Efficient Frequent Query Discovery in FARMER

Siegfried Nijssen and Joost N. Kok

Leiden Institute of Advanced Computer Science
Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

snijssen@liacs.nl

Abstract. The upgrade of frequent item set mining to a setup with mul-
tiple relations — frequent query mining — poses many efficiency problems.
Taking Object Identity as starting point, we present several optimization
techniques for frequent query mining algorithms. The resulting algorithm
has a better performance than a previous ILP algorithm and competes
with more specialized graph mining algorithms in performance.

1 Introduction

Recently, multi-relational or structured data mining has gained much interest.
Especially frequent structure mining similar to APRIORI [I] was discussed in a
number of recent publications, such as the gSpan algorithm by Yan et al. [10] and
FSG by Kuramochi et al. [7]. Given a database of complex structures —in the
case of gSpan and FSG a collection of graphs— the task of these algorithms is to
find those substructures that occur in many of the complex structures. Already
several years ago, Dehaspe et al. [3] introduced an algorithm called WARMR for
frequent pattern mining in relational databases. WARMR was built on the solid
theoretical foundations of Inductive Logic Programming (ILP). It accomplished
similar tasks as the more recent algorithms. When comparing WARMR to graph
mining algorithms such as gSpan, we note the following points:

— the greater expressiveness of WARMR: specialized mining algorithms often
concentrate on one type of database, for example databases of labeled undi-
rected graphs. For different kinds of structures, modified algorithms are re-
quired. In ILP algorithms, such as WARMR, any structure can be expressed
easily. The incorporation of background knowledge is also straightforward.

— the choice for traditional clause based query evaluation in WARMR: in this
case, two variables may have the same value during evaluation. In the sub-
graph mining algorithms two nodes in a subgraph cannot be mapped to one
node in a database graph.

— in publications of subgraph mining algorithms [6[7/T0], much attention is
given to efficiency issues. The WARMR algorithm can be considered as a
proof-of-concept of a framework; efficiency issues have not been given too
much attention.

In this paper, we will introduce a new algorithm for frequent query mining.
While it is largely comparable to WARMR from an expressive point of view,

N. Lavra¢ et al. (Eds.): PKDD 2003, LNAI 2838, pp. 350-[362] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Efficient Frequent Query Discovery in FARMER 351

it uses techniques introduced by subgraph mining algorithms as well as new
techniques. The main contributions of the paper are:

— We show how the query discovery task can be changed to query discov-
ery under Object Identity. Although the focus of this paper is not on the
semantic consequences of this choice, we will argument that this approach
closely matches that of subgraph mining, is very natural and does not pose
restrictions in many data mining situations.

— Building upon this evaluation under Object Identity, and using a tree data
structure, we will define an order on queries that allows for more efficient
search space traversals than the approach used by WARMR. To some extent
this order is equivalent to that of gSpan; it is however more flexible and
allows for some new optimizations.

— We will show how this order can be exploited in both breadth-first and
depth-first algorithms. For the latter case we will introduce optimizations
that are allowed by the query ordering, including hash structures and sorting
to reduce the cost of query evaluations that result in false.

— We will present experimental results showing large speed-ups in comparison
with a recent implementation of WARMR. We will also compare our results
to those obtained by gSpan and FSG. In some cases, our algorithm obtains
similar run times as FSG, but it does not equal the efficiency of gSpan. We
will give some arguments for this difference in performance.

Our aim is to use ILP formalisms that are very close to WARMR and to reach
the efficiency of algorithms like gSpan and FSG.

Our depth-first and breadth-first algorithms are major revisions of our previ-
ous FARMER algorithm for mining multiple relations [8]. The algorithm in [§] was
restricted to some variants of labeled, unordered trees and did not use Object
Identity for query evaluation. In the breadth-first algorithm presented here, only
the tree-like notation is reused. Restrictions that were present in the previous
version of FARMER, do no longer exist in our new algorithm. We will however
still use the name FARMER to denote our class of algorithms.

2 Search Space Specification and Object Identity

We will introduce some notation. Any capital A denotes an atom. An atom set
S is an unordered set of atoms. An ordered atom set is called a query and is
denoted by a capital Q. With (Q, A) we denote the query @ to which atom A
is concatenated. With last(Q) we denote the last atom of Q). The variables in
A = last(Q) that do not occur in Q\ A are called the new variables of A in Q.

Every predicate p is considered to be typed: each argument has a type. A
variable or constant that is used as an argument of a predicate, has the same
type as the argument. Types are frequently used in ILP systems to allow the
definition of more narrow search spaces. With var(S,T) (or var(Q,T)) we denote
the set of all variables of type T in an atom set S.

We will first introduce a mechanism that defines the search space of queries
that our algorithm will investigate. It uses a similar mode mechanism as WARMR.

352 Siegfried Nijssen and Joost N. Kok

Definition 1 (Bias). A mode declaration p(cy,...,c,) consists of a predicate
with arguments c¢;, each of which is either ‘+’ (input), -’ (output) or ‘#’ (con-
stant). The bias B of a search space consists of: 1) the type definitions of predi-
cates, 2) a set of modes M, 8) an operator const(T) which defines for each type
T a set of constants, 4) a function max which assigns an integer to each predicate
in M, and 5) one atom k(X) (this atom is called the key of the search).

Definition 2 (Search space). Given a bias B, a query @ and an atom A =
p(t1,...,tn), atom A is a (mode) refinement of Q iff there is a mode M =
plery ..., ¢n) € M such that for every 1 < i <n either:

— t; is a variable in var(Q,T;) and ¢; =‘+’, or
— t; is a variable not in Ujvar(Q,T;) and ¢;=*", or
— t; is a constant in const(T;) and c;=‘#’.

Here, T; is the type of argument position i. The search space S(B) defined by
a bias B consists of all queries @ that can be built iteratively starting from the
key atom k(X) using valid refinements. Each atom A that is added to a query @
should satisfy the following restrictions to be a valid refinement: 1) A is a mode
refinement; 2) A does not already occur literally in Q; 3) the predicate p used in
A does not occur more than max(p) times in the new query.

b
a a b a :4’ a a
b c a a b a a b a
Gl G2 G3 G4

Fig. 1. Directed, edge labeled graphs.

Example 1. As an example we will use the representation of a directed, edge
labeled graph using a predicate e(G, N, N, L). Graph G1 in Fig.[l can be repre-
sented using the following facts:

K = {k(gl)ve(glvnlv/nQv (L), @(91777,2,77,1,0,), 6(91,712,713,04)7 e(gla n3,ni, b)7
6(917“37“47 b)a €(g17’n,37’n,576)}.

Of course, the choice of constants n; is arbitrary here. Using the set of modes
M = {e(+,—, —, #),e(+,+, — #),e(+,+,+,#)} the following queries can be
constructed:
QQ = k(G), €(G, Nl, NQ, a), G(G, NQ, Ng, a), G(G, Nl, N4, a), e(G, N4, N5, b),
Q?) = k(G)7 e(G’ N17 N27 b)7 €(G7 N27 N37 a/)a €(G, N37 N2a a/)v €(G, N37 N47 a/)a
Q4 = k(G)7 6(G, Nl, NQ, b), e(G, NQ, Ng, CL), E(G, Ng, NQ, a);

they correspond to graphs G2, G3 and G4 in Fig. [l
Given a knowledge base K the support of a query @ can be defined as:

Efficient Frequent Query Discovery in FARMER 353

supporti (Q) = #{0| K |= Q0},

where 6 is a substitution to constants of all variables in the key of @); Q6 denotes
the application of this substitution to Q.

In WARMR, to compute the = relation, a Prolog engine based on 6-sub-
sumption is used. For a knowledge base containing only facts, this evaluation
comes down to the discovery of a substitution such that Q8 C K. On the other
hand, we will use an evaluation technique based on subsumption under Object
Identity (OI-subsumption). Under Object Identity, the satisfying substitution 6
is constrained in two ways: no two variables in () may be mapped to the same
constant, and no variable may be mapped to a constant already occurring in Q).

We will briefly illustrate some consequences of this choice. Under usual -
subsumption, example query ()5 is a consequence of the knowledge base K, as Q2
can be satisfied by mapping N1 — no, N3 — no, No — ny, N5 — nq, Ny — ns.
In the graph notation of Fig.[Il some nodes in G2 are mapped to the same nodes
in G1. Under Object Identity, this is not allowed: the mapping must be injective.
Such an injective mapping is also used in gSpan for labeled undirected graphs.
Similar arguments show that G3 is not included in G1 under Object Identity,
while it would be included under traditional #-subsumption.

An important issue is that of query equivalency. In general, two queries @1
and Qg are equivalent iff for every possible knowledge base K: K = Q1 & K |=
Q2. For evaluation without Object Identity, one can prove that ; and Q)2 can
only be equivalent when ()1 and Q2 mutually subsume each other. Without OI,
G3 and G4 in our example are equivalent. Every graph which contains G4 also
contains G3, as node N, can always be mapped to the same node as Ns. The
first reason for choosing Object Identity is that these counterintuitive situations
are prevented under OI. Under OI queries are equivalent iff they are alphabetic
variants [A5]. We will define this equivalency relation more precisely. Given a
query @Q, let vars(Q) denote the set of all variables occurring in @ and let
varlf(Q) denote the list of all variables @ in order of first occurrence.

Definition 3 (Equivalency of queries). Given a query Q, the normally
named query n(Q) is the query Q to which the following renaming substitution is
applied: 0 = {V/V;|V € vars(Q),i = ord(V,Q)}. Here ord(V,Q) is the position
of V invarlf(Q). Two queries Q1 and Qo are equivalent (denoted by Q1 = Q2)
if there exists a permutation 7 of the atoms in Q1 such that n(w(Q1)) = n(Q2).

To determine whether two queries are equivalent, is therefore ‘only’ a problem
of finding a permutation which transforms the one query into the other. This is
still a difficult problem; it can be shown that to compute whether two queries are
equivalent, one has to solve a graph isomorphism problem, and vice versa. The
complexity of graph isomorphism is currently unknown: no polynomial algorithm
is known, and a proof of NP completeness does not exist either. In comparison
with full #-subsumption, however, OI makes the computation of equivalency
slightly easier. This property is the second reason for choosing OI.
We will now present our pattern mining task.

354 Siegfried Nijssen and Joost N. Kok

Definition 4. Given a bias B, a knowledge base K and a threshold minsup,
FARMER should discover a set of queries Q such that for every Q € S(B) with
support g (Q) > minsup, there is exactly one Q' € Q such that Q' = Q.

A query for which supportx(Q) > minsup is said to be frequent. The single
query in Q to which a query @ is equivalent is considered to be its normal form
or its canonical label.

The third advantage of OI can be understood by considering Q3 in con-
junction with the following modes, which define a search space of edge labeled
trees: {e(+,—, —, #),e(+,+, —, #)}. Query Q2 is not equivalent with any smaller
query. Every subquery @) € S(B) of Q2 with |Q2| = |Q4] + 1 is however equiv-
alent with a query smaller than |@Q5]. An algorithm which relies on refinement
with building blocks of one atom, will not construct Q5 if it removes equivalent
queries immediately. Such difficulties with refinement are avoided under OI.

The choice for Object Identity has many consequences on the types of pat-
terns that can be discovered. As an illustration consider a situation in which one
also allows wildcards as labels. A possible query in this case would be:

k(G)7€(G7 N1>N27L1)7L1 = a,C(G,NQ,N3,L2),€(G,N4,N5,L3)7L3 =b.

Under full OI, all labels Ly, Ly and L3 must be different. Although for clear
objects (such as nodes), an inequality constraint is a natural choice, for properties
(such as the label of an edge) inequality can be undesirable. An elegant solution
could be to use a variant of Object Identity which does not force OI on variables
for such properties; in this weaker OI, one can sometimes (and also in this
example) still guarantee the three properties of Object Identity that we exploit.
Due to lack of space, we refer to [9] for more details about OI related issues.

/\

e(V1,V2,V3,a) e(V1,V2,V3,b)

Fig. 2. A query tree.

3 A Tree Based Normal Form

In our algorithm, all queries are stored in an ordered tree as given in Fig. 2l
Every node in this tree is labeled with an atom. Every path starting starting in
the root represents a query. Every node has therefore an associated query. Once

Efficient Frequent Query Discovery in FARMER 355

a query is counted, its support is stored in the associated node. The query tree is
similar to the query pack tree used by WARMR for efficient query evaluation [2].
By introducing an order on nodes in the tree, FARMER adds as main application
of the tree the efficient determination of candidate queries. The order of queries
is determined by their order in the tree:

Definition 5 (Order of queries). Let Q1 = (Qp,Ap, A1,QL) and Q2 =
(Qps Ap, A, Qh), A1 # Ay be two queries (where @, Q) and Q% may be empty),
then Q1 <t Q2 iff A1 < As in the child list of (Qp, Ap).

If Q1 <p @2, then @y is called an earlier query than Q5 or Q5 is called a
later query than Q1.

An outline of the FARMER algorithm is given in Algorithm [[land P In line ()
of Algorithm] the order in which nodes are expanded is intentionally left un-
specified. The order is only restricted by the precondition of FARMER-EXPAND.
In line (@) of FARMER, and line (3) of Algorithm PJ this observation is used:

VQs : (3Q1 € Q2 : support(Q1) < minsup) = support(Qz2) < minsup.

Algorithm 1: FARMER

Input: A bias B, a knowledge base K and a threshold minsup.
Output: A tree T with all queries according to Definition [4]
(1) Read K and determine const(T) for each type T'

(2) T := a tree with only the key atom in the root

(3) repeat

(4) Count the frequency of all uncounted queries.

(5) for one or more uncounted, unmarked, frequent leafs do
(6) Expand that leaf

(7) until 7' contains no uncounted queries

(8) Remove all marked nodes

Algorithm 2: FARMER-EXPAND

Input: A query Q in a tree T' with counts for (1) all ancestor queries of

Q, (2) all earlier queries Q’, |Q’| < |Q]; (3) all later queries Q" which are a

brother of an ancestor of Q.

Output: A query tree with uncounted expansions Q' of Q, |Q'| = |Q| + 1.

(1) Let A be last(Q); let A, be the parent of A and @, the query
associated with A,.

(2) Add as child of A all valid refinments A” = last(n(Q, A")), where

A’ is either:

(3) 1. a frequent atom occurring after A in A,’s child list, where new
variables in A’ are renamed such that they are also new in (Q, A’).

(4) 2. a dependent atom, which is any atom that uses at least one vari-
able that was new in A.

(5) 3. a copy of A if A has new variables; those new variables are given
new names in the copy.

(6) Remove the new child query A" if it is equivalent to an earlier query,

unless the child is only equivalent to a brother. In that case A is
marked but kept in the tree.

356 Siegfried Nijssen and Joost N. Kok

It is this property that has led to the popularity of APRIORI-like algorithms:
this property restricts the search space in such a way that is possible to compute
all frequent patterns if the threshold is not too low.

We will first consider the resulting tree 7" when all queries are frequent and
FARMER-EXPAND line () is absent. We will show that for every query in the
search space, at least one equivalent query can be found in this tree.

FEzxample 2. Under these assumptions, and given modes
e(+,—,—, #) and e(+,+, —, #), Fig. & shows for each query of length 2 how

they are obtained from queries of length 1 by applying FARMER-EXPAND. Each
number indicates which of the three possibilities is applied to generate a new
atom.

Lemma 1. Given is a query @ which occurs in a Query Tree T generated by
FARMER, and an atom A ¢ @ which is a valid refinement of Q. Then a query
Q' =n(Q1,A,Q2) exists in the tree T, for some subdivision of Q into Q1 and

Q2, Q = (Q1,Q2). Furthermore, Q is either a prefiz of Q" or Q' <r Q.

Proof. As A is a valid refinement of @, there is a prefix (Q,, 4,) of @ such that
the normalized atom A’ = last(n(Q,, Ap, A)) is a dependent atom of A,. This
dependent atom is generated in line[d of the FARMER-EXPAND algorithm. If A,
is the last atom of @, our statement is clear. Therefore assume that A4, has a
different successor 4,41 in Q. This atom A, is also a child of A, in T". Consider
the order of A" and Ay in the list of children:

— if A’ occurs before A,41, A,11 is a right-hand child of A’. The copying
mechanism in line[3 will copy 4,41 as a child of A’; all steps which created
QQ are applicable subsequently and result in a query Q.

— if A" equals Ap41, both have output variables. In line Bla self-duplicate A4,
of A’ is generated. All steps which created) are applicable subsequently.

— if A’ occurs after 4,11, A’ is copied as a child of A,;1. This child of 4,44
may be left or right from A, s (the next atom in the original query). We
can recursively apply our arguments on the situation for p + 1 until one of
the above conditions holds.

Also the order of the old and new query follows from these arguments. O

Theorem 1 (Completeness of search). For every query Q1 in the search
space, there is at least one equivalent query Qo in the tree T'.

Proof (Sketch). This can be shown by induction on the length of the query. A
query with only the key occurs in 7. By inductive assumption, an equivalent
query for Q1\last(Q)1) exists in the tree, and a corresponding variable renaming.
When last(Q1) is renamed accordingly, this renamed atom is a valid refinement
of the equivalent query, and one can apply Lemma [1l a

Two equivalent queries that still coexist without line [f] in Algorithm [2] are in-
dicated with a (*) in Fig. P21 We will now consider the algorithm with this line

Efficient Frequent Query Discovery in FARMER 357

added. We have to prove that by removing an atom from the tree, we do not
remove an atom that otherwise would have been used to create a query for which
no equivalent query exists.

Lemma 2. Let T be the tree obtained after iterative application of Algorithm [2
without line [Bl Assume that a query Qs is equivalent with a query Q1 <1 Q.
Then every query QY which has Qo as prefix must have an equivalent query more
left in the tree.

Proof. As Q5 is equivalent with @1, there is a permutation of atoms of Qo
followed by a renaming 6 that makes Q2 equal to Q1. This substitution 6 can
be applied to all atoms in Q; = Q5\Q2. Some of these atoms are now valid
refinements of Q1. According to Lemma[Il one by one these atoms can be added
to @1, yielding queries @)} that are either extensions of)1 or occur Q) < @Q;. O

Theorem 2. For every query defined by the bias, Algorithml[dl generates exactly
one normal form if all queries are frequent.

Proof. 1t is clear that no two normal forms can occur: in line[§] of Algorithm
and line [§ of Algorithm [[l any query which has an equivalent lower query is
removed. Theorem [I] showed that if equivalents were not removed, the search is
complete. According to Lemma [2], if a query @ is equivalent to an earlier query,
all of its descendents must also be equivalent to an earlier query. @ should
therefore not be expanded further. The only remaining function of atom last(Q)
is its function as an expansion for earlier brothers in line [3] of Algorithm 2l In
case (@ is equivalent to an earlier query Q" which is not a brother, last(Q) is not
required as a building block for earlier brothers: the brother atom can be added
to @ to yield a query Q” < @’ and every expansion of @’ can also be added to
Q" (similar to the construction of Lemma). By the marking mechanism only
those atoms are kept as building block that are equivalent to an earlier brother.

O

A consequence of the monotonicity constraint is that every building block of
a query) must also be frequent. From this observation it follows that our
algorithm performs exactly the task that was defined in Definition Hl

4 Depth First and Breadth First Algorithms

In the algorithm discussed in the previous section, many elements have been
kept unspecified. In this section, we give an overview of some details.

Equivalency Check. To determine whether an earlier equivalent query exists,
we essentially use an exhaustive search algorithm. Given a query @, the mode
mechanism is used recursively to build queries Q' that contain atoms in Q. After
an atom is added, the tree T is consulted to determine whether Q' is later (in
which case @’ is not further expanded) or infrequent (in which case @) cannot
be frequent and is pruned). Once a query Q' < @ is found which contains all

358 Siegfried Nijssen and Joost N. Kok

atoms of @, @ is pruned. Especially the combination of frequency pruning with
equivalency pruning is a distinctive feature of our algorithm. Although it requires
infrequent nodes to be stored in the tree, it could give the exhaustive exponential
search an additional value and could reduce the number of queries that should
be counted later significantly.

Order of Query Expansion. We distinguish two query expansion orders: breadth
first and depth first. In the breadth first approach, all nodes at the lowest level
of the tree are expanded. This yields a tree in which all nodes at the new lowest
level are uncounted. The nodes are counted next, and the process is repeated
until no new level can be added.

In the depth first approach, only one node is expanded; the new children
are counted immediately. Starting with the first child, the process is recursively
repeated. Only after the complete subtree of the first child has been constructed,
the next child is recursively expanded.

In both approaches, the precondition of Algorithm[is satisfied. Breadth first
is the traditional approach and corresponds to the evaluation order of APRIORI
[T], WARMR [3] and FSG [6]. The depth first order matches that of gSpan.

Query Counting. To determine whether a query is Ol-subsumed by a knowledge
base of facts, an exponential search is required (one can easily see that this
problem is equivalent to the subgraph isomorphism problem, which is known to
be NP hard). Especially those queries which can not be satisfied for a given key
substitution are computationally very expensive as many variable assignments
have to be checked before this can be concluded. The task of the algorithm is to
reduce the number of key substitutions which result in false as much as possible,
and to reduce the cost of such an evaluation if the computation is required.

One strategy to reduce the computational cost, is to overlap the computation
of queries. Consider a query @) with several child expansions. One can backtrack
over all possible assignments of) as long as one of the child expansions is not
satisfied. This is more efficient than to evaluate each child expansion separately.

The advantage of the breadth-first approach is that the number of queries
that should be evaluated at a certain level is maximal. For a given substitution
of key variables, the evaluation of many queries can be combined. Our breadth
first implementation uses this evaluation technique, which is similar to query
packs as discussed in [2] for WARMR and [§] for our previous FARMER algorithm.

To reduce the number of false evaluations, a substitution ID list approach
can be used. For each query that is evaluated, one can store the list of all key
substitutions for which the query can be satisfied. One can easily see that a query
which is constructed from a query @ (either by copying last(Q) or by expanding
Q) can never be true for key substitutions for which @ is false. Therefore only
substitutions in ()’s SID list need to be evaluated.

To reduce the cost of evaluation, with each key substitution 6 one can also
store the variable assignments that satisfy each query Q. If the backtracking
over variables is performed in a deterministic order from left to right, one can
continue the evaluation of each expansion of () starting from the assignment that

Efficient Frequent Query Discovery in FARMER 359

satisfied @ without having to recompute that assignment. Some assignments are
skipped in this way, but one can show that this can safely be done. To reduce
the memory demand of the approach, for each query @ and key substitution 6
we only store the difference A(6, Q) between the first variable assignment that
satisfies (Q and the first assignment that satisfies the parent in 7" of Q.

Order of Children. There are many possible child orders:

— The order in which children are generated in Algorithm [2 This is the order
that we used in [8] and yields queries that are very well readable.

— A lexicographical order. To determine query equivalency, one repeatedly has
to search for a given atom in a set of children. With a lexicographical order,
in combination with binary search and hashing, we speed up this search.

— Sorted by support. Atoms with a lower support occur earlier in a query in
this case, which results in a quicker evaluation of queries that cannot be
satisfied (the most selective atoms occur carliest).

— Sorted by backtracking progression. Consider a query @, a key substitution
0 and a set A(f,Q) of variable assignment changes. The position of the
leftmost variable affected by A(6,Q) in @ is the backtracking progression
of @ for 6. By averaging A(6,Q) over all § one can compute the average
backtracking progression of each query. When a candidate query (@, A) is
generated by copying an atom A below a query @, both A(6, Q) and A(6, A)
could be used as starting point for the evaluation of (@, A); best would be
to always use the assignment which has backtracked most. However, when
the evaluation of several queries is overlapped, much additional bookkeeping
would be required. As tradeoff we always use A(6, Q) as starting point, but
sort to make sure that the parent has backtracked most on average.

Note that in the last two orders, some special care has to be taken in the equiv-
alency procedure, as the order of children is only known after they are counted.

5 Experimental Results

From the possibilities discussed in the previous section, we implemented and
tested several (see [9]). We implemented a breadth-first algorithm with naive
sorting order and evaluation without substitution ID lists as a reference algo-
rithm. Furthermore we implemented a depth-first algorithm which incorporated
overlapping evaluation and a complex sorting order: given a query () that is
going to be expanded, all children of nodes that are not an ancestor of @) are
stored in lexicographical order to allow for quick equivalency checks; nodes on
the path corresponding to @ are also sorted first on backtracking cost, then on
support and finally lexicographically. These two orders can be combined in an
efficient way. From our experiments, we concluded that it is most beneficial.

Bongard Datasetﬂ. The Bongard dataset [2] was used to compare WARMR,
depth-first and breadth-first FARMER (Fig.[3)). In the experiments, FARMER was

! Experiments were performed on a Linux Pentium IT 350Mhz with 192MB RAM,
using the GNU C++ compiler, version 2.96 with O3 code optimization setting.

360 Siegfried Nijssen and Joost N. Kok

clearly several orders of magnitude faster than WARMR. One should however
realize that in these experiments, WARMR was provided with a bias that forced
Object Identity by adding inequality atoms. WARMR was not optimized for this.
Part of the efficiency difference may also be due to the different programming
language that was used (Prolog).

Te+06 Farmer Breadth-First s 1000 Farmer Breadth-First 200000 x Farmer Breadth-First

Farmer Dev;i’txg:&sﬂt e - :Zgggg o Farmer De\zlxa:’slrla e
& 100000 - £ 100 & 140000
£ g £ 120000
£ 10000 2 g 10 2 100000
i .

€
1000 & ! 40000
. 20000 s
100 0.1 0 b X

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40
minsup (%) minsup (%) Number of examples x 392

Fig. 3. Results on the Bongard dataset. Default dataset size is 392, minsup = 5%.

Predictive Toxicology Evaluation Challenge (PTE). Execution times for
PTE were published in [10], [6] and [7]; in these publications, labeled, undirected
graphs were constructed from the atom and bond information; one searches
for connected frequent subgraphs. To emulate the injective setup of gSpan and
FSG, Object Identity is a necessity. To deal efficiently with connected, undirected
graphs, the mode mechanism that was described in this article is not powerful
enough. Therefore, we incorporated a more powerful declarative formalism based
on mode trees in FARMER. Due to space limitations, we omit the details.

Table [and Fig. M display some execution times. We also show some execu-
tion times of other publications to set these into a perspective. Note that our
algorithm runs on computers with relatively few memory, even though the ID
lists augmented with variable assignments have to be stored in main memory.

Table 1. Comparison of execution times on the PTE dataset for minsup € {6%,7%}.

[Machine [Algorithm [6% (s)[7% (s)]
Intel Pentium IIT 500Mhz 448MB |gSpan [10] 5s

AMD Dual Athlon MP1800+ 2GB|FSG Iterative Partitioning [7]| 11s 7s
AMD Athlon XP1600+ 265MB |FARMER T2s | 48s
Intel Pentium II 350Mhz 192MB |FARMER 224s | 148s
Intel Pentium IIT 500Mhz 448MB |FSG [10] 248s

AMD Dual Athlon MP1800+ 2GB|FSG Inverted index [[] 675s | 23s
Intel Pentium III 650Mhz 2GB FSG [6] 600s

We may conclude that our algorithm does not reach the state-of-the-art per-
formance of gSpan. Compared to other graph mining algorithms, its performance
is reasonable. We could easily compute all frequent subgraphs down to a support
of 3%. The performance of gSpan is hard to obtain with the more general setup

Efficient Frequent Query Discovery in FARMER 361

10000 1 100000
FSG Neighbor FSG Neighbor Number of queries -

Farmer Depth-First s Farmer Depth-First s
FSG lterative Part. «a- FSG lterative Part. -

* X+

1000
” 10000 ¢ ™

o

100

Runtime (s)
Nr of queries

N R

o
2

Runtime/query (ms)

1 0.001 100
3

minsup (%) minsup (%) minsup (%)

Fig. 4. Results on the PTE dataset. FARMER was run on an AMD Athlon XP1600+.
For FSG results published [7] for an AMD Dual Athlon MP1800+ are used.

that we are dealing with. For example, gSpan orders the labels on the vertices
first and performs a depth-first search to discover the graphs with the first label
first. Next, all vertices with the first label are removed from the database, and
the process is repeated for the remaining graphs. In general, this optimization is
harder to apply. Therefore, one could better use gSpan if one is exactly searching
for the kind of patterns that gSpan is optimized for.

Mutagenesis. The Mutagenesis dataset is very similar to the PTE dataset and
was also used in [2]. We use it to compare FARMER with WARMR without Object
Identity. Using a minimum support of 20%, WARMR discovers 91 frequent queries
in 207s (of which 205s are spent while generating candidates). On the same Intel
Pentium II FARMER discovers 1075 frequent queries in 73s. The different number
of queries is due to the fact that WARMR does not discover graphs like C'—C —C,
as these are equivalent to C'—C' without Object Identity. The set of queries found
by FARMER is a proper superset of those found by WARMR.

6 Conclusion

In this article we presented an efficient algorithm for discovering frequent queries.
We used Object Identity and a tree data structure to introduce several optimiza-
tions. Experiments showed that the algorithm outperforms WARMR and is com-
parable with some more specialized algorithms, but is not as efficient as recently
published graph mining algorithms.

Acknowledgements

We are grateful to the Artificial Intelligence research group of the KU Leuven
and to Xifeng Yan for their help with some experiments.

References

1. Agrawal, R., Manilla, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast Discovery of
Association Rules. In: U.M. Fayyad et al. (eds). Advances in Knowledge Discovery
and Datamining. AAAI/MIT Press (1996) 307-328.

362

Siegfried Nijssen and Joost N. Kok

Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the Efficiency of Inductive Logic Programming Through the Use of
Query Packs. Journal of Artificial Intelligence Research 16. (2002) 135-166.
Dehaspe, L., Toivonen, H.: Discovery of frequent Datalog patterns. In: Data Mining
and Knowledge Discovery 3, no. 1. (1999) 7-36.

Esposito, F., Laterza, A., Malerba, D., Semeraro, G.: Refinement of Datalog Pro-
grams. Proceedings of the MLnet Familiarization Workshop on Data Mining with
Inductive Logic Programming. (1996) 73-94

Ferilli, S., Fanizzi, N., Mauro, N., Basile, T.: Efficient #-subsumption under Object
Identity. In: Proceedings of the ICML’02. (2002)

Kuramochi, M., Karypsis, G.: Frequent Subgraph Discovery. In: Proceedings of the
ICDM’01. (2001) 313-320

Kuramochi, M., Karypsis, G.: An Efficient Algorithm for Discovering Frequent
Subgraphs. Technical Report 02-026, University of Minesota. (2002).

Nijssen, S., Kok, J.N.: Faster Association Rules for Multiple Relations. Proceedings
of the IJCAT’01. (2001) 891-897

http://www.liacs.nl/home/snijssen/farmer

. Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proceed-

ings of the ICDM’02. (2002)

	1 Introduction
	2 Search Space Specification and Object Identity
	3 A Tree Based Normal Form
	4 Depth First and Breadth First Algorithms
	5 Experimental Results
	6 Conclusion
	References

