Design and Implementation of an Abstract
Interpreter for VHDL

Charles Hymans

STIX, Ecole Polytechnique, 91128 Palaiseau, France
charles.hymans@polytechnique.fr

Abstract. We describe the design by abstract interpretation of a static
analysis for the popular hardware language VHDL. From a VHDL de-
scription, the analysis computes a superset of the states reachable during
any simulation run. This information is useful in the validation of safety
properties of hardware components. The construction of the analysis is
based on the formal definition of a semantics for VHDL. Soundness with
respect to this semantics is shown. Various techniques allow a compro-
mise between the desired accuracy and the cost of the final algorithm. We
present a few examples and detail the essential implementation choices.

1 Introduction

We present the design of a static analysis for VHDL. It computes a superset
of the states that may be encountered during any simulation run of a descrip-
tion. Following the methodology of abstract interpretation [2], we first define
the semantics of a subset of VHDL. A sound static analysis is then obtained
from this formalization by abstraction. We make our construction generic in the
underlying symbolic domain used to represent the possible values that signals
may take. That way, it is possible to plug in various back-ends so as to attain
the best compromise between precision and efficiency. This work extends [5].
Arrays, variables, for-loops and until clause in wait statements were previously
not considered. A finer abstraction of the state-space, which keeps track of the
history of computation, is proposed. All implementation details are new.

Motivating example. We consider a component which performs the multi-
plication of an input matrix by a constant matrix. The input matrix is fed one
coefficient at a time through a wire DI on rising edges of the clock CLK. New
coeflicients are signaled by setting a flag DSI high and need not be given in con-
secutive cycles. Similarly, the result is produced on DO while the flag DSO is set.
We write a test-bench made up of the input generator of Fig.[lland the checker of
Fig.[2l The generator stimulates the design to do the multiplication of a unique
matrix INPUT. It does this an unbounded number of times and waits arbitrarily
long between each coefficient. The checker simply asserts the values read on DO
when DSO is high are the correct results of the multiplication. Our prototype
implementation is able to determine, without any human intervention, that the

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 263-269] 2003.
© Springer-Verlag Berlin Heidelberg 2003



264 C. Hymans

initial INPUT := (1,1,0,1); initial RESULT := (-4,17,-9,10);

process
for I in O to 3 loop process
wait on CLK until CLK; for J in 0 to 3 loop
DSI <= FALSE; wait on CLK until CLK;

while random loop
wait on CLK until CLK;

while (not DSO) loop
wait on CLK until CLK;

end loop; end loop;
DSI <= TRUE; DI <= INPUT(I); assert DO = RESULT(J);
end loop; end loop;

end process; end process;

Fig. 1. Input driver Fig. 2. Output Checker

M = Pil|...|P, (Parallel composition)
P:=C;P|e (Sequence)
Cu=v:=c¢ (Variable assignment)

| s<=e (Signal assignment)

| ale1) := ez (Array assignment)

| wait on W until b for ¢ (Suspension)

| while b do P end (Tteration)

| if b then P end (Selection)

e,b::=1 | true | false | random | v | s | a(e)
‘ notb|b1andb2\b1orbz\b1=b2|el<eg
| e +ex|er * er

where v is a variable, s a signal and a an array identifier; W is a possibly empty set of
signals; ¢ is a strictly positive integer or oo; and ¢ is an integer.

Fig. 3. Syntax

assertion DO = RESULT(J) is never broken. Note that this is not practicable by
conventional simulation.

2 An Operational Semantics for VHDL

To be able to reason about VHDL descriptions, we first formally define their
semantics. Formalizations close to ours can be found in [3/46]. We suppose an
elaboration phase — similar to the one presented in the standard [I] — compiles
the description into a program of the kernel language of Fig.[3. Programs manip-
ulate integers, booleans and statically allocated arrays. Note we deliberately ban
delayed signal assignments (signal assignments with an after clause). They do
not appear in the designs we wish to validate. and add much complexity since,
in their presence, the precise layout of the memory used by a program is not
known statically.

We express the execution of a program P as a small-step operational seman-
tics. Program statements 'C are uniquely tagged with labels [ that are taken



Design and Implementation of an Abstract Interpreter for VHDL 265

ly = e pFe=v ls <= ¢ pFe=v

YT ) = (et (1), plv 4 o)) S8, p) = (neat(l), o5 — o)

'wait on W until b for t ¢ = (next(l), W, b,t)

suspend

(€,p) = (c,p)
'while b do l/C’;P end '4hile b do P end
. pF b= true ¢ pF b= false
enter exi
(L,p) = (', p) (I, p) = (neat(l), p)
Fig. 4. Sequential execution
1T Vi<i:c; &L ci €L (ciyp) — (i, p")

(¢,p) = ({c1,-..sch oo iien), p)
Vj:e; = (L, W, bj,t5) p' = update(p) 35 : wake(W;, b, p,p")
, {li if wake(W;,bi, p, p')

Ci = .
¢; otherwise
A / /
(c;p) = (¢ p')
Vjie; = (3, Wb t;)  pl =wupdate(p)  Vj:—~wake(W;, b, p,p')
. l; ift; =t
Jj:tj # o0 , ]
. Cc; = (li,Wi,bi7ti—t) lfti;ﬁOO
t = min{¢; # oo} .
o c; otherwise
(Ca p) — (C/’ p/)

Fig. 5. Simulation algorithm

from a set £. The label of the unique statement which follows ‘C' in the con-
trol flow graph of the enclosing process is fetched with nexzt(l). The point of
execution in a process is determined by the label of the statement that is to be
executed next. The control point of a suspended process is augmented with a
list of signals W, a condition b and a duration ¢. The duration is either a strictly
positive integer or co to indicate the absence of a timeout. A global environment
p stores values of variables and signals. We denote by T the location where the
future value of a signal x lies. We impose the syntactic restriction that no signal
is assigned by more than one process. Hence, it is sufficient to remember only
one future value for every signal.

An expression e evaluates to a value v in an environment p, which we express
by the judgment p - e = v. The meaning of expressions is defined by structural
induction in the classical way. Figure Bl shows the sequential execution of an
individual process. Paraphrasing the sig rule: the right-hand side expression is
evaluated in the current environment; the resulting value is then scheduled for



266 C. Hymans

the next cycle at location Z; and control is transferred to the next statement.
The three rules of Fig. blare enough to completely characterize the simulation
algorithm of VHDL. Processes are run concurrently as long as possible thanks
to the first rule. Once all processes are suspended, the global environment is
updated so that signal assignments encountered during the last simulation cycle
take effect:

dat =
upda e(P)(SE) p(x) otherwise.

{p(m) if x is a signal,
The A rule reactivates any process for which the value of some signal in the
sensitivity list W was changed during the last cycle, and the condition b is met:

wake(W,b,p,p') = (3z € W : p(x) # p'(x)) A (p' F b= true).

Finally, if no process activity can be resumed by A then the final rule advances
simulation time by the smallest timeout.

3 The Abstract Interpreter

The set O of all prefixes of execution traces from some initial state sy can be
constructively expressed as the least fixpoint of the continuous operator :

F(X)={sotU{s0...58kSk+1|3S0...5k € X : S —> Sgt1} -

This fixpoint is not effectively computable or even finitely representable. So
we adopt the methodology of abstract interpretation to obtain a decidable
approximation. We proceed in two steps.

Generic Abstract Domain. We build an abstract domain to encode sets of
traces. We collect environments and group them according to the history of
computations that led to their creation. Collections of environments are fur-
ther abstracted thanks to an abstract numerical domain A. Numerical domains
provide finite descriptions for sets of tuples of scalar values. We call v, the
concretization function on the numerical domain. The way environments are
grouped depends on a function x which creates a token h from an execution
trace. Formally, a collection of abstract environments X represents the traces:

Y(X)={s0...8x | h="r(s0...5) AN(c,p) =sp AR=X(c,h) Ap €n(R)}.
Both the numerical domain N and the grouping function x are left as parameters

of our construction. Hence, we have two orthogonal means to adjust the precision
and efficiency of our analyzer.



Design and Implementation of an Abstract Interpreter for VHDL 267

v := €]*R = {(next(l),assign,. (R))}
['s <= e]*R = {(next(l), assignss: (R))}
[[la(el) = ez]]ﬁR {(next(l), assignace,)«e, (R))}
['wait on W until b for t]*R = {(c,R) | ¢ = (next(l),W,b,t))}
['while b do ‘c;p end]*R = {(I', selecty(R)), (next(l), selectno »(R))}
['if b then 'C;P end]*R = {(I',select,(R)), (next(l), selectay (R))}

where #s is a new expression to reference the future value of a signal: p - #s = p(5).
Fig. 6. Equations for the abstract sequential execution
Vi<iic; ¢l ea=L “C  (¢,R)e[iCIR

C/ = <Clv'~-7cé7--‘7cn> h/ = record(c,c/)(h)
(¢,h, R) ~ (c', I/, R)

Hﬁ

VJ $ G = (lj7 W]'a ijtj) (0/7 R/) € update(c, R) d 7é c
K= record ¢,y (h)

Ali
(c;h, R) ~ (¢!, W, ')
v.] F G = (lj7 Wj7 bj7 tj) (67 Rl) € update(c, R)
Jj i t; # o0 t = min{t; # oo}
l; ift; =t
C; = (li, Wi, bi, ti — t) if ti 7& o0 h/ = record(cyc/)(h)
o Ci otherwise

(¢,h, R) ~ (¢/, 1/, RY)

Fig. 7. Abstract simulation semantics

Abstract Semantic Transformer. We systematically derive from its concrete
counterpart an abstract simulation algorithm (see Fig.[[ and [). The transition
relation ~» mimics in the abstract domain the concrete execution of processes. It
is expressed in terms of a few primitives that operate on the numerical domain:
assign undertakes assignments, select asserts boolean conditions, singleton builds
the representation of a unique environment. Each of these operations must obey
a soundness condition. For instance select must be such that:

{pER|pt b= true} C ypr(selecty,(R)).

Finally, our algorithm consists in computing the least fixpoint of the following
monotonic function:

F (X)(c',h) = Xo(c/, ') U|_{R' | 3(e,;h) : R=X(c,h) A (e, h, R) ~ (/,h, R')} .



268 C. Hymans

The static analysis is correct. Indeed, thanks to the properties enforced on the
basic numerical operators, one can prove that we have:

O Cy(fp F¥) .

Implementation We implemented the abstract interpreter in OCaml. Exe-
cutions that went through distinct branches of if-statements are distinguished
and for-loops are unrolled. For the back-end, we chose the domain of constants
which we encode with balanced binary trees. The major advantage is to improve
sharing, which in turn speeds up many operations. All abstract environments
computed during the analysis are placed in a hashtable. It is not necessary to
keep them all in memory, rather we store only the ones at the entry point of
loops. Once the fixpoint has been reached, we can rebuild the missing environ-
ments in a single last pass. This dramatically reduces memory consumption. The
fixpoint is computed with a standard worklist algorithm. The analysis was able
to automatically verify various instances of the introductory example.

4 Conclusion

We have shown the staged design of an abstract interpreter for a subset of VHDL.
It is based on a formalization of the simulation algorithm. As such, it has the
ability to handle non-synthesizable descriptions. This permits its early integra-
tion in the design cycle. With a first implementation, we successfully verified
non-trivial properties on a VHDL component. We hope to have demonstrated
the adequacy of the approach as an automatic means to validate fairly complex
safety properties. We were careful to separate concerns as much as possible so
that our analyzer can be easily improved by local modifications. In fact, we can
now focus on more efficient numerical domains tailored to prove specific classes
of properties. We need no longer concern ourselves with the idiosyncrasies of the
VHDL dialect.

Acknowledgments. We are grateful to P. Cousot, R. Cousot, F. Logozzo, X.
Rival and E. Upton for help, comments and discussions.

References

1. ANSI/IEEE Std 1076-1987. IEEE Standard VHDL Language Reference Manual,
1988.

2. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2-3):103-179, 1992. (The editor of
Journal of Logic Programming has mistakenly published the unreadable galley
proof. For a correct version of this paper, see http://www.di.ens.fr/ cousot.).

3. K. Goossens. Reasoning about VHDL using operational and observational seman-
tics. In Correct Hardware Design and Verification Methods, volume 987 of Lecture
Notes in Computer Science, 1995.



4.

5.

Design and Implementation of an Abstract Interpreter for VHDL 269

M. Gordon. The semantic challenge of Verilog HDL. In 10th Annual IEEE Sym-
posium on Logic in Computer Science, pages 136—145, 1995.

C. Hymans. Checking safety properties of behavioral VHDL descriptions by ab-
stract interpretation. In 9th International Static Analysis Symposium (SAS’02),
volume 2477 of Lecture Notes in Computer Science, pages 444-460, 2002.

. V. Rodrigues, D. Borrione, and P. Georgelin. An ACL2 model of VHDL for sym-

bolic simulation and formal verification. In XIIT Symposium on Integrated Circuits
and Systems Design, 2000.



	Introduction
	An Operational Semantics for VHDL
	The Abstract Interpreter
	Conclusion



