

4.2 Simulation Results

In this subsection our goal is to determine the likelihood that a cooperative equilibrium
exists (i.e., the conditions of Theorem 3 hold). To this end, we performed simulations in
randomly generated scenarios. We summarize the parameters in Table 2.

In our simulations, we randomly placed nodes in a toroid3 area. Then, for each
node, we randomly chose a destination at a fixed distance (in hops) from the node and
we determined a route to this destination using any shortest path algorithm. If several
routes existed, then we randomly chose a single one. From the routes, we built up the
dependency graph of the network. On this dependency graph, we performed a search for
reactive dependency loops while varying the fraction of nodes that played non-reactive
strategies. All the results presented in the following subsections are the mean values of
100 simulations with a 95% confidence interval.

Figure 6 shows the proportion of nodes that (a) can play reactive strategies (i.e.
are not programmed to play non-reactive strategies), (b) are forwarders at least on one
route, (c) have at least one reactive dependency loop and (d) fulfill the first condition of
Theorem 3.

The nodes that cannot play reactive strategies are irrelevant to our investigations
because they follow a fixed packet forwarding strategy, thus they do not make a decision
about packet forwarding at all. Additionally, there is a fraction of nodes that are not
forwarders in any of the routes, thus they have no effect on other nodes. The nodes in
this situation are also irrelevant to our study. In Fig. 7 we show the same results as in
Fig. 6 excluding these two types of nodes. We can see that if initially every node can play
reactive strategy, the proportion of nodes that fulfill the first condition of Theorem 3 is
about 50 percent. This proportion decreases as we increase the proportion of nodes that
play constantly non-reactive strategies.

If there exists at least one node that needs an incentive mechanism to cooperate, then
we say that an incentive mechanism must be applied for the whole network. Since the
proportion of such nodes is always around or above 50 percent, we can conclude that in
general an incentive mechanism is almost always needed under the assumption we have
considered.

5 Related Work

Energy-efficient cooperation in ad hoc networks. Srinivasan et al. [SNCR03] pro-
vide a mathematical framework for cooperation in ad hoc networks, which focuses on

3 We used this area type to avoid border effects. In a realistic scenario, the toroid area can be
considered as an inner part of a large network.
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first condition of Theorem 3 holds

Fig. 6. The proportion of nodes that (a) can play reactive strategies (i.e. are not programmed to
play non-reactive strategies), (b) are forwarders at least on one route, (c) have at least one reactive
dependency loop and (d) fulfill the first condition of Theorem 3
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(c) Nodes that have at least 
one reactive dependency loop 
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first condition of Theorem 3 holds

Proportion of nodes playing non−reactive strategies

Fig. 7. The proportion of nodes (c) have at least one reactive dependency loop and (d) fulfill the
first condition of Theorem 3

the energy-efficient aspects of cooperation. In their solution, the nodes are classified in
different energy classes. The nodes differentiate between the connections based on the
energy classes of the participants and apply different behavior according to the type of the
connection. This framework relies on an ideal mechanism that distributes class informa-
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tion. We introduce a game theoretic model that does not rely on an additional mechanism,
thus our investigations are more generic. Similarly to our framework, Srinivasan et al.
define time slots as an operating unit. But, they generate only one communication session
in the network in each time slot. They choose the participating nodes for this session
uniformly. In our model we take the constitution of the network also into account, which
is in our opinion an important factor. Finally, we develop a model for the nodes where
they can make decisions based only on local information.

Incentive mechanism in ad hoc networks. Marti et al. [MGLB00] consider an ad
hoc network where some misbehaving nodes agree to forward packets but then fail to
do so. However, in their solution misbehaving nodes are not punished, and thus there is
no motivation for the nodes to cooperate. To overcome this problem, Buchegger and Le
Boudec [BL02] as well as Michiardi and Molva [MM02] define protocols that are based
on a reputation system. Another solution presented by Buttyan and Hubaux [BH03] that
gives an incentive for cooperation is based on a virtual currency, called nuglets or credits.
Plaggemeier et al. [PWL03] study the impact of incentive mechanisms in general.

Application of game theory to networking. Game theory has been used to solve
problems both in fixed and cellular networks. Researchers addressed problems like power
control (e.g. Ji and Huang [JH98]), resource allocation (e.g. Korilis et al. [KLO95]) and
pricing (e.g. Yaïche et al. [YMR00]).

Cooperation studies in other areas of science. The emergence of cooperation
has also been previously studied in an economic context using the Iterated Prisoner’s
Dilemma (IPD) game as an underlying model(see e.g. Axelrod [Axe84,CRA99]). Wahl
and Nowak [WN99] study the Continuous valued Prisoner’s Dilemma (CPD) game,
where the nodes can choose a degree of cooperation between full cooperation and full
defection. Our model is also based on a continuous valued game.

6 Conclusion

In this paper, we have proposed a theoretical framework to study the possible existence
of cooperation in packet forwarding in multi-hop wireless networks. We have introduced
the concept of dependency graphs, based on which we were able to prove several theo-
rems. As a main result, we proved the existence of a cooperative equilibrium of packet
forwarding strategies. But, our simulation results show that, in general, the conditions
for such a cooperative equilibrium are satisfied for at most half of the nodes. Thus, the
likelihood that the condition for Corollary 2 holds (i.e., every node has TFT as the best
strategy) is extremely small.

It is important to notice that our approach does not require a node to keep track of
the individual behavior of other nodes: indeed, the considered node is served simply in a
way that reflects the way it served others. As we have shown, this concept is captured by
the game in which a given node perceives itself as playing with the rest of the network.
In this way, the node does not even need to know the identity of the nodes forwarding
(or deciding to not forward) its packets.

In this paper, we have assumed the routes to be static; this drastic decision was
motivated by the complexity of the problem and by our willingness to provide formal
results. In terms of future work, we intend to study the impact of mobility; we expect
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mobility to have beneficial effects, as it will increase the dependency between the nodes.
In this work, we focused on the possible existence of equilibria; in the future, we will
also investigate the possible emergence of such equilibria. Finally, we intend to relax
the assumption of linearity of the utility function.
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[YMR00] H. Yaïche, R. R. Mazumdar, C. Rosenberg, “A Game Theoretical Framework for
Bandwidth Allocation and Pricing in Broadband Networks,” IEEE/ACM Transac-
tions on Networking, vol. 8, No. 5, October 2000.


	Introduction
	Modelling Packet Forwarding as a Game
	Meta-model
	Results
	Analytical Results
	Simulation Results

	Related Work
	Conclusion



