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Abstract. We show how to reduce ontology entailment for the OWL DL and
OWL Lite ontology languages to knowledge base satisfiability in (respectively) the
SHOIN (D) and SHIF(D) description logics. This is done by first establishing
a correspondence between OWL ontologies and description logic knowledge bases
and then by showing how knowledge base entailment can be reduced to knowledge
base satisfiability.

1 Introduction

The aim of the Semantic Web is to make web resources (not just HTML pages, but a
wide range of web accessible data and services) more readily accessible to automated
processes. This is to be done by augmenting existing presentation markup with semantic
markup, i.e., meta-data annotations that describe their content [2]. According to widely
known proposals for a Semantic Web architecture, ontologies will play a key role as they
will be used as a source of shared and precisely defined terms that can be used in such
metadata [15].

The importance of ontologies in semantic markup has prompted the development
of several ontology languages specifically designed for this purpose. These include
OIL [7], DAML+OIL [10] and OWL [4]. OWL is of particular significance as it has
been developed by the W3C Web Ontology working group, and is set to become a W3C
recommendation.

The proposed OWL recommendation actually consists of three languages of increas-
ing expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s predecessor
DAML+OIL, OWL Lite and OWL DL are basically very expressive description log-
ics with an RDF syntax. They can therefore exploit the considerable existing body of
description logic research, e.g., to define the semantics of the language and to under-
stand its formal properties, in particular the decidability and complexity of key inference
problems [6]. OWL Full provides a more complete integration with RDF, but its for-
mal properties are less well understood, and key inference problems would certainly be
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much harder to compute.1 In this paper we will, therefore, concentrate on the provision
of reasoning services for OWL Lite and OWL DL.

1.1 OWL Reasoning

Reasoning with ontology languages will be important in the SemanticWeb if applications
are to exploit the semantics of ontology based metadata annotations, e.g., if semantic
search engines are to find pages based on the semantics of their annotations rather than
their syntax. As well as providing insights into OWL’s formal properties, OWL’s rela-
tionship to expressive description logics provides a source of algorithms for solving key
inference problems, in particular satisfiability. Moreover, in spite of the high worst case
complexity of reasoning in such description logics, highly optimised implementations of
these algorithms are available and have been shown to work well with realistic problems.
Two difficulties arise, however, when attempting to use such implementations to provide
reasoning services for OWL:

1. OWL’s RDF syntax uses frame-like constructs that do not correspond directly to
description logic axioms; and

2. as in RDF, OWL inference is defined in terms of ontology entailment rather than
ontology satisfiability.

The obvious solution to the first problem is to define a mapping that decomposes
OWL frames into one or more description logic axioms. It turns out, however, that the
RDF syntax used in OWL cannot be directly translated into any “standard” description
logic because it allows the use of anonymous individuals in axioms asserting the types
of and relationships between individuals. The obvious solution to the second problem
is to reduce entailment to satisfiability. Doing this naively would, however, require role
negation, and this is not supported in any implemented description logic reasoner.

In this paper we will show that, in spite of these difficulties, ontology entailment
in OWL DL and OWL Lite can be reduced to knowledge base satisfiability in the
SHOIN (D) and SHIF(D) description logics respectively. This is achieved by map-
ping OWL to an intermediate description logic that includes a novel axiom asserting the
non-emptiness of a class, and by using a more sophisticated reduction to satisfiability
that both eliminates this constructor and avoids the use of role negation.

This is a significant result from both a theoretical and a practical perspective:
it demonstrates that computing ontology entailment in OWL DL (resp. OWL Lite)
has the same complexity as computing knowledge base satisfiability in SHOIN (D)
(SHIF(D)), and that description logic algorithms and implementations (such as
RACER [8]) can be used to provide reasoning services for OWL Lite. Unfortunately, the
design of “practical” algorithms for SHOIN (D) is still an open problem – the search
for such algorithms must obviously be a high priority within the Semantic Web research
community.

1 Inference in OWL Full is clearly undecidable as OWL Full does not include restrictions on the
use of transitive properties which are required in order to maintain decidability [13].
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2 The OWL Web Ontology Language

As mentioned in Section 1, OWL [4] is an ontology language that has recently been
developed by the W3C Web Ontology Working Group. OWL is defined as an extension
to RDF in the form of a vocabulary entailment [9], i.e., the syntax of OWL is the syntax
of RDF and the semantics of OWL are an extension of the semantics of RDF.

OWL has many features in common with description logics, but also has some
significant differences. The first difference between OWL and description logics is that
the syntax of OWL is the syntax of RDF. OWL information is thus encoded in RDF/XML
documents [1] and parsed into RDF Graphs [14] composed of triples. Because RDF
Graphs are such an impoverished syntax, many description logic constructs in OWL are
encoded into several triples. Because RDF Graphs are graphs, however, it is possible to
create circular syntactic structures in OWL, which are not possible in description logics.
Subtle interactions between OWL and RDF cause problems with some of these circular
syntactic structures.

The second difference between OWL and description logics is that OWL contains
features that do not fit within the description logic framework. For example, OWL classes
are objects in the domain of discourse and can be made instances of other concepts, in-
cluding themselves. These two features, also present in RDF, make a semantic treatment
of OWL quite different from the semantic treatment of description logics.

2.1 OWL DL and OWL Lite

Fortunately for our purpose, there are officially-defined subsets of OWL that are much
closer to description logics. The larger of these subsets, called OWL DL, restricts OWL
in two ways. First, unusual syntactic constructs, such as descriptions with syntactic
cycles in them, are not allowed in OWL DL. Second, classes, properties, and individuals
(usually called concepts, roles and individuals in description logics) must be disjoint in
the semantics for OWL DL.

Because of the syntactic restrictions in OWL DL, it is possible to develop an abstract
syntax for OWL DL [16] that looks much like an abstract syntax for a powerful frame
language, and is not very different from description logic syntaxes. This is very similar
to the approach taken in the OIL language [7]. The abstract syntax for OWL DL has
classes and data ranges, which are analogues of concepts and concrete datatypes in
description logics, and axioms and facts, which are analogues of axioms in description
logics. Axioms and facts are grouped into ontologies, the analogue of description logic
knowledge bases, which are the highest level of OWL DL syntax.

The constructors used to form OWL DL descriptions and data ranges are summarised
in Figure 1, where A is a class name, C (possibly subscripted) is a description, o (possibly
subscripted) is an individual name, R is an object (or abstract) property, T is a datatype
property,2 B is a datatype, D is a data range, v (possibly subscripted) is a data value and
�, m, n are non-negative integers; elements {enclosed in braces} can be repeated zero
or more times and elements [enclosed in square brackets] are optional. The details of
these constructors can be found in the OWL documentation [4].

2 An object property is one that associates pairs of individuals; a datatype property associates an
individual with a data value.
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Classes
A
intersectionOf(C1 . . . Cn)
unionOf(C1 . . . Cn)
complementOf(C)
oneOf(o1 . . . on)
restriction(R

{allValuesFrom(C)} {someValuesFrom(C)}
{value(o)} [minCardinality(n)]
[maxCardinality(m)] [cardinality(�)])

restriction(T
{allValuesFrom(D)} {someValuesFrom(D)}
{value(v)} [minCardinality(n)]
[maxCardinality(m)] [cardinality(�)])

Data Ranges
B
oneOf(v1 . . . vn)

Fig. 1. OWL DL Constructors

Descriptions and data ranges can be used in OWL DL axioms and facts to provide
information about classes, properties, and individuals. Figure 2 provides a summary of
these axioms and facts. The details of these constructors can also be found in the OWL
documentation [4]. In particular, Figure 2 ignores annotations and deprecation, which
allow uninterpreted information to be associated with classes and properties, but which
are not interesting from a logical point of view.

Because of the semantic restrictions in OWL DL, metaclasses and other notions that
do not fit into the description logic semantic framework can be ignored. In fact, OWL
DL has a semantics that is very much in the description logic style, and that has been
shown to be equivalent to the RDF-style semantics for all of OWL [16]. Again, we will
not present all of this semantics, instead concentrating on its differences from the usual
description logics semantics.

There is a subset of OWL DL, called OWL Lite, the motivation for which is increased
ease of implementation. This is achieved by supporting fewer constructors than OWL
DL, and by limiting the use of some of these constructors. In particular, OWL Lite
does not support the oneOf constuctor (equivalent to description logic nominals), as
this constructor is known to increase theoretical complexity and to lead to difficulties in
the design of practical algorithms [11]. In Section 5 we will examine these differences
in more detail, and explore their impact on the reduction from OWL entailment to
description logic satisfiability.

2.2 Semantics for OWL DL

The semantics for OWL DL is fairly standard by description logic standards. The OWL
semantic domain is a set whose elements can be divided into abstract objects (the abstract
domain), and datatype values (the datatype or concrete domain, written ∆I

D). Datatypes
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Class Axioms
Class(A partial d1 . . . dn)
Class(A complete d1 . . . dn)
EnumeratedClass(A o1 . . . on)
DisjointClasses(d1 . . . dn)
EquivalentClasses(d1 . . . dn)
SubClassOf(d1 d2)

Property Axioms
DatatypeProperty(U super(U1) . . . super(Un) [Functional]

domain(d1) . . . domain(dm) range(r1) . . . domain(rl))
ObjectProperty(P super(P1) . . . super(Pn) [inverseOf(P0)]

[Functional] [InverseFunctional] [Symmetric] [Transitive]
domain(d1) . . . domain(dm) range(e1) . . . domain(el))

EquivalentProperties(U1 . . . Un)
SubPropertyOf(U1 U2)
EquivalentProperties(P1 . . . Pn)
SubPropertyOf(P1 P2)

Facts
Individual([o] type(d1) . . . type(d1)

value(p1 v1) . . . value(p1 v1))
SameIndividual(o1 . . . on)
DifferentIndividuals(o1 . . . on)

Fig. 2. OWL DL Axioms and Facts (simplified)

in OWL are derived from the built-in XML Schema datatypes [3]. Datatype values are
denoted by special literal constructs in the syntax, the details of which need not concern
us here.

An interpretation in this semantics is officially a four-tuple consisting of the abstract
domain and separate mappings for concept names, property names, and individual names
(in description logics, the mappings are usually combined to give a two-tuple, but the
two forms are obviously equivalent). OWL DL classes are interpreted as subsets of the
abstract domain, and for each constructor the semantics of the resulting class is defined
in terms of its components. For example, given two classes C and D, the interpretation
of the intersection of C and D is defined to be the intersection of the interpretations of C
and D. Datatypes are handled by means of a mapping .D that interprets datatype names
as subsets of the concrete domain and data names (i.e., lexical representations of data
values) as elements of the concrete domain.

OWL DL axioms and facts result in semantic conditions on interpretations. For
example, an axiom asserting that C is a subclass of D results in the semantic condition
that the interpretation of C must be a subset of the interpretation of D, while a fact
asserting that a has type C results in the semantic condition that the interpretation of a
must be an element of the set that is the interpretation of C. An OWL DL ontology O is
satisfied by an interpretation I just when all of the semantic conditions resulting from
the axioms and facts in O are satisfied by I.

The main semantic relationship in OWL DL is entailment – a relationship between
pairs of OWL ontologies. An ontology O1 entails an ontology O2, written O1 |= O2,
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Constructor Name Syntax Semantics
atomic concept A A AI ⊆ ∆I

datatypes D D DD ⊆ ∆I
D

abstract role RA R RI ⊆ ∆I × ∆I

datatype role RD U UI ⊆ ∆I × ∆I
D

individuals I o oI ∈ ∆I

data values v vI = vD

inverse role R− (R−)I = (RI)−

conjunction C1 � C2 (C1 � C2)I = CI
1 ∩ CI

2

disjunction C1 � C2 (C1 � C2)I = CI
1 ∪ CI

2

negation ¬C1 (¬C1)I = ∆I \ CI
1

oneOf {o1, . . .} {o1, . . .}I = {oI
1 , . . .}

exists restriction ∃R.C (∃R.C)I = {x | ∃y.
〈x〉y ∈ RI and y ∈ CI}

value restriction ∀R.C (∀R.C)I = {x | ∀y.
〈x, y〉 ∈ RI → y ∈ CI}

atleast restriction � n R (� n R)I = {x | �({y.
〈x, y〉 ∈ RI}) � n}

atmost restriction � n R (� n R)I = {x | �({y.
〈x, y〉 ∈ RI}) � n}

datatype exists ∃U.D (∃U.D)I = {x | ∃y.
〈x, y〉 ∈ UI and y ∈ DD}

datatype value ∀U.D (∀U.D)I = {x | ∀y.
〈x, y〉 ∈ UI → y ∈ DD}

datatype atleast � n U (� n U)I = {x | �({y.
〈x, y〉 ∈ UI}) � n}

datatype atmost � n U (� n U)I = {x | �({y.
〈x, y〉 ∈ UI}) � n}

datatype oneOf {v1, . . .} {v1, . . .}I = {vI
1 , . . .}

Axiom Name Syntax Semantics
concept inclusion C1 � C2 CI

1 ⊆ CI
2

object role inclusion R1 � R2 RI
1 ⊆ RI

2

object role transitivity Trans(R) RI = (RI)+

datatype role inclusion U1 � U2 UI
1 ⊆ UI

2

individual inclusion a : C aI ∈ CI

individual equality a = b aI = bI

individual inequality a 
= b aI 
= bI

concept existence ∃C �(CI) � 1

Fig. 3. Syntax and semantics of SHOIN+(D)

exactly when all interpretations that satisfy O1 also satisfy O2. This semantic relationship
is different from the standard description logic relationships, such as knowledge base and
concept satisfiability. The main goal of this paper is to show how OWL DL entailment
can be transformed into DL knowledge base (un)satisfiability.
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3 SHOIN (D) and SHIF(D)

The main description logic that we will be using in this paper is SHOIN (D), which
is similar to the well known SHOQ(D) description logic [11], but is extended with
inverse roles (I) and restricted to unqualified number restrictions (N ). We will assume
throughout the paper that datatypes and data values are as in OWL.

LetA,RA,RD, and I be pairwise disjoint sets of concept names, abstract role names,
datatype (or concrete) role names, and individual names. The set of SHOIN (D)-roles
is RA ∪{R− | R ∈ RA}∪RD. In order to avoid considering roles such as R−− we will
define Inv(R) s.t. Inv(R) = R− and Inv(R−) = R. The set of SHOIN (D)-concepts
is the smallest set that can be built using the constructors in Figure 3.

The SHOIN (D) axiom syntax is also given in Figure 3. (The last axiom in Figure 3
forms an extension of SHOIN (D), which we call SHOIN+(D), which is used
internally in our translation.) A knowledge base K is a finite set of axioms. We will use
�* to denote the transitive reflexive closure of � on roles, i.e., for two roles S, R in K,
S �* R in K if S = R, S � R ∈ K, Inv(S) � Inv(R) ∈ K, or there exists some role Q
such that S �* Q in K and Q �* R in K. A role R is called simple in K if for each role
S s.t. S �* R in K, Trans(S) �∈ K and Trans(Inv(S)) �∈ K. To maintain decidability, a
knowledge base must have no number restrictions on non-simple roles [13].

The semantics of SHOIN+(D) is given by means of an interpretation I = (∆I , ·I)
consisting of a non-empty domain ∆I , disjoint from the datatype (or concrete) domain
∆I

D, and a mapping ·I , which interprets atomic and complex concepts, roles, and nom-
inals according to Figure 3. (In Figure 3, � is set cardinality.)

An interpretation I = (∆I , ·I) satisfies a SHOIN+(D)-axiom under the condi-
tions given in Figure 3. An interpretation satisfies a knowledge base K iff it satisfies
each axiom in K; K is satisfiable (unsatisfiable) iff there exists (does not exist) such an
interpretation. A SHOIN (D)-concept C is satisfiable w.r.t. a knowledge base K iff
there is an interpretation I with CI �= ∅ that satisfies K. A concept C is subsumed by a
concept D w.r.t. K iff CI � DI for each interpretation I satisfying K. Two concepts
are said to be equivalent w.r.t. K iff they subsume each other w.r.t. K. A knowledge base
K1 entails a knowledge base K2 iff every interpretation of K1 is also an interpretation
of K2.

We define a notion of entailment in SHOIN+(D) in the same way as it was defined
for OWL DL. It is easy to show that K |= K′ iff K |= A for every axiom A in K′.

The description logic SHIF(D) is just SHOIN (D) without the oneOf constructor
and with the atleast and atmost constructors limited to 0 and 1. SHIF+(D) is related
to SHOIN+(D) in the same way.

4 From OWL DL Entailment to SHOIN (D) Unsatisfiability

We will now show how to translate OWL DL entailment into SHOIN (D) unsatisfiabil-
ity. The first step of our process is to translate an entailment between OWL DL ontologies
into an entailment between knowledge bases in SHOIN+(D). Then SHOIN+(D)
entailment is transformed into unsatisfiability of SHOIN (D) knowledge bases. (Note
that concept existence axioms are eliminated in this last step, leaving a SHOIN (D)
knowledge base.)
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OWL fragment F Translation F(F )
Individual(x1. . . xn) ∃(F(x1) � . . . � F(xn))
type(C) V(C)
value(R x) ∃R.F(x)
value(U v) ∃U.{v}
o {o}

Fig. 4. Translation from OWL facts to SHOIN+(D)

4.1 From OWL DL to SHOIN (D)

An OWL DL ontology is translated into a SHOIN+(D) knowledge base by taking
each axiom and fact in the ontology and translating it into one or more axioms in the
knowledge base. For OWL DL axioms, this translation is very natural, and is almost
identical to the translation of OIL described by Decker et al. [5]. For example, the OWL
DL axiom Class(A complete C1. . . Cn) is translated into the pair of SHOIN+(D)
axioms A � V(C1) � . . . � V(Cn) and V(C1) � . . . � V(Cn) � A, where V is the
obvious translation from OWL classes to description logic concepts, again very similar
to the transformation described by Decker et al. [5]. Similarly, an OWL DL axiom
DisjointClasses(C1...Cn) is translated into the SHOIN+(D) axioms V(Ci) �
¬V(Cj) for 1 ≤ i < j ≤ n.

The translation of OWL DL facts to SHOIN+(D) axioms is more complex.
This is because facts can be stated with respect to anonymous individuals, and can
include relationships to other (possibly anonymous) individuals. For example, the fact
Individual(type(C) value(R Individual(type(D)))) states that there exists an individual
that is an instance of class C and is related via the property R to an individual that is an
instance of the class D, without naming either of the individuals.

The need to translate this kind of fact is the reason for introducing the SHOIN+(D)
existence axiom. For example, the above fact can be translated into the axiom ∃(C �
∃R.D), which states that there exists some instance of the concept C � ∃R.D, i.e.,
an individual that is an instance of C and is related via the role R to an instance of
the concept D. Figure 4 describes a translation F that transforms OWL facts into a
SHOIN+(D) existence axioms, where C is an OWL class, R is an OWL abstract prop-
erty or SHOIN+(D) abstract role, U is an OWL datatype property or SHOIN+(D)
datatype role, o is an individual name, v is a data value, and V is the above mentioned
translation from OWL classes to SHOIN+(D) concepts.

Theorem 1. The translation from OWL DL to SHOIN+(D) preserves equivalence.
That is, an OWL DL axiom or fact is satisfied by an interpretation I if and only if the
translation is satisfied by I.3

The above translation increases the size of an ontology to at most the square of its
size. It can easily be performed in time linear in the size of the resultant knowledge base.

3 The statement of the theorem here ignores the minor differences between OWL DL interpreta-
tions and SHOIN+(D) interpretations. A stricter account would have to worry about these
stylistic differences.
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Axiom A Transformation G(A)
c � d x : c � ¬d

∃c � � ¬c

Trans(r) x : ∃r.∃r.{y} � ¬∃r.{y}
r � s x : ∃r.{y} � ¬∃s.{y}

f � g
x :

⊔
z∈V ∃f.{z} � ¬∃g.{z}

for V = the set of data values in K,
plus one fresh data value for each datatype in K

a = b a 
= b

a 
= b a = b

Fig. 5. Translation from Entailment to Unsatisfiability

4.2 From Entailment to Unsatisfiability

The next step of our process is to transform SHOIN+(D) knowledge base entailment
to SHOIN (D) knowledge base unsatisfiability. We do this to relate our new notion of
description logic entailment to the well-known operation of description logic knowledge
base unsatisfiability.

We recall from Section 3 that K |= K′ iff K |= A for every axiom A in K′. We
therefore define (in Figure 5) a translation, G, such that K |= A iff K ∪ {G(A)} is
unsatisfiable, for K a SHOIN (D) knowledge base and A a SHOIN (D) axiom. In
this transformation we have need of names of various sorts that do not occur in the
knowledge base or axiom; following standard practice we will call these fresh names.
Throughout the translation, x and y are fresh individual names.

Most of the translations in G are quite standard and simple. For example, an object
role inclusion axiom r � s is translated into an axiom that requires the existence of
an individual that is related to some other individual by r but not by s, thus violating
the axiom. The only unusual translation is for datatype role inclusions f � g. Because
data values have a known “identity” (rather like individuals under the unique name
assumption), a fresh value cannot be used to simulate an existentially quantified variable
that could be interpreted as any element in the datatype domain (in the way the fresh
nominal is used in the case of an object role inclusion axiom). Instead, it is necessary to
show that the relevant inclusion holds for every data value that occurs in the knowledge
base, plus one fresh data value (i.e., one that does not occur in the knowledge base) for
each datatype in K. Because there are no operations on data values, it suffices to consider
only these fresh data values in addition to those that occur in the knowledge base.

The translation G increases the size of an axiom to at most the larger of its size and
the size of the knowledge base. It can easily be performed in time linear in the larger of
the size of the axiom and the size of the knowledge base. (If datatype role inclusions are
not used, then G increases the size of an axiom by atmost a constant amount.)

The translation G eliminates concept existence axioms from the knowledge base K′

on the right-hand side of the entailment. Our last step is to eliminate concept existance
axioms from the knowledge base K on the left-hand side of the entailment. We do this
by applying a translation E(K) that replaces each axiom of the form ∃C ∈ K with an
axiom a : C, for a a fresh individual name. It is obvious that this translation preserves
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OWL fragment F Translation F ′(F )
Individual(x1. . . xn) F ′(a : x1), . . . , F ′(a : xn)

for a a fresh individual name
a : type(C) a : V(C)
a : value(R x) 〈a, b〉 : R, F ′(b : x)

for b a fresh individual name
a : value(U v) 〈a, v〉 : U
a : o a = o

Fig. 6. Translation from OWL Lite facts to SHIF+(D)

satisfiability, can be easily performed, and only increases the size of a knowledge base
by a linear amount.

Theorem 2. Let K and K′ be SHOIN+(D) knowledge bases. Then K |= K′ iff the
SHOIN (D) knowledge base E(K)∪{G(A)} is unsatisfiable for every axiom A in K′.

4.3 Consequences

The overall translation from OWL DL entailment to SHOIN (D) can be performed
in polynomial time and results in a polynomial number of knowledge base satisfiability
problems each of which is polynomial in the size of the initial OWL DL entailment.
Therefore we have shown that OWL DL entailment is in the same complexity class as
knowledge base satisfiability in SHOIN (D).

Unfortunately, SHOIN (D) is a difficult description logic. Most problems in
SHOIN (D), including knowledge base satisfiability, are in NExpTime [17]. Further,
there are as yet no known optimized inference algorithms or implemented systems for
SHOIN (D). The situation is not, however, completely bleak. There is an inexact trans-
lation from SHOIN (D) to SHIN (D) that turns nominals into atomic concept names.
This translation could be used to produce a partial, but still very capable, reasoner for
OWL DL. Moreover, as is shown in the next section, the situation for OWL Lite is
significantly different.

5 Transforming OWL Lite

OWL Lite is the subset of OWL DL that

1. eliminates the intersectionOf, unionOf, complementOf, and oneOf construc-
tors;

2. removes the value construct from the restriction constructors;
3. limits cardinalities to 0 and 1;
4. eliminates the enumeratedClass axiom; and
5. requires that description-forming constructors not occur in other description-

forming constructors.
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Axiom A Transformation G(A)
a : C a : ¬C

〈a, b〉 : R b : B, a : ∀R.¬B
for B a fresh concept name

〈a, v〉 : U a : ∀U.v

Fig. 7. Extended Transformation from Entailment to Unsatisfiability

The reason for defining the OWL Lite subset of OWL DL was to have an easier target
for implementation. This was thought to be mostly easier parsing and other syntactic
manipulations.

As OWL Lite does not have the analogue of nominals it is possible that inference is
easier in OWL Lite than in OWL DL. However, the transformation above from OWL
DL entailment into SHOIN (D) unsatisfiability uses nominals even for OWL Lite
constructs. It is thus worthwhile to devise an alternative translation that avoids nominals.

There are three places that nominals show up in our transformation:

1. translations into SHOIN+(D) of OWL DL constructs that are not in OWL Lite,
in particular the oneOf constructor;

2. translations into SHOIN+(D) axioms of OWL DL Individual facts; and
3. the transformation to SHOIN (D) unsatisfiability of SHOIN+(D) entailments

whose consequents are role inclusion axioms or role transitivity axioms.

The first of these, of course, is not a concern when considering OWL Lite.

The second place where nominals show up is in the translation of OWL Individual
facts into SHOIN (D) axioms (Figure 4). In order to avoid introducing nominals, we
can use the alternative transformation F ′ given in Figure 6. Note that, in this case,
the translation V(C) does not introduce any nominals as we are translating OWL Lite
classes.

The new transformation does, however, introduce axioms of the form a : C, 〈a, b〉 : R
and 〈a, v〉 : U that we will need to deal with when transforming from entailment to
satisfiability. We can do this by extending the transformation G given in Figure 5 as
shown in Figure 7. The extension deals with axioms of the form 〈a, b〉 : R using a
simple transformation, described in more detail by [12], and with axioms of the form
〈a, v〉 : U using a datatype derived from the negation of a data value (written v).

The third and final place where nominals show up is in the transformation of entail-
ments whose consequents are object role inclusion axioms or role transitivity axioms.

Object role inclusion axioms can be dealt with using a transformation similar to
those given in Figure 7 (and described in more detail in [12]), which does not introduce
any nominals. This is shown in the following lemma:

Lemma 1. Let K be an OWL Lite ontology and let A be an OWL Lite role inclusion
axiom stating that r is a subrole of s. Then K |= A iff E(K) ∪ {x : B � ∃r(∀s−.¬B)}
is unsatisfiable for x a fresh individual name, and B a fresh concept name.
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Transitivity axioms can be dealt with by exploiting the more limited expressive power
of OWL Lite, in particular its inability to describe classes, datatypes or properties whose
interpretations must be non-empty but finite (e.g., classes described using the oneOf
constructor). As a result of this more limited expressive power, the only way to deduce
the transitivity of a property r is to show that the interpretation of r cannot form any
chains (i.e., consists only of isolated tuples, or is empty). This observation leads to the
following lemma:

Lemma 2. Let K be an OWL Lite ontology and let A be an OWL Lite role transitivity
axiom stating that r is transitive. Then K |= A iff E(K)∪{x : ∃r(∃r�)} is unsatisfiable
for x a fresh individual name (i.e., r forms no chains).

The above lemmas, taken together, show that OWL Lite entailment can be transformed
into knowledge base unsatisfiability in SHIF(D), plus some simple (and easy) tests
on the syntactic form of a knowledge base. A simple examination shows that the trans-
formations can be computed in polynomial time and result in only a linear increase in
size.

As knowledge base satisfiability in SHIF(D) is in ExpTime [17] this means that
entailment in OWL Lite can be computed in exponential time. Further, OWL Lite entail-
ment can be computed by the RACER description logic system [8], a heavily-optimised
description logic reasoner, resulting in an effective reasoner for OWL Lite entailment.

6 Conclusion

Reasoning with ontology languages will be important in the Semantic Web if appli-
cations are to exploit the semantics of ontology based metadata annotations. We have
shown that ontology entailment in the OWL DL and OWL Lite ontology languages
can be reduced to knowledge base satisfiability in, respectively, the SHOIN (D) and
SHIF(D) description logics. This is so even though some constructs in these languages
go beyond the standard description logic constructs.

From these mappings, we have determined that the complexity of ontology entail-
ment in OWL DL and OWL Lite is in NExpTime and ExpTime respectively (the same
as for knowledge base satisfiability in SHOIN (D) and SHIF(D) respectively). The
mapping of OWL Lite to SHIF(D) also means that already-known practical reasoning
algorithms for SHIF(D) can be used to determine ontology entailment in OWL Lite;
in particular, the highly optimised RACER system [8], which can determine knowledge
base satisfaction in SHIF(D), can be used to provide efficient reasoning services for
OWL Lite.

The mapping from OWL DL to SHOIN (D) can also be used to provide complete
reasoning services for a large part of OWL DL, or partial reasoning services for all of
OWL DL. In spite of its known decidability, however, the design of “practical” decision
procedures for SHOIN (D) is still an open problem. The search for such algorithms
must obviously be a high priority within the Semantic Web research community.
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