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Abstract. Topics in 0–1 datasets are sets of variables whose occurrences
are positively connected together. Earlier, we described a simple genera-
tive topic model. In this paper we show that, given data produced by this
model, the lift statistics of attributes can be described in matrix form.
We use this result to obtain a simple algorithm for finding topics in 0–1
data. We also show that a problem related to the identification of top-
ics is NP-hard. We give experimental results on the topic identification
problem, both on generated and real data.

1 Introduction

Large collections of 0–1 data occur in many applications, such as information
retrieval, web browsing, telecommunications, and market basket analysis. While
the dimensionality of such data sets can be large, the variables (or attributes)
are seldom completely independent. Rather, it is natural to assume that the
attributes are organized into (possibly overlapping) topics, i.e., collections of
variables whose occurrences are somehow connected to each other1. For example,
in document data the topics correspond to topics of the document: e.g., phrases
“data mining”, “decision trees” and “association rules” probably are included
in one topic, which might be called the “data mining” topic. In supermarket
market basket data, the topics could correspond to classes of products such
as soft drinks, vegetables, etc. In discretized gene expression data topics could
correspond to groups of genes that are expressed in similar conditions or tissues.

Finding topics from data is by no means easy: the topics can be overlapping,
and a particular topic is active only for a subset of documents. For example,
simple frequent set based approaches are unable to find topics, as the attributes
in a topic are seldom 1 together. There has been lots of work that searches
for latent structure in 0–1 data (see, e.g., [1,2,3,4,5,6,7,8,9,10]). The approaches
range from simple methods based on covariance-type statistics (e.g., [9]) to full
probabilistic models (e.g., [4]) and to spectral approaches [10].

In order to discover topics from 0–1 data, one first has to specify the model
for topics, and then give a method that finds topics corresponding to the model.
1 Our usage of the word topic is similar but not identical to the meaning in information

retrieval literature, where a topic is a probability distribution on the universe of
terms, typically concentrating on a few terms.
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In this paper we describe a simple generative topic model, based on our previous
work [11]. We prove some analytical results about the model by using the concept
of lift [12]. We show that the lift statistics of individual attribute pairs can be
described in matrix form as linear combinations of lift statistics of disjoint topics.
Based on this observation, we give a simple algorithm for finding topics in 0–1
data. We also show that one form of the topic identification problem is NP-hard.
We give experimental results on both generated and real data, showing that the
algorithm works well in practice.

First we review some other methods for finding latent structure in binary
data. Many of these generative models are quite powerful and are able to de-
scribe complex situations. On the other hand, finding exact solutions for them
is computationally intractable, and it is difficult to get a clear picture of the
quality of the obtained estimates. Many of the methods are also symmetric with
respect to the data values 0 and 1; on the basis of the asymmetry in the data
generating process, this can be viewed as a potential source of problems.

In nonnegative matrix factorization (NMF) [1], an observed data matrix is
decomposed into a product of two unknown matrices. All three matrices have
nonnegative entries. The observed data is regarded as a sum of latent variables.
Lee and Seung give two algorithms for finding the unknown matrices; there is,
however, no probabilistic interpretation of the results of NMF. Computationally,
the methods seems very demanding and there are no clear results on the quality
of the solutions [13].

The latent semantic analysis (LSA) method [2] uses singular-value decom-
position to decompose an observed data matrix into a product of matrices. (In
contrast to NMF, the matrices can have negative entries, too.) In a seminal
paper by Papadimitriou et al. [3] some arguments were given to justify the per-
formance of LSI by presenting a probabilistic corpus model. Their basic model
is quite general and somewhat similar to ours.

Hofmann [4] has presented a probabilistic version of LSA, termed PLSA. His
formal model is fairly close to ours and we will show comparative results on the
models. For each observation vector, some topics are first selected according to
some observation-specific topic probabilities; then, the topics generate attributes
according to some topic-attribute probabilities. The attributes are conditionally
independent given the topic. Hofmann’s main interest is in good estimation of all
the parameters using the EM algorithm, while we are interested in the structure
of the data (that is, the probabilities of attributes belonging to topics) and also
explaining why the methods would find topics.

Laten Dirichlet Allocation (LDA) [14,15,16] is a method in which the data
model is closely similar to Hofmann’s PLSA but the estimation of the parame-
ters is computationally more demanding: a variational approximation to the data
likelihood is needed prior to EM estimation of the parameters. Independent com-
ponent analysis (ICA) ([8,17,18]) is a statistical method that expresses observed
multidimensional sequences as combinations of unknown latent variables, that
are statistically as independent as possible. The so called probe distances [19]
of attributes can be used to find (possibly overlapping) sets of attributes that
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behave similarly with respect to other attributes; we studied this in an earlier
paper [11]. Cooley and Clifton [9] compute the frequent sets in the data and
cluster them using a hypergraph partitioning scheme, thus avoiding the problem
of not having all attributes of a topic present in one data vector.

A popular method to analyze 0–1 data is the class of finite mixtures of mul-
tivariate Bernoulli distributions. However, for the Bernoulli models, the values 0
and 1 have symmetric status, while for our topic models defined in Section 2 this
is not the case. Another important difference between Bernoulli (or any other)
mixture model and our model is that in mixture models it is assumed that an
observed 0–1 vector is only generated by one latent topic, although generation
probabilities are given for all latent topics. In this paper we assume that a data
vector is generated by the interaction of several latent topics. Binary generative
topographic mapping [20,21] also assumes that the data vectors are generated
by one latent topic at a time.

The rest of this paper is organized as follows. We describe our model and
examine some of its analytical properties in Section 2. In Section 3 we study the
lift statistic and describe the simple algorithm based on it. We give experimental
results in Section 4, and conclude in Section 5.

2 Topic Models

In this section we present our concept of a topic model, give the likelihood
function of the model, and discuss what kinds of parameter values are realistic.
This form of the model was introduced earlier by us [11].

Let U be an n-element set of attributes (e.g., words). A k-topic model T
arranges the n attributes into k topics. The model has the following parameters:
a k-element vector s = (s1, . . . , sk) corresponding to the k topics, and a k ×
n matrix Q whose elements relate the topics to the attributes; the element
corresponding to topic i and attribute A is denoted by Qi,A. All elements of s
and Q must be probabilities, i.e., reals in the range [0, 1]; however, neither s nor
any row or column of Q is required to sum up to 1.

A data vector x (e.g., a document) is sampled from T as follows. First, the
active topics are selected by sampling a k-element binary vector t whose every
component ti is 1 with probability si, independently of all other components.
Second, the active topics generate the attributes. For each topic i, an n-element
binary vector xi is sampled so that the component corresponding to A is 1 with
probability tiQi,A, independently of all other components. The data vector x is
then the logical or (i.e., maximum) of all the vectors xi, x =

∨k
i=1 xi.

It would be possible to add another layer on top of the topics, selecting the
topic probabilities anew for each data vector from, e.g., a Dirichlet distribution.
Many of our results could be generalized to such settings, which however fall
outside the scope of this treatment. This type of approach has been taken in
[3,4,14,15,16].

We next present the likelihood function of a k-topic model T with param-
eters s,Q. The data D consists of vectors x, each considered independently of
the others,
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P (D | T ) =
∏

x∈D

P (x | T ).

The probability of a single observation x is

P (x | T ) =
∑

t

P (t | T )P (x | t, T ).

The sum is taken over all k-element 0–1 vectors t, corresponding to all 2k possible
combinations of active topics. The probability of a topic combination depends
on the parameters s only,

P (t | T ) = P (t | s) =
k∏

i=1

P (ti | si) =
k∏

i=1

sti
i (1 − si)1−ti .

The probability of an observation given the active topics depends on the param-
eters Q only,

P (x | t, T ) = P (x | t,Q) =
∏

A∈U

P (xA | t,Q),

where xA denotes the element of x that corresponds to the attribute A ∈ U .
A single attribute has a value of either zero or one, with distribution

P (xA | t,Q) = pxA

A (1 − pA)1−xA =

{
1 − pA, xA = 0
pA, xA = 1,

where

pA = 1 −
k∏

i=1

(1 − Qi,A)ti .

The likelihood function, if expanded fully, would have a large number of terms
because of the sum over 2k topic combinations t. This suggests a high compu-
tational complexity, and indeed the task of selecting the best t is difficult. This
is illustrated by the following theorem, whose proof we defer to the Appendix.

Theorem 1. The following problem is NP-complete: given a topic model T , a
single data vector x and a threshold ρ, decide whether there is a topic assign-
ment t such that the probability of the data given the assignment exceeds the
threshold, P (x | t, T ) ≥ ρ.

However, the models involved in the proof would best be described as con-
trived, so the result should not dissuade us from researching some reasonable
subclass of topic models. But what kind of models are reasonable?

One assumption that we will make is that the topic probabilities si are small.
This seems reasonable at least in the context of document data: if some words
occur in a large fraction of all documents, in information retrieval they would
be classified as stop words and not considered in searches; it is the less common
words that distinguish interesting documents.
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Another question is the amount of overlap between topics – if two topics
consist of almost completely the same attributes, it does not seem easy to dis-
tinguish between them. In [11] we considered a class of “ε-separable” models,
an idea similar to that in [3]. A model is ε-separable if every topic has a set of
primary attributes and assigns at most a fraction ε of its attribute-activation
weight to the non-primary attributes. However, the ε-separability property does
not perfectly capture the idea of almost-disjoint topics, as the discussion in [11,
before Lemma 3] notes: for example, several topics can “conspire” against an-
other topic i by giving high weight to one of i’s primary attributes. Even if every
high weight is less than a fraction ε of the topic’s total weight, it is possible that
the majority of activations of that attribute come from the conspiring topics and
not the primary topic.

This leads us to define a different separability concept: a model has θ-bounded
conspiracy if every attribute A has a primary topic i such that

∑

j �=i

Qj,A ≤ θQi,A.

We conjecture that a model is discoverable from data if it has low values of si

and conspiracy bounded by some low θ.

3 Using the Lift Statistic

We now consider a statistic commonly called called lift or interest [12,22,23],

lift(A, B) =
P (A | B)

P (A)
=

P (A, B)
P (A)P (B)

,

which is a kind of a relative risk factor: how much more common is it to observe A
given that B is observed, compared to no information about B? Lift was chosen
because it measures dependence, which is highly relevant to topic models – when
two attributes belong strongly to the same topic, their co-occurrence should de-
viate significantly from the independence assumption. For independent A and B,
lift(A, B) = 1, and the stronger the (positive) dependence, the higher the lift.
Note that our model predicts lift(A, B) ≥ 1 for all pairs A, B ∈ U ; thus, one
way of assessing whether the model fits a given data set is to see how lift(A, B)
is actually distributed.

Proposition 1. Assume that attribute A is only generated by topic i. Then for
any attribute B,

lift(A, B) =
P (ti | B)

P (ti)
=

P (ti, B)
P (ti)P (B)

.

Proof. We factorize the probabilities: P (A) = P (A, ti) = P (ti)P (A | ti) and
P (A, B) = P (ti, A, B) = P (ti)P (B | ti)P (A | ti, B). Since A is only generated
by topic i, P (A | ti, B) = P (A | ti). Thus

lift(A, B) =
P (A, B)

P (A)P (B)
=

P (ti)P (A | ti)P (B | ti)
P (ti)P (A | ti)P (B)

.
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Using Bayes’ theorem P (B | ti) = P (B)P (ti | B)/P (ti) and canceling terms we
obtain the result. ��

What Proposition 1 says is that if A is a “core attribute” of topic i, i.e., an
attribute generated by i only, then A represents i perfectly in lift calculations,
even if Qi,A < 1. Of course in practice, when the lift must be estimated from
data, a small value of Qi,A can cause poor results. Another point to note is that
the probability P (B | ti) appearing in the proof is not the model parameter Qi,B .
Instead, it is the probability that any topic will generate B conditioned on the
fact that at least topic i is active. Proposition 1 has as immediate consequences
two results that we used already in [11].

Corollary 1. If attributes A and B are only generated by topic i, i.e., Qj,A =
Qj,B = 0 for j �= i, then lift(A, B) = s−1

i .

Corollary 2. If attribute A is only generated by topic i and attribute B is only
generated by topic j, then lift(A, B) = 1.

Thus, the lift statistic between attributes belonging to one topic only is very
simple. The interesting question is how lift behaves when an attribute belongs
to several topics.

Assume that attribute A is only generated by topic i, and attribute B is
generated by both topics i and j. Now lift(A, B) is, after simplification,

P (A, B)
P (A)P (B)

=
Qi,B + sjQj,B − Qi,BsjQj,B

siQi,B + sjQj,B − sisjQi,BQj,B
≈ Qi,B + sjQj,B

siQi,B + sjQj,B

where in the approximation we have assumed that Qi,BsjQj,B and sisjQi,BQj,B

are small compared to the other terms. The above formula generalizes to the
case where B is generated by some other topics than i and j, too: before the
approximation we then have several second order terms s�Q�,B corresponding to
all topics � that generate B, and similarly several third order terms s�Qi,BQ�,B

(in the numerator) or fourth order terms sis�Qi,BQ�,B (in the denominator).
Assume now that all the topic probabilities are (approximately) equal, i.e.,

s� ≈ s for all topics �. Then we can write the above formula as lift(A, B) ≈
(s−1Qi,B + Qj,B)/(Qi,B + Qj,B). Furthermore, let each topic � have c� core
attributes that are only generated by that topic. Then using Corollaries 1 and 2
we note that the lifts of A and all core attributes can be included in the formula
as follows:

Observation. The lift between a core attribute A of topic i and an attribute B
generated by topics i and j is

lift(A, B) ≈
∑

A′
lift(A, A′)c−1

i

Qi,B

Qi,B + Qj,B
+

∑

D′
lift(A, D′)c−1

j

Qj,B

Qi,B + Qj,B

where
∑

A′ lift(A, A′)c−1
i is an averaged estimate of s−1,

∑
D′ lift(A, D′)c−1

j = 1
and the two sums run over the core attributes A′ and D′ of topics i and j,
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respectively. Also, we may add a third summation including lift(A, F ′) where F ′

is a core attribute belonging to topic l into which B does not belong to, as then
Ql,B = 0 and the whole term vanishes. This observation again generalizes to the
case where B is generated by multiple topics.

The above reasoning included approximations in discarding high-order terms
and the somewhat crude assumption that all si are equal. In any case, it does
yield an idea of how to discover topics: for an attribute B that belongs to
several topics, define a vector α whose length is the total number of all core
attributes. The element corresponding to A (a core attribute of topic i) is
αA = Qi,B/(ci

∑
j Qj,B). Then lift(A, B) ≈ αT lift(A, ·) for all core attributes A,

where we denote by lift(A, ·) the vector of lifts between A and all core attributes
(where lift(A, A) = 0). This gives us an algorithm for finding the topics in which
the attributes belong, and also the parameters Q:

– Identify those attributes that belong to one topic only – this can be done
by looking at the lift statistics, which are always either 1 or 1/s for those
attributes.

– Cluster those attributes using some traditional clustering algorithm; at this
stage the clusters do not overlap and do not cover all attributes – if an
attribute B belongs to several topics, its lifts are intermediate between 1
and 1/s, and so B is not clustered. For A belonging to one topic i only,
Qi,A = P (AA′)/P (A′) which can be averaged over all A′ belonging to the
same topic i as A.

– For attributes B which are not clustered, find a decomposition lift(B, ·) =
αT R, where the square symmetric matrix R has the vectors lift(A, ·) (of
already clustered attributes A) as its columns. All of the lifts in this formula
are known, so the vector α can be estimated straightforwardly. The elements
of α are nonzero for those attributes that share a topic with B, and zero
for others. Also, the elements are more or less constant within attributes
of a given topic. Now Qi,B = αAci/

∑
j Qj,B where αA can be averaged

over all A′ belonging to topic i, ci is known, and for small and equal sj we
can approximate P (B) ≈ s

∑
j Qj,B , which gives us

∑
j Qj,B . We can also

assume
∑

j Qj,B = 1 and scale the estimated Qi,B accordingly.

4 Experimental Results

4.1 Generated Data

We designed experiments to see how the conspiracy statistic θ of a model af-
fects our clustering results. The results corroborate our conjecture that low-
conspiracy models are easier to discover. We constructed random models with
θ-bounded conspiracy using the following recipe. The model has 10 topics and
100 attributes. The probability si of a topic was drawn uniformly at random
from the interval [0.01, 0.5]. Each attribute was assigned a primary topic so that
each topic was primary for 10 attributes.
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To assign the within-topic attribute probabilities Qi,A so that the conspiracy
parameter is θ, we first drew a number p uniformly from [0, 1] and let Qi,A = p
for the primary topic i. Then we distributed the mass θp to the non-primary
topics in an uneven way. Each non-primary topic in random order received a
fraction of φ of the remaining mass, where φ is chosen at random from [0, 1],
separately for each non-primary topic. The last topic received all remaining mass
to make the mass sum up exactly to θp.

This way of generating a random model includes a number of somewhat
arbitrary choices that we now justify. First, the topic probabilities si were chosen
not from [0, 1] but from a smaller interval. Some lower limit is necessary so
that each topic is represented in a finite data sample; and an upper limit is
needed by our algorithm, which distinguishes a topic by estimating its probability
and cannot discover a topic that is almost always active. In a preliminary test
(not shown), our algorithm’s performance was best with low upper limits, and
deteriorated rapidly when the upper limit approached 1. We chose 0.5 as the
upper limit as a conservative approach: in document data, one would expect
that individual topics have much smaller probabilities.

Second, we discuss the distribution of the within-topic attribute probabilities
of non-primary topics. A more obvious strategy would be to draw the probabili-
ties independently and then to normalize, but then the distribution would have
become more even. With 9 non-primary topics, all the probabilities would cen-
ter around θ/9 times the primary probability, which makes the task far easier:
none of the non-primary topics is likely to be confused with the primary topic.
In contrast, our procedure typically results in a few non-primary topics with
non-negligible topic-attribute probabilities for each attribute. We wish to mimic
the behavior of true data sets, such as text document data: a term may have
several meanings, perhaps a primary meaning and one or few secondary mean-
ings, hence it belongs primarily to one topic of discussion and secondarily to a
few other topics, but not to all possible topics.

In the experiment, we estimated the topic-attribute probabilities Q using
the lift statistic, NMF, PLSA2 and K-means. The NMF and PLSA methods
estimate Q given the observed binary data. A naive alternative is the simple
K-means algorithm which clusters the attributes into non-overlapping sets; we
assume that Qi,A is equal for all attributes A of topic i and sums to 1 at each
topic.

Figure 1 shows the mean squared errors (MSE’s) of the estimated Q, com-
pared to the true probabilities used to generate the data. The conspiracy param-
eter θ runs from 0 to 1. At each θ, the topic probabilities s are sampled anew, so
there is great variability in the data models. Originally, the topic-attribute prob-
abilities estimated by the methods do not necessarily sum to 1 at each topic –
they do in PLSA, but not either in the other methods or in the true data model –
but we scale them accordingly, to be able to compare the MSE’s.

In Figure 1 we see that at smaller θ, the Lift algorithm estimates the Q and
thus the structure of the data very nicely. When θ grows very large, the data

2 The PLSA method was kindly programmed by Mr. Teemu Hirsimäki.
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model is more difficult to estimate. The behaviors of NMF and PLSA3 do not
depend on θ, which is natural: the methods are not primarily aimed for such
θ-bounded data but instead are able to estimate the structure also when the
topics are totally overlapping. The K-means algorithm estimates the structure
of the data poorly for all θ.

4.2 Real Data

We performed experiments on bibliographical data on computer science available
on the WWW4. We first tested the model’s prediction that lift(A, B) ≥ 1 for
all A, B; while it does not hold perfectly because there are negative correlations
between words, the vast majority of these negative correlations are statistically
insignificant (details omitted). We preprocessed the data by removing a small
set of stop words and all numbers, and then selected the 100 most frequent terms
for further analysis.

We computed the lift statistics between all term pairs and used hierarchical
average linkage clustering based on the inverses of lifts. Table 1 shows how the
terms are clustered into topics. The number of clusters (21) was chosen based
on the distance between clusters being merged in the process of hierarchical
clustering: until these 21 clusters, the intercluster distances were quite small but
distances between the final 21 clusters were large. The structure in Table 1 is
immediately familiar to a theoretical computer scientist: the topics concentrate
on different fields of the science.

We also performed topic finding on yeast gene expression data, using the same
gene expression dataset as in [24] that combines the results of several different
gene expression studies. The combined dataset measures the expression level of
over six thousand genes in almost a hundred experiments; thus, we used the
experiments as “attributes” and the genes as “measurements”. The levels were
discretized so that the top 5% expressed genes in each experiment were given
the value 1. The results are not shown due to space constraints, but as a brief
example, the discovered topics were seen to reflect cyclical behavior of the genes
in the time-series experiments.

5 Concluding Remarks

We studied a simple generative topic model and showed that the lift statistics of
attributes can be described in matrix form. Based on this, we obtained a simple
algorithm for finding topics in 0–1 data. We also showed that a problem related
to the identification of topics is NP-hard, and gave experimental results.

Several open problems remain. Our model is simple, and seems to yield good
results; still, more complex models might do a better job at identifying, e.g.,
topics containing partly exclusive attributes. The identifiability of the model is
another interesting issue: could one prove something about it? Further experi-
mental studies are also needed.
3 No simulated annealing was used in the EM algorithm of the PLSA.
4 http://liinwww.ira.uka.de/bibliography/Theory/Seiferas/
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Fig. 1. Mean squared errors of Q at different conspiracy parameters θ. Lift ∗,
NMF �, PLSA ◦, K-means ·.

Table 1. Terms in different topics. (The order of the topics is not relevant).

topic terms
1 algorithms approximation damath problems scheduling some tree two
2 analysis distributed libtr probabilistic systems
3 bounds communication complexity focs lower
4 algorithm efficient fast ipl matching problem set simple
5 design ieeetc network networks optimal parallel routing sorting
6 note tcs
7 finding graphs minimum planar polynomial sets sicomp time
8 graph number properties random tr
9 from information learning lncs theory
10 approach jacm linear new programming system
11 actainf binary search trees
12 abstract computation extended model stoc
13 automata finite languages mfcs
14 data dynamic infctrl logic programs structures using
15 applications icalp theorem
16 cacm computer computing science
17 crypto functions
18 jcss machines
19 algebraic beatcs computational geometry
20 de stacs van
21 codes dmath
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Appendix

Proof of Theorem 1. That the problem is in NP is simple to see: the certifi-
cate is the topic vector t, and the formula for P (x | t, T ) involves multiplying
n numbers, each computable in O(k) time.

To show NP-hardness, we reduce SAT to a topic assignment problem. Given
a SAT instance of m clauses over n variables, we define a topic model with
2n topics and n + m attributes. For each variable Vi, we create two topics Ti

and T ′
i , and one attribute Ai. For each clause Cj , we create one attribute Bj .

Each topic has probability 0.5, and each attribute has 0/1 within-topic proba-
bilities as follows: attribute Ai has probability 1 in topics Ti and T ′

i and prob-
ability 0 in other topics; attribute Bj has probability 1 in the topics Ti such
that Vi appears positively in clause Cj and in the topics T ′

i such that Vi appears
negatively in clause Cj , and probability 0 in all other topics. We consider a data
vector where all attributes have value 1.

Now, if the SAT problem has a satisfying truth assignment, it corresponds
to a solution of the topic assignment problem where Ti is active if Vi is true and
T ′

i is active if Vi is false. This solution has likelihood 0.5n, since exactly n topics
are active, and the active topics explain all attributes Ai and Bj . Conversely,
if a solution to the topic assignment problem exists such that the likelihood is
at least 0.5n, it must have at most n active topics. To explain attribute Ai,
either Ti or T ′

i must be active; thus the number of active topics is exactly n,
and the solution corresponds to a truth assignment. Since the solution must
also explain each attribute Bj , the truth assignment must satisfy the original
problem. In summary, the SAT instance has a solution if and only if the topic
assignment problem has a solution with likelihood at least 0.5n. ��
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