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Abstract. Though research on the Semantic Web has progressed at a steady 
pace, its promise has yet to be realized. One major difficulty is that, by its very 
nature, the Semantic Web is a large, uncensored system to which anyone may 
contribute. This raises the question of how much credence to give each source. 
We cannot expect each user to know the trustworthiness of each source, nor 
would we want to assign top-down or global credibility values due to the 
subjective nature of trust. We tackle this problem by employing a web of trust, 
in which each user maintains trusts in a small number of other users. We then 
compose these trusts into trust values for all other users. The result of our 
computation is not an agglomerate “trustworthiness” of each user. Instead, each 
user receives a personalized set of trusts, which may vary widely from person to 
person. We define properties for combination functions which merge such 
trusts, and define a class of functions for which merging may be done locally 
while maintaining these properties. We give examples of specific functions and 
apply them to data from Epinions and our BibServ bibliography server. 
Experiments confirm that the methods are robust to noise, and do not put 
unreasonable expectations on users. We hope that these methods will help move 
the Semantic Web closer to fulfilling its promise. 

1   Introduction 

Since the articulation of the Semantic Web vision [9], it has become the focus of 
research on building the next web. The philosophy behind the Semantic Web is the 
same as that behind the World-Wide Web – anyone can be an information producer or 
consume anyone else’s information. Thus far, most Semantic Web research (e.g., 
[6][27]) has focused on defining standards for communicating facts, rules, ontologies, 
etc. XML, RDF, RDF-schema, OWL and others form a necessary basis for the 
construction of the Semantic Web. However, even after these standards are in wide 
use, we still need to address the major issue of how to decide how trustworthy each 
information source is. One solution would be to require all information on the 
Semantic Web to be consistent and of high quality. But due to its sheer magnitude and 
diversity of sources, this will be nearly impossible. Much as in the development of the 
WWW, in which there was no attempt made to centrally control the quality of 
information, we believe that it is infeasible to do so on the Semantic Web. 

                                                           
*  Researched while at IBM Almaden Research Center. 



352         M. Richardson, R. Agrawal, and P. Domingos 

 

Instead, we should develop methods that work under the assumption that the 
information will be of widely varying quality. On the WWW, researchers have found 
that one way to handle this is to make use of “statements” of quality implicit in the 
link structure between pages [23][26]. This collaborative, distributed approach is far 
more cost-effective than a centralized approach. We propose that a similar technique 
will work on the Semantic Web, by having each user explicitly specify a (possibly 
small) set of users she trusts. The resulting web of trust may be used recursively to 
compute a user’s trust in any other user (or, more precisely, in any other user in the 
same connected component of the trust graph). Note that, unlike PageRank, the result 
of our computation is not an agglomerate “trustworthiness” of each user. Instead, each 
receives her own personalized set of trusts, which may be vastly different from person 
to person. In this paper, we propose and examine some methods for such a 
computation.  

In Section 2 we formulate a model that explicitly has the dual notions of trust and 
belief. Then, in Sections 3, 4, and 5, we define the meaning of belief combination 
under two different interpretations, and show an equivalence between the two. We 
also show a correspondence between combining beliefs and trusts that allows the use 
of whichever is more computationally efficient for the given system. We then give 
experimental results that show that our methods work across a wide variation of user 
quality and noise. We conclude with a discussion of related and future work. 

2   Model 

We assume content on the Semantic Web is (explicitly or implicitly) in the form of 
logical assertions. If all these assertions are consistent and believed with certainty, a 
logical calculus can be used to combine them. If not, a probabilistic calculus may be 
used (e.g., knowledge-based model construction [25]). However, our focus here is not 
on deriving beliefs for new statements given an initial set of statements. Rather, we 
propose a solution to the problem of establishing the degree of belief in a statement 
that is explicitly asserted by one or more sources on the Semantic Web. These beliefs 
can then be used by an appropriate calculus to compute beliefs in derived statements. 
Our basic model is that a user’s belief in a statement should be a function of her trust 
in the sources providing it. Given each source’s belief in the statement and the user’s 
trust in each source, the user’s belief in the statement can be computed in many 
different ways, corresponding to different models of how people form their beliefs. 
The framework presented in this paper supports a wide variety of combination 
functions, such as linear pool [17][18], noisy OR [28], and logistic regression [4]. We 
view the coefficients in these functions (one per source) as measuring the user’s trust 
in each source,1 and answer the question: how can a user decide how much to trust a 
source she does not know directly? Our answer is based on recursively propagating 
trust: if A has trust u in B and B has trust v in C, then A should have some trust t in C 
that is a function of u and v. We place restrictions on allowable methods for 
combining trusts that enable the efficient and local computation of derived trusts. 

                                                           
1  Trust is, of course, a complex and multidimensional phenomenon, but we make a start in this 

paper by embodying it in a single numeric coefficient per user-source pair. 
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Similar restrictions on belief combination allow it to also be done using only local 
information.2 

Consider a system of N users who, as a whole, have made M statements. Since we 
consider statements independently, we introduce the system as if there is only one. 

Beliefs. Any user may assert her personal belief in the statement, which is taken from 
[0,1]. A high value means that the statement is accurate, credible, and/or relevant. Let 
bi represent user i’s personal belief in the statement. If user i has not provided one, we 
set bi to 0. We refer to the collection of personal beliefs in the statement as the column 
vector b (see Section 8 for a discussion on more complex beliefs and trusts). 

Trusts. User i may specify a personal trust, tij, for any user j. Trust is also a value 
taken from [0,1], where a high value means that the user is credible, trustworthy, 
and/or shares similar interests. If unspecified, we set tij to be 0. Note that tij need not 
equal tji. The collection of personal trusts can be represented as a N×N matrix T. We 
write ti to represent the row vector of user i’s personal trusts in other users. 

Merging. The web of trust provides a structure on which we may compute, for any 
user, their belief in the statement. We will refer these as merged beliefs (� ), to 

distinguish them from the user-specified personal beliefs (b). The trust between any 
two users is given by the merged trusts matrix (�  ), as opposed to the user-specified 

personal trusts matrix (T). 

3   Path Algebra Interpretation 

In order to compute merged beliefs efficiently, we first make the simplifying 
assumption that a merged belief depends only on the paths of trust between the user 
and any other user with a personal belief in the statement. In Section 4 we consider an 
alternative probabilistic interpretation. For the moment, we consider only acyclic 
graphs (we generalize later to cyclic graphs). 

Borrowing from generalized transitive closure literature [3], we define merged 
beliefs under the path algebra interpretation with the following conceptual 
computation: 

1. Enumerate all (possibly exponential number of) paths between the user and 
every user with a personal belief in the statement. 

2. Calculate the belief associated with each path by applying a concatenation 
function to the trusts along the path and also the personal belief held by the final 
node.  

3. Combine those beliefs with an aggregation function. 

                                                           
2  While this may not guarantee the probabilistic soundness of the resulting beliefs, we believe 

it is necessary for scalability on the size of the Web, and our experiments indicate it still 
produces useful results. Scalable probabilistic approximations are a direction for future 
research. 
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(See Figure 1). Some possible 
concatenation functions are multiplication and 
minimum value. Some possible aggregations 
functions are addition and maximum value. 
Various combinations lead to plausible belief-
merging calculations such as measuring the 
most-reliable path or the maximum flow 
between the user and the statement.  

Let  and � represent the concatenation and 
aggregation functions respectively. For 
example, tik tkj is the amount that user i trusts 
user j via k, and the amount that i trusts j via 
any single other node is �( ∀k: tik tkj ). If � is 

addition and  is multiplication, then �( ∀k: tik tkj ) ≡ ik kjk
t t∑ . We define the matrix 

operation C=A•B such that Cij = �( ∀k: Aik Bkj ). Note that for the previous example, 
A•B is simply matrix multiplication. 

3.1   Local Belief Merging 

The global meaning of beliefs given above assumes a user has full knowledge of the 
network including the personal trusts between all users, which is practically 
unreasonable. Can we instead merge beliefs locally while keeping the same global 
interpretation? Following [3], let well-formed decomposable path problems be 
defined as those for which � is commutative and associative, and  is associative and 
distributes over � (The above examples for � and  all result in well-formed path 
problems). These may be computed using generalized transitive closure algorithms, 
which use only local information. One such algorithm is as follows: 

1. � 
(0) = b 

2. � 
(n) = T•�� 

(n-1), or alternatively, � i 

(n)=�( ∀k: tik �� k 

(n-1)

 ) 

3. Repeat step 2 until � 
(n) = � 

(n-1) 

(where � 
(i) represents the value of � in iteration i. Recall � are the merged beliefs) 

Notice that in step 2, the user needs only the merged beliefs of her immediate 
neighbors, which allows her to merge beliefs locally while keeping the same global 
interpretation. We will use the term belief combination function to refer to the above 
algorithm and some selection of  and �. 

3.2   Strong and Weak Invariance 

Refer to Figure 2 (Case I). Suppose a node is removed from the web of trust, and the 
edges to it are redirected to its trusted nodes (combining the trusts). If the merged 
beliefs of the remaining users remain unchanged, we say the belief combination 
function has weak global invariance. The path interpretation has this important 
property. 
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Fig. 1. Path Algebra belief merging 
on an example web of trust 
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We can imagine another property that 
may be desirable. Again refer to Figure 2 
(Case II). If we add an arc of trust 
directly from A to C, and the trust 
between A and C is unchanged, we say 
that the belief combination function has 
strong global invariance. Any belief 
combination function with weak 
invariance for which the aggregation 
function is also idempotent (meaning, 
�(x, x) = �(x) ), will have strong 
invariance. This follows from the fact 
that the aggregation function is 
associative. Interestingly, whether or not the aggregation function must be idempotent 
is the primary difference between Agrawal’s well-formed decomposable path 
problems [3] and Carre’s path algebra [11] (also related is the definition of a closed 
semiring in [5]). One example of a belief combination function with strong global 
invariance is the one defined with � as maximum and  as multiplication. 

3.3   Merging Trusts 

The majority of the belief merging calculation involves the concatenation of chains of 
trust. Beliefs only enter the computation at the endpoint of each path. Instead of 
merging beliefs, can we merge trusts and then reuse these to calculate merged beliefs?  

We define the interpretation of globally merged trusts in the same way as was done 
for beliefs: the trust between user i and user j is an aggregation function applied to the 
concatenation of trust along every path between them. It falls directly from path 
algebra that, if � is commutative and associative, and  is associative and distributes 
over �, then we can combine trusts locally while still maintaining global meaning: 

� (0) = T , � (n) = T•� (n-1) , Repeat until � (n) = � (n-1) 

(� (i) is the value of � in iteration i. Recall � is the matrix of merged trusts). To 
perform the computation, a user needs only to know her neighbors’ merged trusts. 
This leads us to the following theorem, which states that, for a wide class of 
functions, merging trusts accomplishes the same as merging beliefs (the proof is in 
the Appendix) 

Theorem 1:  If � is commutative and associative, and  is associative and distributes 
over �, and T, �, b, and � are as above, then T•�� = �•b. 

3.4   Cycles 

Thus far, we have assumed the graph is acyclic. However, it is improbable that a web 
of trust will be acyclic. Indeed, the Epinions web of trust (see Section 6.1) is highly 
connected and cyclic. Borrowing terminology from path algebra, we define a 
combination function as cycle-indifferent if it is not affected by introducing a cycle in 
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Fig. 2. Strong and weak invariance 
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the path between two users. With cycle indifference, the aggregation over infinite 
paths will converge, since only the (finite number of) paths without cycles affect its 
calculation.  

Proposition 1:  All of the results and theorems introduced thus far are applicable to 
cyclic graphs if � and  define a cycle-indifferent path problem. 

On cyclic graphs, a combination function that is not cycle-indifferent has the 
questionable property that a user may be able to affect others’ trusts in him by 
modifying her own personal trusts. However, requiring a cycle-indifferent 
combination function may be overly restrictive. In Section 4 we explore an alternative 
interpretation that allows the use of combination functions that are not cycle-
indifferent. 

3.5   Selection of Belief Combination Function 

The selection of belief combination function may depend on the application domain, 
desired belief and cycle semantics, and the expected typical social behavior in that 
domain. The ideal combination function may be user-dependent. For the remainder of 
the paper, we will always use multiplication for concatenation, though in the future 
we would like to explore other functions (such as the minimum value). The following 
is a brief summary of three different aggregation functions we have considered. 

Maximum Value. Using maximum to combine beliefs is consistent with fuzzy logic, 
in which it has been shown to be the most reasonable function for performing a 
generalized or operation over [0,1] valued beliefs [8]. Maximum also has the 
advantages that it is cycle-indifferent, strongly consistent, and naturally handles 
missing values (by letting them be 0). With maximum, the user will believe anything 
believed by at least one of the users she trusts – a reasonable, if not overly optimistic, 
behavior. 

Minimum Value. Minimum is not cycle-indifferent. In fuzzy logic, minimum value 
is used to perform the and operation. With minimum, the user will only believe a 
statement if it is believed by all of the users she trusts. 

Average. Average does not satisfy the requirements for a well-formed path algebra 
outlined above (average is not associative). However, average can still be computed 
by using two aggregation functions: sum and count (count simply returns the number 
of paths by summing 1’s). By passing along these two values, each node can locally 
compute averages. Average is not cycle-indifferent. 

3.6   Computation 

Since cycle-indifferent, weakly consistent combination functions are well-formed 
path problems, � and �  may be computed using standard transitive closure algo-

rithms. The simplest of these is the semi-naïve algorithm [7], which runs in O(N4) 
time, and essentially prescribes repeated application of the belief update equation. If 
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running as a peer-to-peer system, the semi-naïve algorithm may be easily parallelized, 
requiring O(N3) computations per node [2]. Another algorithm is the Warshall 
algorithm [33], which computes the transitive closure in O(N3). Some work on 
parallel versions of the Warshall algorithm has been done in [2]. There has also been 
much research on optimizing transitive closure algorithms, such as for when the graph 
does not fit into memory [3]. In practice most users will specify only a few of the 
users as neighbors, and the number of iterations required to fully propagate 
information is much less than N, making the computation quite efficient. Theorem 1 
allows us to choose whether we wish to merge trusts or merge beliefs. The most 
efficient method depends on, among other things, whether the system is implemented 
as a peer-to-peer network or as a server, the number of neighbors for a given user, the 
number of users, the number of statements in the system, and the number of queries 
made by each user. 

4   Probabilistic Interpretation 

In this formulation, we consider a probabilistic interpretation of global belief 
combination. The treatment is motivated by random walks on a Markov chain, which 
have been found to be of practical use in discovering high-quality web pages [26]. In 
what follows, we assume the set of personal trusts for a given user has been 
normalized.  

Imagine a random knowledge-surfer hopping from user to user in search of beliefs. 
At each step, the surfer probabilistically selects a neighbor to jump to according to the 
current user’s distribution of trusts. Then, with probability equal to the current user’s 
belief, it says “yes, I believe in the statement”. Otherwise, it says “no”. Further, when 
choosing which user to jump to, the random surfer will, with probability λi∈[0,1], 
ignore the trusts and instead jump directly back to the original user, i. We define a 
combination method to have a global probabilistic interpretation if it satisfies the 
following: 

1) �ij is the probability that, at any given step, user i’s random surfer is at user j. 

2) � i is the probability that, at any given step, user i’s random surfer says “yes”. 

The convergence properties of such random walks are well studied; � and � will 

converge as long as the network is irreducible and aperiodic [24]. λi can be viewed as 
a self-trust, and specifies the weight a user gives to her own beliefs and trusts. The 
behavior of the random knowledge-surfer is very similar to that of the intelligent 
surfer presented in [32], which is a generalization of PageRank that allows non-
uniform transitions between web pages. What personalizes the calculation to user i is 
the random restart, which “grounds” the surfer to i’s trusts. The resulting trusts may 
be drastically different than using PageRank, since the number of neighbors will 
typically be small. 
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4.1   Computation 

User i’s trust in user j is the probability that her random surfer is on a user k, times the 
probability that the surfer would transition to user j, summed over all k. Taking λi into 

account as well, we have λ δ λ� � �� ��� � � �� ���
� � �� � � � �� � , 

where δ(0)=1 and δ(x≠0)=0 and each row of t is normalized. In matrix form: 

 ( )1i i i i iλ λ= + −I T� � , (1) 

where Ii is the ith row of the identify matrix. In order to satisfy the global probabilistic 
interpretation, � i must be the probability that user i’s random surfer says “yes”. This 
is the probability that it is on a given user times that user’s belief in the statement: 

 i ik kk
b= ∑ �� ,    or,     i i= b��  (2) 

4.2   Local Belief and Trust Merging 

As in section 3.1, we wish to perform this computation using only local information. 
We show that this is possible in the special case where λi=λ is constant. 
Unrolling Equation 1: 

 ( )
0

1
m m

m
λ λ∞

=
 − ∑ T=� .   (3) 

Note that T0=I. Substituting into Equation 2,  

 ( )
0

1
m m

m
λ λ∞

=
 = − ∑ T b� , (4) 

which is satisfied by the recursive definition: 

 ( )1λ λ= + −b T� �  (5) 

Thus we find that in order to compute her merged belief, each user needs only to 
know her personal belief, and the merged beliefs of her neighbors. Besides having 
intuitive appeal, it has a probabilistic interpretation as well: user i selects a neighbor 
probabilistically according to her distribution of trust, Ti, and then, with probability 
(1-λ), accepts that neighbor’s (merged) belief, and with probability λ accepts her own 
belief. Further, Equation 3 is also equivalent to the following, which says that a user 
may compute her merged trusts knowing only the merged trusts of her neighbors:  

 ( )1λ λ= + −I T� �  (6) 

The probabilistic interpretation for belief combination is essentially taking the 
weighted average of the neighbors’ beliefs. We will thus refer to this belief 
combination as weighted average for the remainder of the paper. Note that for 
weighted average to make sense, if the user has not specified a belief we need to 
impute the value. Techniques such as those used in collaborative filtering [30] and 
Bayesian networks [13] for dealing with missing values may be applicable. If only 
relative rankings of beliefs are necessary, then it may be sufficient to use 0 for all 
unspecified beliefs.  
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5   Similarity of Probabilistic and Path Interpretations 

There are clearly many similarities between the probabilistic and path interpretations. 
In both, beliefs may be merged by querying neighbors for their beliefs, multiplying 
(or concatenating) those by the trust in each neighbor, and adding (or aggregating) 
them together. Both interpretations also allow the computation of merged beliefs by 
first merging trusts. If we let the aggregation function be addition, and the 
concatenation function be multiplication, then the only difference between the two 
interpretations is due to the factor, λ. If λ=0, then Equation 5 for computing � is 

functionally the same as the algorithm for computing � in the path algebra 

interpretation. However, consider this: If λ is 0 then Equation 1 for computing �i 

simply finds the primary eigenvector of the matrix T. Since there is only one primary 
eigenvector, this means that �i would be the same for all users (assuming the graph is 
aperiodic and irreducible). How do we reconcile this with the path algebra 
interpretation, in which we expect different trust vectors per user? The answer is that 
the corresponding path algebra combination function is not cycle indifferent, and as a 
result the user’s personal beliefs will get “washed out” by the infinite aggregation of 
other users’ beliefs. Hence, as in the probabilistic interpretation, all users would end 
up with the same merged beliefs. 

Both methods share similar tradeoffs with regards to architectural design. They 
may easily be employed in either a peer-to-peer or client-server architecture. We 
expect the system to be robust because a malicious user will be trusted less over time. 
Further, since the default trust in a user is 0, it is not useful for a user to create 
multiple pseudonyms, and users are motivated to maintain quality of information. 

The web of trust calculation is not susceptible to “link-spamming,” a phenomenon 
in PageRank whereby a person may increase others’ trust in him by generating 
hundreds of virtual personas which all trust him. In PageRank, the uniform random 
jump of the surfer means that each virtual persona is bestowed some small amount of 
PageRank, which they ‘give’ to the spammer, thus increasing her rank. With a web of 
trust, this technique gains nothing unless the user is able to convince others to trust 
her virtual personas, which we expect will only occur if the personas actually provide 
useful information. 

6   Experiments 

In this section, we measure some properties of belief combination using the methods 
from this paper. We present two sets of experiments. The first uses a real web of trust, 
obtained from Epinions (www.epinions.com), but uses synthetic values for personal 
beliefs and trusts. We wanted to see how maximum (path interpretation) compared 
with weighted average (probabilistic interpretation) for belief combination. We also 
wanted to see what quality of user population is necessary for the system to work 
well, and what happens if there are mixes of both low and high quality users. Finally, 
these methods would have little practical use if we required that users be perfect at 
estimating trusts of their neighbors, so we examine the effect that varying the quality 
of trust estimation has on the overall accuracy of the system. For the second experi-
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ment, we implemented a real-world application, now available over the web (BibServ, 
www.bibserv.org). BibServ provides us with both anecdotal and experimental results. 

6.1   Experiments with the Epinions Web of Trust 

For these experiments, we used the web of trust obtained from Epinions, a user-
oriented product review website. In order to maintain quality, Epinions encourages 
users to specify which other users they trust, and uses the resulting web of trust to 
order the product reviews seen by each person3. In order to perform experiments, we 
needed to augment the web of trust with statements and real-valued trusts. 

We expected the information on the Semantic Web to be of varying quality, so we 
assigned to each user i a quality γi∈[0,1]. A user’s quality determined the probability 
that a statement by the user was true. Unless otherwise specified, the quality of a user 
was chosen from a Gaussian distribution with µ = 0.5 and σ = 0.25. These parameters 
are varied in the experiments below. 

The Epinions web of trust is Boolean, but our methods require real-valued trusts. 
We expected that over time, the higher a user’s quality, the more they were likely to 
be trusted. So, for any pair of users i and j where i trusts j in Epinions: 

 tij = uniformly chosen from [max(γj-δij, 0), min(γj+δij, 1)] (7) 

where γi is the quality of user i and δij is a noise parameter that determines how 
accurate users were at estimating the quality of the user they were trusting. We 
supposed that a user with low quality was bad at estimating trust, so for these 
experiments we let δij=(1-γi). 

We generated a random world that consisted of 5000 true or false “facts” (half of 
the facts were false). Users’ statements asserted the truth or falsity of each fact (there 
were thus 10,000 possible statements, 5000 of which were correct). A user’s personal 
belief (bi) in any statement she asserted was 1.0. 

The number of statements made by a user was equal to the number of Epinions 
reviews that user wrote. The few users with highest connectivity tended to have 
written the most reviews, while the majority of users wrote few (or none). 

For each fact, each user computed her belief that the fact was true and her belief 
that the fact was false. For each user i, Let Si be the set of statements for which � i > τ. 
If a user had non-zero belief that a fact was true and a non-zero belief that a fact was 
false, we used the one with highest belief. Let Gi be the set of correct statements 
“reachable” by user i (A statement is reachable if there is a path in the web of trust 
from user i to at least one user who has made the statement). Then Si ∩ Gi is the set of 
statements that user i correctly believed were true, so precisioni = | Si ∩ Gi | / | Si | and 
recalli = | Si ∩ Gi | / | Gi |. Precision and recall could be traded off by varying the belief 
threshold, τ. We present precision and recall results averaged over all users, and at the 
highest recall by using τ=0. 

 
                                                           
3  The trust relationships can be obtained by crawling the site, as described in [31]. Though the 

full graph contains 75,000 users, we restricted our experiments to the first 5000 users (by 
crawl-order), which formed a network of 180,000 edges. 
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Table 1. Average precision and recall for various belief combination functions, and their 
standard deviations. 

Comb. Function Precision Recall 
Maximum 0.87 ± 0.13 0.98 ± 0.13 
Weighted Average 0.69 ± 0.06 0.98 ± 0.15 
Local 0.57 ± 0.13 0.44 ± 0.32 
Random 0.51 ± 0.05 0.99 ± 0.11 

Comparing Combining Functions. In Table 1, we give results for a variety of belief 
combination functions. The combination functions maximum and weighted average 
are the same as introduced earlier (unless otherwise specified, λ is 0.5 for weighted 

average). With random, �ij was chosen uniformly from [0,1]. Since the average 
quality is 0.5, half of the facts in the system are true, so random led to a precision of 
(roughly) 0.5. Local means that a user incorporated only the personal beliefs of her 
immediate neighbors, and resulted in a precision of 0.57. Weighted average and 
maximum significantly outperformed the baseline functions, and maximum 
outperformed weighted average. We found that (data not presented) the precision 
differed only slightly between users with high quality and users with low quality. We 
believe this is because a low quality user would still have good combined beliefs if all 
of her neighbors had good combined beliefs.  

Varying the Population Quality. It is important to understand how the average 
precision is affected by the quality of the users. We explored this by varying µ, the 
average population quality (see Figure 3). Overall, maximum significantly 
outperformed weighted average 
(p<0.01), with the greatest difference at 
low quality. 

We also explored the effect of 
varying λ for weighted average. In 
Figure 4, we see that λ had only a small 
effect on the results. We found that the 
better the population, the lower λ 
should be, which makes sense because 
in this case, the user should put high 
trust in the population. Because 
maximum seemed to consistently 
outperform weighted average, and has 
the additional advantage of being cycle-
indifferent and producing absolute 
beliefs, we restricted the remaining 
experiments to it. 

Good and Bad Users. To measure the robustness of the network to bad (or simply 
clueless) users, we selected user qualities from two Gaussian distributions, with 
means of 0.25 (bad) and 0.75 (good) (both had the same standard deviation as earlier, 
0.25). We varied the fraction of users drawn from each distribution. 

 

Fig. 3. Average precision (±σ) for maximum
and weighted average 
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We found the network to be surprisingly robust to bad users (see Figure 5). The 

average precision was very high (80-90%) when only 10-20% of the users were good. 
Consider also the network for which the fraction of good people is 0.5. This network 
has the same average population quality as the network used for Table 1, except in 
this case the population is drawn from a bimodal distribution of users instead of a 
unimodal distribution. The result is a higher precision, which shows that it is better to 
have a few good users than many mediocre ones. 

Varying Trust Estimation Accuracy. We also investigated how accurate the trusts 
must be in order to maintain good quality beliefs. We let the trust noise parameter be 
the same for all users (δij=δ) and varied 
δ (see Equation 7). Note that when 
δ=0, tij was γj, and when δ=1, tij was 
chosen uniformly from [0,1]. Figure 6 
shows the average precision for 
various values of δ. Even with a noise 
level of 0.3, acceptable precision 
(>80%) was maintained. 

The results show that the network is 
robust to noise and low quality users. 
Also, maximum outperformed 
weighted average in these 
experiments. 

6.2   Experiments with the BibServ Bibliography Server 

We have implemented our belief and trust combination methods in our BibServ 
system, which is publicly accessible at www.bibserv.org. BibServ is a bibliography 
service that allows users to search for bibliography entries for inclusion in technical 

 

Fig. 5. Precision for various fractions of good
people in the network, using maximum belief 
combination 

 

Fig. 4. Effect of λ on the precision when 
combining with weighted average 

 

Fig. 6. Effect of varying the quality of trust
estimation 
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publications. Users may upload and maintain their bibliographies, create new entries, 
use entries created by others, and rate and edit any entry. 

Why Bibliographies? We felt that bibliographies have many characteristics that 
make them a good starting point for our research into the Semantic Web. The 
bibliography domain is simple, yet gives rise to all of the issues of information 
quality, relevance, inconsistency, and redundancy that we desire to research. The 
BibServ beta site currently has 70 users, drawn mainly from the UW computer 
science department and IBM Almaden, and over half a million entries, of which 
18000 entered by the users. 

Implementation. BibServ is implemented as a centralized server, so we chose to 
store the merged trusts � and compute the merged beliefs as needed. This requires 

O(NM) space. Since there are many more bibliography entries than users, this is much 
less than the O(M2) space that would be required if we instead stored the merged 
beliefs. 

By our definition, a user’s merged belief in a bibliography entry represents the 
quality and relevance of that entry to them. Hence, search results are ordered by 
belief.4 The computation of merged trusts and beliefs is implemented in SQL and, in 
the case of beliefs, is incorporated directly into the search query itself. The overhead 
of computing beliefs is typically less than 10% of the time required to perform the 
query itself. Experiments were performed using weighted average (λ=0.5) as well as 
maximum as belief combination functions. 

Belief as Quality and Relevance. The relation of belief combination to BibServ is as 
follows. When performing a search on BibServ, a user presumably is looking for a 
good bibliographic entry (e.g. has all of the important fields filled in correctly) that is 
related to her own field of study. Our concept of “belief” corresponds to this – a good 
and relevant entry should have high belief. We treat each entry as a statement. Users 
may set their beliefs explicitly, and we implicitly assume a belief of 1.0 for any entry 
in their personal bibliography (unless otherwise explicitly rated). This forms the 
vector b for each entry. BibServ users are also presented with a list of other users 
whom they may rate. A high rating is intended to mean they expect the user to 
provide entries which are high quality and relevant. This forms the trust matrix T.  

Experimental Results. We asked BibServ users to think of a specific paper they were 
interested in, and use BibServ to search for it using keywords. We returned the search 
results in random order, and asked the user to rate each result for quality (0-5) and 
relevance (either “yes, this is the paper I was looking for” or “no, this is not”). We 
required the user to make the search general enough to return at least 5 entries, and to 
rate them all. We used two metrics to evaluate the results. The first is whether there 
was a correlation between beliefs and either the rated quality or relevance of the 

                                                           
4  Incorporating traditional measures of query relevance (for instance, TFIDF) may lead to a 

better ordering of entries. One probabilistic-based technique for this is that of query-
dependent PageRank [32]. 
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entries. In many cases, such as ordering search results, we only care whether the best 
k results may be determined by belief. We thus calculated the ratio of the average 
rating of the top k results (ordered by belief) vs. the average rating of all results. 
Unfortunately, we could do this experiment with only a small number of users. The 
data set consists of 405 ratings of quality and relevance on 26 searches by 13 users. 
The average user involved in the study specified 9 trusted users. Because the results 
are based on a small quantity of data, they should at best be considered preliminary. 

The highest correlation was obtained with weighted average, which produced 
beliefs that had a correlation of 0.29 with the quality ratings (λ=0.03). The other 
correlations were 0.10 (weighted average vs. relevance), 0.16 (maximum vs. quality), 
and -0.01 (maximum vs. relevance). These results are not as positive as we had hoped 
for. Many factors can contribute to a low correlation, such as having little variance in 
the actual quality and relevance of the entries. Currently, almost all of the entries in 
BibServ are related to computer science, and all of the users are computer scientists, 
so the web of trust gives little predictive power for relevance. We expect that as 
BibServ accumulates users and publications on more varying topics, the correlation 
results will improve. 

The average ratio of the top k results to the rating of all results (across different 
searches) for relevance ranged from 1.2 to 1.6 for a variety of k (1-5) and for either 
belief combination function. The average ratio ranged from 0.96 to 1.05 for quality. 
The ratio rapidly tended toward 1.0 as k increased, indicating that, while belief was a 
good indicator for relevance, the data contained a lot of noise (making it possible only 
to identify the very best few entries, not order them all). This is consistent with the 
low relevance correlation found above.  

The most interesting result of these experiments was with regard to λ. We found 
that the best results when measuring beliefs vs. quality ratings were when λ was very 
small, though still non-zero. On the other hand, the best results for relevance were 
when λ was very large, though not equal to one. This indicated that 1) Most users 
shared a similar metric for evaluating the quality of a bibliography entry, and 2) Users 
had a widely varying metric for evaluating an entry’s relevance. The best λ was not 0 
or 1, indicating that both information from others and personalized beliefs were 
useful. 

7   Related Work 

The idea of a web of trust is not new. As mentioned, it is used by Epinions for 
ordering product reviews. Cryptography also makes use of a web of trust to verify 
identity [10]. In Abdul-Rahman’s system, John’s trust in Jane, and John’s trust in 
Jane’s ability to determine who is trustworthy, are separate, though discrete and only 
qualitatively valued [1]. Such a separation would be interesting to consider in our 
framework as well. 

The analog of belief combination for the WWW is estimating the quality and 
relevance of web pages. Information retrieval methods based solely on the content of 
the page (such as TFIDF [20]) are useful, but are outperformed by methods that also 
involve the connectivity between pages [12][23][26]. 
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Gil and Ratnaker [19] present an algorithm that involves a more complex, though 
qualitative, form of trust based on user annotations of information sources, which are 
then combined. One shortcoming of such an approach is that it derives values of 
“trustworthiness” that are not personalized for the individual using them, requiring all 
users – regardless of personal values – to agree on the credibility of sources. 
Secondly, by averaging the statements of many users, the approach is open to a 
malicious attacker who may submit many high (or low) ratings for a source in order to 
hide its true credibility. By employing a web of trust, our approach surmounts both of 
these difficulties (assuming users reduce their trust in a user that provides poor 
information). 

Kamvar et. al’s EigenTrust algorithm [21], which computes global trusts as a 
function of local trust values in a peer-to-peer network, is very similar to our 
probabilistic interpretation of trusts presented in section 4. One key difference is that 
we allow trusts and beliefs to vary; they are personalized for each user based on her 
personal trusts. In contrast, EigenTrust computes a global trust value (similar to 
PageRank) and emphasizes security against malicious peers who aim to disturb this 
calculation. 

Pennock et. al. looked at how web-based artificial markets may combine the beliefs 
of their users [29]. Social network algorithms have been applied to webs of trust in 
order to identify users with high network influence [16][31]. Applying the same 
methods to the Semantic Web’s web of trust may prove fruitful in identifying useful 
contributors, highly respected entities, etc. Also in a similar vein is the ReferralWeb 
project, which mines multiple sources to discover networks of trust among users [22]. 
Also interesting is collaborative filtering [30], in which a user’s belief is computed 
from the beliefs of users she is similar to. This can be seen as forming the web of trust 
implicitly, based solely on similarity of interests.  

8   Future Work 

In this work, we assumed that statements are independent. We would like to 
investigate how dependencies between statements may be handled. For example, if 
we consider a taxonomy to be a set of class-subclass relationships, and consider each 
relationship to be an independent statement, then merging such taxonomy beliefs is 
not likely to lead to a useful taxonomy. We would like to be able to merge structural 
elements like taxonomies; [14] and [15] may provide useful insights into possible 
solutions. 

The path algebra and probabilistic interpretations were shown to be nearly 
identical, and the probabilistic interpretation is a generalization of PageRank. 
Considering PageRank works so well on web pages, it would be interesting to apply 
the ideas developed here back to the WWW for the purposes of ranking pages. For 
instance, might we find it useful to replace the sum with a maximum in PageRank? In 
general, we would like to consider networks in which not all users employ the same 
belief combination function, perhaps by modifying the global interpretation in order 
to relax the requirements put on the concatenation and aggregation functions. 

There are many tradeoffs between computation, communication, and storage 
requirements for the different architectures (peer to peer, central server, hierarchical, 
etc.), algorithms (semi-naïve, Warshall, etc.), and strategies (merge beliefs on 
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demand, store all beliefs, etc.). We would like to formalize these tradeoffs for better 
understanding of the efficiency of the various architectures. 

We considered only single valued beliefs and trusts. In general, a belief could 
actually be multi-valued, representing a magnitude in multiple dimensions, such as 
‘truth’, and ‘importance’, and ‘novelty’. We would also like to consider multi-valued 
trusts, such as those used by Gil and Ratnakar [19], which may represent similar 
dimensions as beliefs (but applied to users). It may be possible to combine beliefs and 
trusts into one concept, ‘opinion’, which may be similarly applied to both statements 
and users. Similarly, we would also like to allow users to specify topic-specific trusts. 
With topic-specific trusts, the normalized sum combination function would probably 
be similar to query-dependent PageRank [32]. 

9   Conclusions 

If it is to succeed, the Semantic Web must address the issues of information quality, 
relevance, inconsistency and redundancy. This is done on today's Web using 
algorithms like PageRank, which take advantage of the link structure of the Web. We 
propose to generalize this to the Semantic Web by having each user specify which 
others she trusts, and leveraging this “web of trust” to estimate a user's belief in 
statements supplied by any other user. This paper formalizes some of the 
requirements for such a calculus, and describes a number of possible models for 
carrying it out. The potential of the approach, and the tradeoffs involved, are 
illustrated by experiments using data from the Epinions knowledge-sharing site, and 
from the BibServ site we have set up for collecting and serving bibliographic 
references. 
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Appendix 

Here we give a proof of Theorem 1. We are assuming � is commutative and 
associative,  is associative and distributes over �, and T, �, b, and � are defined as in 

Section 3. Also from Section 3, (A•B)ij=�(∀k: Aik Bkj). 
We first prove that � is associative. Let X=(A•B)•C. Then: 

 Xij = ��∀k: ��∀l: Ail Blk)  Ckj ) from the definition of • 
  = ��∀k: ��∀l: Ail Blk Ckj ))  since  distributes over ��and �is associative 
  = ��∀l: ��∀k: Ail Blk Ckj ))  since ��is associative 
  = ��∀l: Ail ���∀k: Blk Ckj ))  since �distributes over � 
  = ��∀l: Ail ��B•C)lj)  by definition of • 

This implies that 
 X = A•(B•C)  by definition of •. 

We have � (0) = b and � 

(n) = T•�� 

(n-1), so � 

(n) = T•( T•(… •( T•b)))). Since � is 
associative, 

 � 

(n)= Tn�b (8) 

(where Tn means T•T•T… n times, and T0 is the identity matrix). We have � (0) = T 

and � (n) = T•� (n-1), so � (n) = T•( T•(… •( T•T)))). Hence, 

 � (n)= ��Tn (9) 

Combining Equations 8 and 9, T•�� 

(n) = � (n)•b 

Since we run until convergence, this is sufficient to show that T•�� = �•b.  
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