
A Decomposition of Classes via Clustering
to Explain and Improve Naive Bayes

Ricardo Vilalta1 and Irina Rish2

1 Department of Computer Science
University of Houston

4800 Calhoun Rd., Houston TX 77204-3010, USA
vilalta@cs.uh.edu

2 IBM T.J. Watson Research Center
19 Skyline Dr., Hawthorne N.Y. 10532, USA

rish@us.ibm.com

Abstract. We propose a method to improve the probability estimates
made by Naive Bayes to avoid the effects of poor class conditional prob-
abilities based on product distributions when each class spreads into
multiple regions. Our approach is based on applying a clustering algo-
rithm to each subset of examples that belong to the same class, and to
consider each cluster as a class of its own. Experiments on 26 real-world
datasets show a significant improvement in performance when the class
decomposition process is applied, particularly when the mean number of
clusters per class is large.

1 Introduction

Probabilistic classifiers constitute a major venue of research in data mining,
pattern recognition, and machine learning. Successful applications are found in
speech recognition, document classification, and medical diagnosis, among many
others. We focus on a popular probabilistic classifier based on the assumption of
attribute independence, also known as Naive Bayes; the performance of this sim-
ple classifier is unexpectedly often similar to other classifiers unrestrained by the
attribute independence assumption. Although the reasons explaining the com-
petitiveness of Naive Bayes remain unclear, several studies have revealed useful
information; examples include studies about the conditions for its optimality [2];
its geometric properties [15]; and how the product distribution implied by the
independence assumption compares to most other joint distributions with the
same set of marginals [5].

This paper reports on a method to improve the performance of Naive Bayes
by attending to the distribution of examples in the input-output space. We work
on the characterization and transformation of data rather than on the algorithm
design. The idea is to transform the data by decomposing each class into clusters;
this is useful to avoid the effects of poor class conditional probabilities based on
product distributions when each class spreads into multiple regions. In contrast,
most previous work looks at improving the algorithm design alone; examples in-
clude adjusting the estimated probabilities [12], improving probability estimates

N. Lavrač et al. (Eds.): ECML 2003, LNAI 2837, pp. 444–455, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Decomposition of Classes via Clustering 445

[7, 14], and combining Naive Bayes with other models [8]. Some previous work
does transform the data by searching for attribute dependencies to construct
new features [4]; our approach differs in that the transformation is made over
the class distribution by looking at each cluster as a new class. Our main idea is
to augment the number of original classes according to the example distribution
to improve the probability estimations made by Naive Bayes.

Our experimental results, obtained using 26 datasets from the University of
California at Irvine repository, enable us to provide an explanation for the com-
petitiveness of Naive Bayes in real-world domains. In summary, most domains
exhibit a distribution characterized by few clusters per class; a situation where
Naive Bayes is known to perform well. In these cases the performance of our
proposed approach is almost identical to Naive Bayes. But when a domain is
characterized by many clusters per class (on average) the estimation of class-
conditional probabilities is biased, and Naive Bayes performs poorly. In these
cases our approach can improve the performance of Naive Bayes significantly.
The fact that few domains exhibit many clusters per class explains why Naive
Bayes often appears at the same level of performance as other (more sophisti-
cated) algorithms.

This paper is organized as follows. Section 2 introduces background informa-
tion on classification, probabilistic classifiers, and Naive Bayes. Section 3 explains
why Naive Bayes is expected to yield poor probability estimates under certain
kinds of input-output distributions. Section 4 describes our class decomposition
approach to improve and explain the performance of Naive Bayes. Section 5 com-
pares our class-decomposition approach to local learning. Section 6 reports our
experimental analysis. Finally, Section 7 gives a summary and discusses future
work.

2 Preliminaries

Let (A1, A2, · · · , An) be an n-component vector-valued random variable, where
each Ai represents an attribute or feature; the space of all possible attribute
vectors is called the input space X . Let {y1, y2, · · · , yk} be the possible classes,
categories, or states of nature; the space of all possible classes is called the output
space Y. A classifier receives as input a set of training examples T = {(x, y)},
where x = (a1, a2, · · · , an) is a vector or point of the input space and y is a point
of the output space. We assume T consists of independently and identically
distributed (i.i.d.) examples obtained according to a fixed but unknown joint
probability distribution φ in the input-output space Z = X × Y. The outcome
of the classifier is a function h (or hypothesis) mapping the input space to the
output space, h : X → Y. Function h can then be used to predict the class of
previously unseen attribute vectors.

We consider the case where a classifier defines a discriminant function for
each class gj(x), j = 1, 2, · · · , k and chooses the class corresponding to the dis-
criminant function with highest value (ties are broken arbitrarily):

h(x) = ym iff gm(x) ≥ gj(x) (1)

446 Ricardo Vilalta and Irina Rish

In probabilistic classifiers the discriminant functions are the posterior probabil-
ities of a class given the input vector x, P (yj |x). Using Bayes rule1:

gj(x) = P (yj |x) =
P (x|yj)P (yj)

P (x)
(2)

where P (yj) is the a priori probability of class yj , P (x|yj) is called the likelihood
of yj with respect to x or the class-conditional probability, and P (x) is the
evidence factor [3]. Since the evidence factor P (x) is constant for all classes we
can dispense with it. Assuming all attributes are independent given the class
yields the following discriminant function used by Naive Bayes:

gj(x) = P (yj)
n∏

i

P (ai|yj) (3)

where ai is the value of attribute Ai in vector x. The main idea is to approximate
the joint input-output distribution through a product distribution by assuming
attribute independence. While this is clearly unrealistic in many real-world ap-
plications, experimental results have repeatedly demonstrated that Naive Bayes
often performs as well as other algorithms that make no attribute independence
assumption. Our goal in this paper is to relate the performance of Naive Bayes
to the characteristics of a domain; the derived analysis shows a clear mechanism
to improve the performance of this probabilistic classifier.

3 A Perspective View of Naive Bayes

Although the behavior of Naive Bayes has been explained from different perspec-
tives [2, 15, 5], an understanding of the degree of match between different target
distributions and the set of assumptions or bias embedded by the algorithm re-
mains unclear. In this section we identify a kind of distributions for which the
product approximation of Naive Bayes may result in multiple misclassifications;
we name this problem the class-dispersion problem.

3.1 Maximum Entropy and Approximating Distributions

We begin by studying the implication behind a product approximation. Our main
assumption is that the set of training examples T is drawn from an unknown
but fixed probability distribution φ that defines P (x, y) for every point in the
input-output space. Naive Bayes assumes distribution φ can be approximated
through a product of low order components (i.e., product of marginals) assuming
attribute independence given the class (equation 3). The following definitions will
be instrumental in characterizing the approximation used by Naive Bayes.
1 We assume features take on discrete values; we then have probability masses, rather

than probability densities.

A Decomposition of Classes via Clustering 447

Definition 1. A distribution φmax over the input-output space Z is called a
maximum entropy distribution if it assumes equal probabilities over all elements
in Z (i.e., if it corresponds to a uniform distribution over all possible elements
in Z). The entropy of φmax, denoted as Hφmax , is as high as possible:

Hφmax = −
|Z|∑

i=1

1
|Z| log

1
|Z| = log|Z| (4)

where |Z| is the size of the input-output space.

Definition 2. The information contained in a probability distribution φ over
the input-output space Z, defined as Iφ, is the difference between the entropy
of the maximum entropy distribution and the actual entropy of φ:

Iφ = Hφmax − Hφ (5)

where Hφ is defined as follows

Hφ = −
|Z|∑

i=1

PilogPi (6)

and each Pi is the probability of element i in Z according to φ.
An interpretation of Definition 2 is straightforward: a flat distribution where

all elements are assigned equal probabilities carries no information, whereas the
more peaked a distribution, the higher the information conveyed by such distri-
bution [9].

We now consider the problem of approximating a true distribution φ using
an approximation φ′. Let us suppose all we know about φ is a set of low order
component distributions L. All we require from approximation φ′ is that it must
reduce to the same set of low order components in L (i.e., that it can be expressed
as function of the low order components in L). Approximating distributions can
be categorized by the amount of information they contain. If the approximation
is based on the idea of providing the least amount of additional information
beyond the set of low order components, then we have a maximum entropy
approximating distribution.

Definition 3. Let φ be the true distribution over the input-space Z and let L
be a set of low order components to which φ can be reduced. An approximating
distribution of φ with respect to L is called a maximum entropy approximating
distribution, denoted as φ′

maxL
, if among all distributions φ′

L that reduce to the
same set of low order components L, φ′

maxL
is the one with maximum entropy

or less information:
Iφ′

maxL
≤ Iφ′

L
(7)

for all distributions φ′
L that reduced to the same set of low order components L.

448 Ricardo Vilalta and Irina Rish

3.2 The Product Approximation of Naive Bayes

We now return to the product approximation followed by Naive Bayes. It can
be shown that a product approximation contains the smallest amount of infor-
mation (or maximum entropy) of all possible approximations to φ that reduce
to the same set of low order components. In other words, Naive Bayes is a max-
imum entropy approximating distribution [9]. We formalize this as follows: Let
L be the set of low order components used by Naive Bayes. That is, for every
class yj , let L = {P (yj), P (a1|yj), P (a2|yj), · · ·, P (an|yj)}. Let φNB

L be the
product approximation corresponding to Naive Bayes, and let φ′

L be any other
approximation different from Naive Bayes that reduces to the same set of low
order components in L. Then irrespective of the nature of φ′

L, it is always true
that φ′

L contains more (or equal) information than φNB
L .

What is the implication behind the product approximation of Naive Bayes? In
brief, such approximation tries to reconstruct the true distribution from the set of
low order components assuming as little additional information as possible; hence
the distribution is maximally flat. Naive Bayes displays a homogeneous class
distribution on all regions of examples for which the set of low order components
is identical.

As an illustration, Figure 1-left shows an input-output distribution on two
classes: positive (y1 = +) and negative (y2 = −). We assume a two-dimensional
space where attribute A1 takes on three values, and attribute A2 takes on two
values. Since we have equal class proportions (P (+) = P (−) = 1

2), the classifi-
cation depends on the likelihoods only. Figure 1-right shows the approximation
made by Naive Bayes. The product approximation tends to smooth all probabil-
ities. According to Naive Bayes the distribution is now the same along A2 = 1,
with a likelihood ratio in favor of the negative class, and along A2 = 2, with a
likelihood ratio in favor of the positive class.

Consider example x = (A1 = 2, A2 = 1) as shown in Figure 1. Bayes (opti-
mal) classifier assigns x to class positive (Figure 1-left). The situation changes
completely for Naive Bayes (Figure 1-right). Since P (A1 = 2|+) = P (A1 =
2|−) = 1

3 , the classification for x hinges on P (A2 = 1|y) exclusively; Naive Bayes
assigns x to class negative because P (A2 = 1|−) = 2

3 > P (A2 = 1|+) = 1
3 . The

mistake incurred by Naive Bayes stems from the assumption behind a maximal
entropy distribution. The existence of regions that are class uniform is blurred
by Naive Bayes’s vision; these regions are simply averaged altogether when pro-
jected onto each attribute.

3.3 The Class-Dispersion Problem

The problem we are addressing is characteristic of distributions where clusters
of examples that belong to the same class are dispersed throughout the input
space. We call this the class-dispersion problem. In this case, clusters are hard
to identify because a single-dimensional projection of the data loses their spatial
information. This is related to the small disjunct problem in classification [6],
where the existence of many small disjuncts (i.e., class-uniform clusters covering

A Decomposition of Classes via Clustering 449

Fig. 1. (left) The true distribution of examples in the input-output space. (right) The
maximum-entropy approximation made by Naive Bayes. Example x is incorrectly clas-
sified by Naive Bayes.

few examples) may account for a significant amount of the total error rate. Our
focus, however, is based on the distribution of clusters rather than their coverage.

Our intuition is that Naive Bayes may perform better on domains where the
examples of one class are clustered together. This intuition has some theoreti-
cal justification. For example, a Boolean target function made of a disjunction
(conjunction) of all attributes (or their negations) has only a single example of
class 0 (1 for conjunction) and yields optimal (error-free) performance for Naive
Bayes [2]. The optimality of Naive Bayes can be easily proven for a more general
case of two-class problems where one of the classes is assigned to a single point
[11], but the attributes are nominal rather than Boolean. We have extended this
result showing that probability distributions having almost all the probability
mass concentrated in one example are well approximated through a product
distribution (see [11] for proof):

Theorem 1. If for some 0 ≤ δ ≤ 1, ∃ x∗ = (a∗
1, ..., a

∗
n) such that P (a∗

1, ..., a
∗
n|yj)

≥ 1 − δ, then ∀x = (a1, ..., an), |P (x|yj) − ∏n
i P (ai|yj)| ≤ nδ.

In these cases, although a product approximation does not guarantee good
performance of Naive Bayes, it makes it more likely in practice. Nevertheless, as
the target distribution changes such that each class groups into multiple clusters,
the chances of misclassifications incurred by Naive Bayes increase greatly. This
is because Naive Bayes tends to smooth out the class-conditional probabilities.
In cases when instances of the same class are scattered, computing marginals
(i.e. single-dimensional projections) of the data may result in significant loss of
information.

4 Decomposing Classes into Clusters

Our solution to the class-dispersion problem can be summarized through a two-
step process: 1) identify class-uniform clusters of examples in the training set,
and 2) relabel each cluster as a new class of examples. The new dataset differs
from the original training set in the class labelling: there is now an additional

�

�

A1

A2

1 2 3

1

2 P (+) = 1.0

P (−) = 0.0

P (+) = 1.0

P (−) = 0.0

P (+) = 0.0

P (−) = 1.0

P (+) = 0.0

P (−) = 1.0

P (+) = 0.0

P (−) = 1.0

P (+) = 1.0

P (−) = 0.0

x
��� �

�

A1

A2

1 2 3

1

2 P (+) = 2
3

P (−) = 1
3

P (+) = 2
3

P (−) = 1
3

P (+) = 2
3

P (−) = 1
3

P (+) = 1
3

P (−) = 2
3

P (+) = 1
3

P (−) = 2
3

P (+) = 1
3

P (−) = 2
3

x
���

450 Ricardo Vilalta and Irina Rish

Algorithm 1: Mapping-Process
Input: clustering method C, dataset T
Output: new dataset T ′

Mapping-Process(C,T)
(1) Separate T into subsets {Tj}
(2) where Tj = {(x, y) ∈ T |y = yj}
(3) foreach Tj

(4) Apply clustering C on Tj

(5) Let {Cj
p} be the set of clusters

(6) foreach example e = (x, yj)
(7) Let p be the cluster index for x
(8) Create example e′ = (x, y′

j)
(9) where y′

j = (yj , p)
(10) Add e′ to T ′

(11) end
(12) end
(13) return T ′

Fig. 2. The process to transform dataset T into a new dataset T ′ using a clustering
algorithm.

number of classes. Naive Bayes is then trained over the new dataset. During
classification, performance can be assessed by simply assigning each example
back to its original class. A general description of our approach follows.

4.1 The Data Transformation

Let T = {(x, y)} be the input dataset. Our first step is to map T into another
dataset T ′ through a class-decomposition process. The mapping leaves the input
space X intact but changes the output space Y into a (possibly) larger space Y ′

(i.e., |Y ′| ≥ |Y|, where | · | is the cardinality of the space).
The second step is to train Naive Bayes on T ′ to obtain hypothesis h′. The

hypothesis acts over the transformed output space h′ : X → Y ′. The classification
of a new input vector x is obtained by applying a function g over h′(x) that will
essentially bring the class label back to the original output space, g : Y ′ → Y.

4.2 The Mapping Process

The first step in the transformation process is shown in Algorithm 1 (Figure 2).
We proceed by first separating dataset T into sets of examples of the same class.
That is T is separated into different sets of examples T = {Tj}, where each Tj

comprises all examples in T labelled with class yj , Tj = {(x, y) ∈ T |y = yj}.
For each set Tj we apply a clustering algorithm C to find sets of examples

(i.e., clusters) grouped together according to some distance metric over the input
space. Let {Cj

p} be the set of such clusters. We map the set of examples in Tj

into a new set T ′
j by renaming every class label to indicate not only the class

but also the cluster to which each example belongs. One simple way to do this

A Decomposition of Classes via Clustering 451

Fig. 3. The mapping process relabels examples to encode both class and cluster.

is by making each class label a pair (a, b), where the first element represents the
original class and the second element represents the cluster that the example
falls into. In that case, T ′

j = {(x, y′
j)}, where y′

j = (yj , p) whenever example x is
assigned to cluster Cj

p.
An illustration of the transformation above is shown in Figure 3. We assume

a two-dimensional input space where examples belong to either class A or B.
Let’s suppose the clustering algorithm separates class A into two clusters, while
class B is grouped into one single cluster. The transformation relabels every
example to encode class and cluster label. As a result, dataset T ′ has now three
different classes.

Finally the new dataset T ′ is simply the union of all sets of examples of the
same class relabelled according to the cluster to which each example belongs,
T ′ =

⋃k
j=1 T ′

j .

4.3 The Classification Process

During the second step, Naive Bayes is trained over the new dataset T ′ producing
a hypothesis h′ mapping points from input space X to the new output space Y ′.
Each discriminant function has the same form as Equation 3, but the number
of discriminant functions is now (possibly) larger, according to how much the
decomposition process divided up each class into multiple clusters.

When classifying a new input vector x, hypothesis h′ will output a prediction
consisting of a class label and a cluster label, h(x) = (yj , p), corresponding to
original class yj and cluster Cj

p. To know the actual prediction in the original
output space Y we simply apply a function g that removes the second element
of the pair, g(yj , p) = yj . Essentially, we predict class label yj whenever example
x is assigned to any of the clusters of class yj .

The decomposition process aims at eliminating the cases where a class spreads
out into multiple regions. As each cluster is transformed into a class of its own,
the class-dispersion problem vanishes. The result is a new input-output space
where each class sits in a tight region. By reducing the class-dispersion problem,
the conditional probabilities estimated by Naive Bayes better conform with the
assumption of a product distribution (i.e., of a maximum-entropy distribution).

�

�

A
AA

AAA
A � {(x, y′)|y′ = (A, 1))}

B
BB
BBB

B
BB

� {(x, y′)|y′ = (B, 1))}

A
AAAAA

A � {(x, y′)|y′ = (A, 2))}

452 Ricardo Vilalta and Irina Rish

5 Locality, Capacity,
and the Class Decomposition Process

A better understanding of our approach can be gained by looking at the dif-
ference between locality, capacity, and the class-decomposition process. Naive
Bayes is a global classifier: it makes use of all available data to estimate its
parameters (i.e., a priori and class-conditional probabilities). As such it fails to
detect local class variations given the same set of low order components. Failing
to detect those variations is a byproduct of the attribute-independence assump-
tion; Naive Bayes is a learning machine with low capacity (i.e., low flexibility
in the decision boundaries). To solve this problem one may introduce a form of
locality in the global classifier, in which parameters are estimated based only on
the neighborhood of the example x being classified.

The class decomposition process discussed in Section 4 introduces an alter-
native view to local classification: instead of focusing on local regions of the
input space, we can augment the number of discriminant functions according to
the class distribution. That is, one can add more decision boundaries but retain
their low flexibility. By augmenting the number of discriminant functions, the
capacity of the algorithm is in fact increased, but the flexibility of the boundaries
remains the same. The trick lies in the clustering phase that in fact pre-identifies
local structures in the data. In addition, separating classes into clusters simply
reduces the dependencies between attributes, but retains all examples for anal-
ysis. The class-cluster encoding computed during the transformation process
(Figure 3) does not result in a loss of information with respect to the original
sample distribution.

6 Experiments

We now report on a series of experiments that compare Naive Bayes (NB) with a
modified version (NB′) that computes the transformation described in Section 4.
Our datasets (26 domains) can be obtained from the University of California at
Irvine repository [1]. In what follows, predictive accuracy on each dataset is ob-
tained using stratified 10-fold cross-validation, averaged over 5 repetitions; tests
of significance use a two-tailed t-student distribution. The clustering algorithm
follows the Expectation Maximization (EM) technique [10]; it groups examples
into clusters by modelling each cluster through a probability density function.
Each example in the dataset has a probability of class membership and is as-
signed to the cluster with highest posterior probability. The number of clusters
is estimated using cross-validation. Implementations of Naive Bayes and EM are
part of the WEKA machine-learning class library [13], set with default values.
Runs were performed on a RISC/6000 IBM model 7043-140.

Table 1 displays our results. The first column describes the domains used for
our experiments. The second and third columns report on the accuracy of Naive
Bayes; the second column corresponds to the standard version and the third
column to the version using the transformation described in Section 4 (numbers

A Decomposition of Classes via Clustering 453

Table 1. Predictive accuracy on real-world domains for Naive Bayes with and with-
out the transformation process. Numbers enclosed in parentheses represent standard
deviations.

Domain Naive Bayes NB Naive Bayes with ∆ Accuracy Number of Clusters
transformation NB′ Mean Min Max

Anneal 86.64 (0.06) 96.48 (0.09) 9.84∗ 3.4 1.0 5.0
Audiology 72.17 (0.20) 72.17 (0.20) 0.00 1.0 1.0 1.0
Autos 57.89 (0.25) 71.83 (0.80) 13.94∗ 2.66 1.0 5.0
Balance-Scale 90.48 (0.05) 90.48 (0.05) 0.00 1.0 1.0 1.0
Breast-Cancer 73.30 (0.15) 73.72 (0.26) 0.42 2.5 2.0 3.0
Breast-W 95.98 (0.01) 95.98 (0.01) 0.00 1.0 1.0 1.0
Colic 78.50 (0.17) 78.50 (0.17) 0.00 1.0 1.0 1.0
Credit-G 75.05 (0.27) 73.26 (0.13) −1.79 4.0 3.0 5.0
Diabetes 75.49 (0.07) 74.98 (0.10) −0.51 3.0 1.0 5.0
Heart-C 83.18 (0.07) 84.16 (0.09) 0.98∗ 2.0 1.0 3.0
Heart-H 84.22 (0.24) 83.52 (0.12) −0.70 4.0 2.0 6.0
Heart-Statlog 84.28 (0.15) 84.28 (0.15) 0.00 1.0 1.0 1.0
Hepatitis 84.24 (0.25) 85.71 (0.13) 1.47 2.5 1.0 4.0
Ionosphere 82.25 (0.13) 90.12 (0.15) 7.87∗ 4.5 1.0 8.0
Iris 95.36 (0.07) 95.96 (0.37) 0.60 3.3 2.0 5.0
Chess 87.18 (0.35) 90.62 (0.06) 3.44∗ 9.5 9.0 10.0
Labor 94.08 (0.42) 94.08 (0.42) 0.00 1.0 1.0 1.0
Lymph 83.79 (0.18) 83.79 (0.18) 0.00 1.0 1.0 1.0
Mushroom 94.01 (0.23) 99.83 (0.01) 5.82∗ 5.5 5.0 6.0
Tumor 51.20 (0.21) 51.20 (0.21) 0.00 1.0 1.0 1.0
Segment 79.73 (0.09) 87.89 (0.68) 8.16∗ 4.57 1.0 11.0
Sick 93.84 (0.39) 98.70 (0.04) 4.86∗ 8.5 6.0 11.0
Vehicle 44.96 (0.17) 73.73 (0.03) 28.77∗ 8.0 6.0 10.0
Vote 90.07 (0.03) 95.60 (0.13) 5.53∗ 2.5 2.0 3.0
Vowel 63.79 (0.15) 92.05 (0.11) 28.26∗ 6.3 4.0 9.0
Zoo 94.92 (0.16) 97.02 (0.00) 2.10∗ 1.28 1.0 2.0

Average 80.63 85.22 4.58 3.42 2.19 4.80

enclosed in parentheses represent standard deviations). The fourth column shows
the improvement in accuracy that comes with our proposed approach (an asterisk
at the top right of each number implies the difference is significant at the p =
0.01 level). The last columns shows average values for the mean, minimum, and
maximum number of clusters per class for every dataset.

Our results show how the transformation process improves the accuracy of
Naive Bayes in most of the datasets used for our experiments. Where no im-
provement is observed the difference is not statistically significant; in the ex-
treme case where each class is grouped into one single cluster, the performance
of our proposed approach is identical to Naive Bayes. In some other domains,
the improvement goes up to approximately 28% points (e.g., Vehicle and Vowel).
The average improvement in accuracy is of approximately 4.5% points. Figure 4
(left) shows the difference between our approach (NB′) and Naive Bayes (NB)
(y-axis) where domains are ordered according to the mean number of clusters
per class (x-axis). Most significant differences correspond to domains with many
clusters per class (we note the increase is not monotonic).

454 Ricardo Vilalta and Irina Rish

In addition, our results shed some light on the competitiveness of Naive
Bayes in real-world domains. Figure 4 (right) shows a histogram of the mean
number of clusters per class for each dataset. Most datasets exhibit a distribution
characterized by few clusters per class, a situation that favors the assumption
behind a product distribution. Few datasets exhibit many clusters per class,
which explains why Naive Bayes often appears at the same level of performance
as other (more sophisticated) algorithms.

Fig. 4. (left) Accuracy difference between Naive Bayes with the transformation and
Naive Bayes standard. (right) A histogram of domains based on the mean number of
clusters per class.

7 Summary and Future Work

We propose a method to improve the probability estimates made by Naive Bayes
by applying a clustering algorithm to each subset of class-uniform examples; the
result is a new output space where each cluster is assigned a new class label. Our
experimental analysis shows a significant improvement in performance when the
class decomposition process is applied, especially when the mean number of clus-
ters per class is large. The competitiveness of Naive Bayes reported in previous
work is explained by the fact that many real-world datasets decompose into few
clusters per class, a situation that favors the product distribution assumption
followed by Naive Bayes.

Our study assumes an effective clustering algorithm in charge of the class
decomposition process. The choice of the clustering algorithm bears relevance to
the effectiveness of our approach; future work will explore if our results hold for
different clustering algorithms. In addition, we note that the parameters of the
clustering algorithm can be adjusted based on the performance of Naive Bayes
(e.g., by varying the number of clusters).

Finally, since our proposed approach does not alter the algorithm design, it
can be employed outside the boundaries of Naive Bayes, serving as a framework
to improve the performance of classifiers that exhibit poor performance when

A Decomposition of Classes via Clustering 455

the dataset is characterized by many clusters per class, as is the case with linear
classifiers. We plan to address this in future work; our goal is to understand how
the class-decomposition process can serve as a general framework to improve
classification performance.

References

1. Blake C.L., Merz C.J.: UCI, Repository of machine learning databases. Univer-
sity of California, Irvine, Dept. of Information and Computer Sciences (1998).
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

2. Domingos P., Pazzani M.: On the Optimality of the Simple Bayesian Classifier
Under Zero-One Loss. Machine Learning 29, pp. 103–130 (1997).

3. Duda R. O., Hart P. E., Stork D. G.: Pattern Classification. John Wiley Ed. 2nd
Edition (2001).

4. Friedman N., Geiger D., Goldzmidt M.: Bayesian Network Classifiers. Machine
Learning 29, pp. 131-163 (1997).

5. Garg A., Roth D.: Understanding Probabilistic Classifiers. European Conference
on Machine Learning, Lecture Notes in Artificial Intelligence, pp. 179-191 (2001).

6. Holte R.C., Acker L.E., Porter B.W.: Concept Learning and the Problem of Small
Disjuncts. Eleventh International Joint Conference on Artificial Intelligence, Mor-
gan Kaufmann, pp. 813-818 (1989).

7. Kohavi R., Becker B., Sommerfield D.: Improving Simple Bayes. European Con-
ference on Machine Learning (1997).

8. Kohavi R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tee Hy-
brid. International Conference on Knowledge Discovery and Data Mining (1996).

9. Lewis P.M.: Approximating Probability Distributions to Reduce Storage Require-
ments. Information and Control, 2, pp. 214-225 (1959).

10. McLachlan G., Krishnan T.: The EM Algorithm and Extensions. John Wiley and
Sons (1997).

11. Rish I., Hellerstein, J., Jayram, T.: An Analysis of Naive Bayes on Low-Entropy
Distributions. IBM T.J. Watson Research Center, RC91994 (2001).

12. Webb G. I., Pazzani M. J.: Adjusted Probability Naive Bayes Induction. Tenth
Australian Joint Conference on Artificial Intelligence. Springer-Verlag, pp. 285-
295 (1998).

13. Witten I. H., Frank E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Academic Press, London U.K. (2000).

14. Zadrozny B., Elkan C.: Obtaining Calibrated Probability Estimates From Deci-
sion Trees and Naive Bayesian Classifiers. International Conference on Machine
Learning (2001).

15. Zhang H., Ling C. X.: Geometric Properties of Naive Bayes in Nominal Domains.
European Conference on Machine Learning, pp. 588–599 (2001).

	1 Introduction
	2 Preliminaries
	3 A Perspective View of Naive Bayes
	3.1 Maximum Entropy and Approximating Distributions
	3.2 The Product Approximation of Naive Bayes
	3.3 The Class-Dispersion Problem
	4.1 The Data Transformation
	4.2 The Mapping Process
	4.3 The Classification Process

	4 Decomposing Classes into Clusters
	5 Locality, Capacity, and the Class Decomposition Process
	6 Experiments
	7 Summary and Future Work
	References

