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Abstract. Towards the ultimate goal of seamless interaction among networked 
programs and devices, industry has developed orchestration and process 
modeling languages such as XLANG, WSFL, and recently BPEL4WS. 
Unfortunately, these efforts leave us a long way from seamless interoperation. 
Researchers in the Semantic Web community have taken up this challenge 
proposing top-down approaches to achieve aspects of Web Service 
interoperation. Unfortunately, many of these efforts have been disconnected 
from emerging industry standards, particularly in process modeling. In this 
paper we take a bottom-up approach to integrating Semantic Web technology 
into Web services. Building on BPEL4WS, we present integrated Semantic 
Web technology for automating customized, dynamic binding of Web services 
together with interoperation through semantic translation. We discuss the value 
of semantically enriched service interoperation and demonstrate how our 
framework accounts for user-defined constraints while gaining potentially 
successful execution pathways in a practically motivated example. Finally, we 
provide an analysis of the forward-looking limitations of frameworks like 
BPEL4WS, and suggest how such specifications might embrace semantic 
technology at a fundamental level to work towards fully automated Web service 
interoperation. 

1   Introduction 

For many, the long-term goal of the Web services effort is seamless interoperation 
among networked programs and devices. Once achieved, many see Web services as 
providing the infrastructure for universal plug-and-play and ubiquitous computing 
[30]. To integrate complex, stateful interactions among services, most of the major 
industry players have proposed some form of business process integration, 
orchestration, or choreography model. These include WSCI, BPML, XLANG, WSFL, 
WSCL, BPSS, the Web Services Architecture, and most recently BPEL4WS from 
IBM, Microsoft, BEA, SAP, and Siebel [7]. Unfortunately, as we discuss in this 
paper, these standards and their associated computing machinery still place us a long 
way from seamless interoperability. 

In parallel with these industry efforts, the Semantic Web [4] community has been 
developing languages and computing machinery for making Web content 
unambiguously interpretable by computer programs, with a view to automation of a 
diversity of Web tasks. Efforts include the development of expressive languages 
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based on artificial intelligence technology, including RDF [17], RDF(S), DAML+OIL 
[12,29], and most recently a proposal for the Ontology Web Language (OWL) 
[10,21,26]. In the area of Web Services, the Semantic Web community has argued 
that true interoperation requires description of Web Services in an expressive 
language with a well-defined semantics. To this end, they have developed OWL-S 
(previously DAML-S), an OWL (previously DAML+OIL) ontology for Web services 
[8]. Similarly, researchers have developed automated reasoning machinery to address 
some of the more difficult tasks necessary for seamless interoperation including a 
richer form of automated Web service discovery [25], semantic translation [20], and 
the ultimate challenge, automated Web Service composition [24,22,14]. 
Unfortunately, most of these efforts have been top-down approaches building on 
artificial intelligence and automated reasoning technology, sometimes grounding 
them in WSDL [6], but often times avoiding connection with evolving industry 
standards. 

In this paper we take a bottom-up approach to incorporating Semantic Web 
technology into Web services. We argue that to achieve the long-term goal of 
seamless interoperability, Web services must embrace many of the representation and 
reasoning ideas proposed by the Semantic Web community and in particular by the 
Semantic Web services community. Nevertheless, we acknowledge that Web 
standards defined by industry efforts will shape the evolution of Semantic Web 
services. From this viewpoint we take the leading candidate for business process 
modeling on the Web, BPEL4WS, and its associated computational machinery, 
BPWS4J, and augment them with Semantic Web technology. In Section 2, we 
provide a reference example that we use to illustrate our contributions. In Section 3 
we introduce BPEL4WS, demonstrate its use on the example, and characterize its 
level of automation. In Section 4, we extend BPEL4WS with a Semantic Discovery 
Service and introduce semantic translations to advance the level of interoperability 
provided by BPEL4WS. We discuss the architecture of our software, demonstrate it 
with respect to our reference example, and analyze its merits and shortcomings. In 
Section 5, we outline directions for Web service interoperation frameworks to achieve 
tighter integration between infrastructure and Semantic Web technologies. We 
conclude by highlighting the distinct features brought to Web service interoperation 
through richly expressive Semantic Web languages and well-defined semantics, and 
suggesting how interoperation frameworks might incorporate semantic markup and 
reasoning to achieve seamless automation of Web services. 

2   A Motivating Example 

To realize the value added by automated interoperation it is helpful to have a real-
world example in mind. Consider the task of taking out a loan on the Web. In the 
absence of automation, the user invests considerable resources visiting numerous 
sites, determining appropriate service providers, entering personal information and 
preferences repeatedly, integrating information, and waiting for responses. We would 
prefer that the user enters information once and receives the expected results from the 
most appropriate services with minimal additional assistance. One possible interaction 
model follows:  
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Fig. 1. An interaction model for the loan example domain. 

In this scenario, the user sends a single request to a loan finding service containing 
personal information, the type of loan desired, and some provider preferences. The 
loan finder distributes its work among two partner services: a credit assessor, which 
consumes the user’s personal information and provides a credit history report, and a 
lender service, which consumes a credit report and a loan request and returns a 
rejection or a loan offer and its terms. The loan finder first invokes a credit assessor to 
generate a credit report for the user, which it then passes to the lender service along 
with the user’s personal information. The lender service generates a result, which the 
loan finder reports to the user. It is no longer required that the user enter information 
multiple times, determine which services are appropriate, or standby to bridge output 
from one service to another as input. These responsibilities have been offloaded to the 
loan finding service and its service provider—the party responsible for the form and 
function of the loan finding service. 

This interaction model is appealing for the user, but switching perspectives to that 
of the service provider, it remains to show how service partners are selected, ordered, 
invoked, and integrated. 

3   Automated Web Service Execution 

A number of specifications and software packages are available to automate the 
execution of hand-written Web service compositions. Among them are BPEL4WS 
[7], WSCI [2], and BPML [1]. In this section we will focus on the most recently 
leading player, BPEL4WS (Business Process Execution Language for Web Services). 
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3.1   BPEL4WS and BPWS4J 

The BPEL4WS specification co-authored by IBM, Microsoft, BEA, SAP, and Siebel 
Systems merges ideas from Microsoft’s XLANG [28] and IBM’s WSFL [18]. It 
provides a notation for describing interactions of Web services as business processes, 
following in the tradition of workflow modeling [31,13]. Workflow in BPEL4WS is 
directed by traditional control structures such as if, then, else, and while-loop. 
Services are integrated by treating them as partners that fill roles in a BPEL4WS 
process model. The communication-level parameters of the partner services are 
described in accompanying WSDL documents. The process model describes a 
program that orchestrates the interaction of the service partners. The key components 
of the process model are: partners, which associate a Web service defined in an 
accompanying WSDL document with a particular role; variables, which contain the 
messages passed between partners and correspond to messages in accompanying 
WSDL documents; fault handlers, which deal with known and unexpected exceptions 
in the spirit of the try-catch programming construct; and flow, which lists the 
activities defining the control flow of the process.  

The BPWS4J engine [15], released by IBM alongside of BPEL4WS, implements a 
subset of the features defined in the BPEL4WS specification. The BPWS4J engine 
consumes a BPEL4WS document and WSDL documents defining the bindings for the 
BPEL4WS process and its partners. It then establishes a single endpoint for accessing 
the BPEL4WS process as a Web service. 

3.2   BPEL4WS and the Loan Example 

In order to model the workflow in Figure 1, a service provider writes each of the 
above elements into a BPEL4WS document. For our current purposes it is worth 
examining the <partners> element.  

In a BPEL4WS document modeling the interaction in Figure 1, the loan finding 
service interacts with three <partners> corresponding to the user, the credit assessor 
service, and the lender service. Note that the loan finding service in Figure 1 is not a 
partner because it corresponds to the BPEL4WS process itself. The element might be 
written as follows: 

  <partners> 
    <partner name="user"  
       serviceLinkType="lns:loanCustomerLinkType" 
                 partnerRole="user"/> 
    <partner name="assessor"            
       serviceLinkType="lns:USCreditAssessorLinkType" 
                 partnerRole="assessor"/> 
    <partner name="lender" 
       serviceLinkType=”lns:loanLenderLinkType” 
            partnerRole=”lender"/> 
  </partners>  

The serviceLinkType attribute selects a communication-level agreement between 
partners. The partnerRole attribute identifies which role the partner plays and which 
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the loan finding service plays. Each role is bound elsewhere in the BPEL4WS 
element space to a WSDL portType.  

3.3   Critical Analysis of BPEL4WS Automation 

BPWS4J enables automated Web service execution, and BPEL4WS opens the way 
for automated service discovery by leaving service partners unbound at design time. 
Both the engine and the specification, however, have shortcomings that limit their 
ability to provide a foundation for seamless interoperability. 

3.3.1   Limitations in BPWS4J 
Although a mechanism for dynamic partner assignment is outlined in the BPEL4WS 
specification, the version of BPWS4J available at the time of writing omits the service 
reference assignment feature, so a dynamically discovered service could not be bound 
to a partner role within BPWS4J. BPWS4J, then, enables automated Web service 
execution, but not automated Web service discovery.  

Without automated discovery, the service provider is responsible for choosing 
service partners a priori and preconcerting them into an effective unit. Because 
partner services are chosen prior to receiving the user’s request, the system cannot 
customize partner selection for the user’s specific needs or preferences. It is possible 
that the service selects suboptimal service partners, either because the service 
provider lacks a comprehensive list of potential partners at design time, or because of 
the difficulty in finding partners whose solution generalizes for all users. In the case 
of the loan example, it is possible that the user prefers to use an in-state lender 
because in-state loans offer tax incentives from the user’s state government. If the 
service provider defines the lending partner prior to the user’s request, the user’s 
preference is ignored. Additionally, discovering and integrating the service partners 
manually places greater responsibility and maintenance demands on the service 
provider than in the automated case. 

3.3.2   Limitations of BPEL4WS 
More interesting than engine-specific limitations are those inherent in the form and 
content of the BPEL4WS specification. Descriptions of executable and abstract 
processes in BPEL4WS are not declarative; they are not encoded in a manner that 
facilitates symbolic manipulation. As such, they are not well suited to many of the 
automated reasoning tasks envisioned by Semantic Web services [23].  

For example, the task of binding service partners to physical ports can, 
theoretically, occur at runtime in BPEL4WS. Nevertheless, the description of those 
service partners is done via WSDL portType definitions. Effective dynamic service 
binding cannot be performed by solely matching WSDL messaging interfaces. 
Service partners should be selected based on functional, nonfunctional and behavioral 
descriptions of what a service does, and how it does it. Further, we argue that such 
descriptions must be encoded in an ontology language (e.g., [26]).  

Restricting service descriptions to the expressivity of strictly syntactic WSDL 
interfaces limits the integration of service partners that operate on messages that have 
different syntax but are semantically compatible. For example, perhaps the only 
appropriate credit assessor for an ex-UK resident provides UKCreditReports while 
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the lending service consumes USCreditReports. Even if these messages differed only 
in their representation of dates, an interoperation system that cannot recognize the 
semantic compatibility of the credit reports could fail to realize a potentially 
successful integration. Likewise, service partners that are syntactically identical, but 
semantically incompatible, because different messages are described using the same 
name, will cause binding of functionally incompatible services.  

At the heart of the problem is BPEL4WS’s reliance on describing services using 
XML and XMLSchema. XML provides a rudimentary content language, but lacks the 
constructs to describe complex relationships between Web resources. While 
XMLSchema augments XML with a data model and enables datatyping, the 
semantics of XML is underspecified. Further, XMLSchema is not sufficiently 
expressive to create and relate rich datatypes. In contrast, RDF and RDF(S) provide a 
rudimentary ontology language. Not only do they provide a data model for XML, but 
they also enable the representation of classes, properties, domain and range, and sub-
class plus super-class hierarchies. Still further expressive is OWL, and its 
predecessor, DAML+OIL, which also include a well-defined semantics and the ability 
to define complex relationships between properties of objects in an ontology. By 
describing services in DAML+OIL or OWL, not only do we get a more expressive 
language for describing service partners, but also tools for automatically reasoning 
about those services [16]. With the absence of automated reasoning in BPEL4WS, it 
is the BPEL4WS author’s responsibility to manually construct a process model that 
follows the operational semantics of its service partners.  

4   Automated Service Discovery, Customization, and Semantic 
Translation 

In this section we present work that extends BPWS4J with customized, dynamic 
binding of service partners and semantic translation to address shortcomings 
presented in Section 3. To enable these features, we need to consider three issues: 
1. How to formally represent descriptions of potential service partners 
2. How to store, query and reason about such descriptions to discover appropriate 

partners 
3. How to integrate discovered partners into the BPWS4J engine 

Our approach adopts Semantic Web technologies to address the first issue, and 
these are described in Section 4.1. In Section 4.2, we present novel work in the form 
of a Semantic Discovery Service, which addresses the last two issues. 

4.1   Supporting Technologies 

We adopt several key Semantic Web technologies to enable the description of 
services in a computer interpretable format and the discovery of services with desired 
properties. 
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4.1.1   DAML-S 
DAML-S1 is an ontology for describing Web services based on DAML+OIL. As a 
DAML+OIL ontology, DAML-S has a well-defined semantics, making it computer-
interpretable and unambiguous. It also enables the definition of Web services content 
vocabulary in terms of objects and complex relationships between them, including 
class, subclass, and cardinality restrictions. 

The DAML-S upper ontology comprises three components:  
1. ServiceProfile - Relates and builds upon the type of content in UDDI, describing 

the properties of a service necessary for automatic discovery, such as what the 
services offers, its inputs and outputs, and its preconditions and effects. 

2. ServiceModel - Describes a service’s process model (the control flow and data-
flow involved in using the service). It is designed to enable automated 
composition and execution of services.  

3. ServiceGrounding - Connects the process model description to communication-
level protocols and message descriptions in WSDL. 

In this section, we focus on the ServiceProfile as a declarative descriptor of Web 
service properties enabling automated, customized service discovery and semantic 
translation. We collect DAML-S service profiles into a repository and exploit their 
semantics to query for partners based on descriptions of the partners’ desired 
properties.  

4.1.2   DAML Query Language 
We adopt the DAML Query Language (DQL) [11] as our formal language and 
protocol for querying repositories of DAML-S service profiles. DQL defines the 
construction of queries over a repository comprised of DAML+OIL sentences. In our 
case, the repository is a knowledge base (KB) of DAML-S service profiles. DQL 
queries are handled by a DQL server, which interfaces with an automated reasoner 
operating over the KB. The reasoner determines which profiles satisfy the query 
restrictions. The DQL server answers the query by returning matching profiles in a 
series of answer bundles.  

4.1.3   Java Theorem Prover 
We use the Java Theorem Prover (JTP) [16] as the DQL server’s automated reasoner. 
JTP is a hybrid reasoning system based on first-order logic model elimination. JTP is 
a particularly compelling candidate for our work because of its special purpose 
DAML+OIL reasoner. Since the reasoner is based on the axiomatic semantics of 
DAML+OIL, performance can be augmented by efficient storage of DAML+OIL 
sentences as triples and pre-computation of common queries. 

4.2   The Semantic Discovery Service 

DAML-S provides us with means to formally represent the form and function of Web 
services, and DQL/JTP provide us with sufficiently powerful machinery to query such 
descriptions. With these technologies in hand, it remains to integrate semantic service 
description querying into BPWS4J. Since the current release of BPWS4J is not 
                                                           
1  The DAML-S ontology has recently been translated to OWL, and renamed OWL-S [8]. 
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immediately extensible, we construct a Semantic Discovery Service (SDS) to work 
within BPWS4J’s perspective as an aggregator of Web services. 

The SDS sits between a BPWS4J process and its potential service partners. Instead 
of routing requests to previously selected partners, BPWS4J directs them to the SDS 
through a locally bound Web service interface. In order for the SDS to dynamically 
discover customized service partners, SDS messages contain (1) the parameters to be 
sent to a discovered service partner, and (2) the required service partner attributes, 
including functional and user constraints, expressed in DAML-S sentences. The SDS 
then locates appropriate service partners and serves as a dynamic proxy between the 
BPWS4J engine and the discovered partners. With this interface come two important 
properties of interactions with the SDS: 
1. The SDS is agnostic as to the content of the service descriptions and invocation 

messages it receives. 
2. The SDS is stateless, with no knowledge of prior interactions, and no service-

specific properties. 
These properties grant the SDS portability between any BPWS4J actions and 
processes. 

Further information about the SDS and demonstration code is available online at 
(http://ksl.stanford.edu/sds). 

4.3   Automated Service Customization 

Automated service customization refers to the automatic selection of partners to meet 
preferences and constraints specific to each user. A user’s request might contain 
preferences for a service’s physical location, side effects, quality of service and 
security guarantees, and many other properties.  

 In our approach to automated service customization, user constraints are encoded 
as DAML-S sentences in requests to BPWS4J. Because the BPEL4WS author expects 
each service partner to exhibit particular functional behavior, the BPEL4WS process 
may also add constraints on the functional classes of service partners. These 
constraints are applied to the functionalClass property of service profiles in the KB. 
functionalClass properties, in turn, point to an ontology of service functions 
contained in the KB. In the absence of a computer interpretable operational semantics, 
referencing ontological representations of functional classes facilitates manual service 
composition by allowing the service partner and BPEL4WS to agree upon expected 
behavior.  

Once the SDS receives a request for a partner service invocation, the SDS wraps 
the request’s DAML-S restrictions inside a DQL query and sends them to the DQL 
server. The DQL server invokes the JTP DAML+OIL reasoner to compute the set of 
DAML-S service profiles meeting the query criteria. Matching DAML-S profiles are 
returned to the SDS as answer bundles. The SDS selects a partner from the answer 
bundles and invokes the partner’s endpoint with the message parameters supplied by 
BPWS4J. The partner does its work and responds to the SDS, which in turn forwards 
the response to BPWS4J. BPWS4J recovers flow control, and continues executing the 
process model, invoking the SDS whenever a customized Web service invocation is 
needed (see Figure 2). 
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Fig. 2. Interaction flow between BPWS4J, SDS, DQL server, & discovered service partners. 

4.4   Automated Semantic Translation 

A key feature of semantically enriched data structures is their translatability within 
the context of automated reasoning. In goal-directed reasoning, an automated reasoner 
can exploit the semantic equality of syntactically distinct classes of objects to 
increasethe number of potentially successful execution pathways. Within the context 
of Web services, semantic translation refers to redefining well-defined data types in 
terms of their relationships to one another via implicit or explicit translational axioms. 
Semantic translation increases Web service interoperability by facilitating automatic 
translation of the inputs and outputs of service partners so they may interact 
seamlessly. 

The SDS provides automated semantic translation for Web service discovery. Our 
approach uses a recursive back-chaining algorithm to determine a sequence of service 
invocations, or service chain, which takes the input supplied by BPWS4J and 
produces the output desired by BPWS4J. Our translational axioms are encoded as 
translation programs exposed as Web services. The algorithm invokes the DQL server 
to discover services that produce the desired outputs. If the SDS does not have a 
required input, the algorithm searches for a translator service that outputs the required 
input and adds it to the service chain. The process is recursive and terminates when it 
constructs a successful service chain, or the profiles in the KB (or some bounded 
subset) are exhausted. 

The following pseudocode representation of the algorithm returns a service chain, 
if one exists in the KB, producing the desired output while consuming only the 
available inputs: 

Initialization: 
weHave = {inputs provided by BPWS4J process}; 
weWant = {output desired by BPWS4J process}; 
Step: 
findServiceChain (weHave, weWant) { 
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  svcs = getServicesOutputtingWeWant(weWant); 
  foreach service in svcs { 
    chain = new chain; 
    foreach input in service.inputs { 
      if input not in weHave { 
 newSvcs = findServiceChain(weHave, service.inputs); 
 chain.add(newSvcs); 
      } 
    } 
    if all service.inputs in weHave { 
      chain.add(service); 
 return chain; 
    } 
  } 
  return null; // no chain found 
} 

Note that this algorithm fits our purposes for a small DAML-S KB, but the worst-
case execution time grows exponentially in the number of inputs we allow. To 
improve performance we could utilize a heuristic that eliminates low scoring services 
from the svcs list based on a scoring function, e.g., the minimal distance between 
inputs we desire and the service’s outputs in a taxonomy tree, as described in [25]. 
Additionally, we could favor service partners requiring fewer inputs. 

Also note that we only account for inputs and outputs in translation because the 
translator services are of the same functional class. The translation services we 
describe are merely implementations of translational axioms and have no 
preconditions or side effects. 

4.5   SDS and the Loan Example 

We now consider the SDS in the context of the loan finding example from Sections 2 
and 3. Assume that the user has recently moved to California, USA from the United 
Kingdom, so that the only potential credit-reporting agency is based in the UK. This 
credit assessor produces credit reports of class UKCreditReport. BPWS4J must then 
invoke a service that inputs a UKCreditReport and outputs a LoanResult. The 
behavior of the service is enforced by BPWS4J requiring that the partner be of 
functional class creditAssesor, which is defined in an ontology as described in 
Section 4.3. Assume further that the user must get a loan from a US lender and, 
moreover, wishes to borrow from a California-based lender (to take advantage of in-
state tax incentives). The SDS may locate a CA-based lender of the required 
functional class using automated customization, but if the only such available lender 
requires a USCreditReport as an input the SDS would fail to discover an appropriate 
lender. The BPWS4J process would report that the request could not be completed. 

With semantic translation, the user’s request becomes satisfiable. We introduce 
into the DAML-S KB the profile for a DateTranslator service of functional class 
semanticTranslator that translates between USCreditReport and UKCreditReport 
classes. Assume that this service implements a semantic translation axiom that, for 
simplicity, properly declares that the credit reports are identical except that the US 
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version represents dates as MM/DD/YYYY, while the UK version uses DD/MM/YYYY. Since 
the DateTranslator service requires a UKCreditReport as an input, and the SDS has 
one available, the algorithm adds the DateTranslator to the chain. The service chain 
(assessor→DateTranslator→lender) now consumes a UKCreditReport and 
produces a LoanResult as desired by the BPWS4J process. The SDS executes the 
service chain and returns the LoanResult to BPWS4J. 

4.6   Characterization of SDS Automation 

We now characterize the level of automation provided by BPWS4J extended with a 
Semantic Discovery Service within the broader context of Web service interoperation. 
As in Section 3, the BPWS4J engine provides automated Web service execution given 
a BPEL4WS process model. In this section, we introduce the Semantic Discovery 
Service, which extends BPWS4J with customized, dynamic service binding and 
semantic translation. These capabilities enlarge the space of potentially successful 
executions, and allow the framework to account for user-defined constraints in partner 
selection. 

The SDS does not, however, enable automated Web service composition. This 
notion is regarded in the Semantic Web community as the determination of an 
execution plan to accomplish an objective given a current state, and adapting that plan 
as state changes without human intervention. Despite the fact that our implementation 
does discover and execute a sequence of services to produce a desired output from 
provided inputs, the fundamental workflow defined in the BPEL4WS document is 
intentionally unchanged, as we discuss below.  

The reasoning performed by the SDS is purely communicative and ignores 
services’ preconditions and effects, aside from those accounted for implicitly by their 
functional classes. To reason about preconditions and effects is to reason about what a 
service does. In the case of BPWS4J, the service provider performs this reasoning 
manually by defining a BPEL4WS process that utilizes a predefined number of 
service partners with expected operational semantics and an execution ordering. As 
such, the service provider imposes a particular decomposition of the process, making 
it inappropriate for the SDS to perform automated service composition for two 
reasons. First, recomposing a process without knowing the intended side effects of the 
original composition (i.e., those intended by the service provider) runs the risk of 
composing services with unintended side effects. Second, even if the SDS did have a 
formal description of the expected effects of the service partners – for example, an 
operational semantics defined by a DAML-S ServiceModel – recomposing the 
process into a new workflow reproduces the work of BPWS4J and the service 
provider, so the SDS would be replacing the very system it is supposed to 
complement. Enabling automated Web service composition within BPWS4J and 
similarly featured frameworks requires fundamentally redefining their roles and 
capabilities towards reasoning about abstract objectives and services described in 
languages with well-defined semantics. To so do, frameworks will need to shift from 
an interface-oriented perspective on Web services to one that is functionally-oriented. 
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5   Future Directions for Web Service Interoperation Systems 

In this Section we briefly outline some directions for Web service interoperation 
frameworks to facilitate fuller integration between infrastructure and Semantic Web 
technologies. We consider automating service discovery and then service composition 
in turn, grounded in our critique and extension of BPEL4WS. 

5.1   Adapting BPEL4WS for Automated Service Discovery, Customization, and 
Semantic Integration 

As discussed in Section 3.3.2, the central shortcoming in BPEL4WS giving rise to the 
need for the Semantic Discovery Service is its reliance on XML and XMLSchema for 
describing Web service partners (for now we set aside shortcomings in the current 
implementation of the BPWS4J engine). BPEL4WS could subsume the capabilities 
provided by the SDS by relaxing its dependence on XML in favor of higher-level 
descriptions in a language like DAML-S. DAML-S service profiles can be used to 
query for service partners, as in the SDS, and the DAML-S service grounding can be 
used to connect the high-level description to communication level protocols like 
WSDL (see [8] for details), saving the final binding to portTypes until runtime. 
BPEL4WS engines could easily query repositories for services using their built-in 
communication-level functionality. 

5.2   Adapting BPEL4WS for Automated Service Composition 

Automating service composition with frameworks like BPEL4WS requires a more 
substantial evolution, shifting its perspective as an execution framework for 
predefined process models to that of an automated reasoner over abstract goals. 
Execution plans devised to attain such goals must be adjustable as execution state 
changes. 

Several working systems developed by researchers in the Semantic Web 
community perform this function [22,24,20]. These frameworks share two key 
components necessary to automate Web service composition. The first is a declarative 
representation of the capabilities of each Web service in a semantically well-defined 
language that is computer interpretable, as employed by the SDS or the modified 
version of BPEL4WS suggested in Section 5.1. Further, this information must 
abstractly describe the service’s function as well as its form. While BPEL4WS’s 
predecessors, XLANG and WSFL, had a well-defined semantics for describing the 
execution of a workflow, to date BPEL4WS has not been shown to maintain this 
property. Adopting the DAML-S ServiceModel would shift the perspective of the 
interoperation framework towards being functionally-oriented on service partners. 
Partners could then be chosen based on functional and operational constraints in 
addition to their communication-level properties. In the case of the loan finding 
example, the ServiceModel would formally declare how the service functions, the 
potential side effects, and the necessary preconditions so that automated reasoning 
machinery could appropriately manipulate it to determine a composition. The runtime 
execution of the model would be determined by an automated reasoner within the 
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BPEL4WS engine, allowing far greater flexibility in successfully completing the 
user’s request. In a loan finding scenario, for example, there are clearly many more 
ways to get a loan than the “assessor-lender” model. The composition system could 
propose, for example, an advance on the user’s credit card, government subsidized 
assistance, or other solutions that meet the user’s objective but may be more 
financially desirable or practical.  

As implied above, the second necessary component to automated Web service 
composition is appropriate computational machinery to manipulate service 
descriptions to produce a composition. All of the composition work from the 
Semantic Web mentioned above employs such machinery operating on some model 
with a formal executional semantics. For example, Karmasim [24] uses reachability 
analysis over Petri nets. McIlraith and Son’s work [22] uses Prolog and a subset of 
first-order logic. McDermott’s work [20] likewise uses a logic-based automated 
reasoning system. All of these approaches, while powerful, reveal the need for further 
research, particularly in integration with industrial efforts. Importantly, however, this 
work highlights the spectrum of approaches interoperation frameworks could employ 
to increase their power and flexibility.  

6   Conclusion 

Seamless interoperability among networked programs and devices is critical for Web 
services to provide an infrastructure for the vision of ubiquitous computing. We 
argued here that industry has taken us a step in this direction with computing 
machinery for automated service execution, while the Semantic Web community has 
developed powerful representation and reasoning technology but has remained largely 
disconnected from the industrial effort. In acknowledgement of the fact that Web 
service technology will continue to evolve from emerging industry standards, we 
developed software from the bottom-up that extends industrial machinery with 
Semantic Web technology to enable automated service discovery, customization, and 
semantic translation. By integrating our technology, the industrial system gained the 
following capabilities: 
1. Automatic, runtime binding of service partners 
2. Selection between multiple service partners based on user-defined preferences 

and constraints 
3. Integration of service partners with syntactically distinct but semantically 

translatable service descriptions 
We further argued that these capabilities approach the limit of automated service 

interoperation with current industrial machinery. Extending manual composition 
frameworks with automated composition machinery supplants provider-defined 
workflows with potentially undesirable recompositions. Achieving automated Web 
service composition requires a fundamental shift in industrial frameworks from 
executing predefined process models to computing and adapting execution plans from 
abstract objectives. In particular, in order for industry to achieve this shift, it is critical 
that: 
1. Web service providers publish unambiguous, computer-interpretable declarations 

of Web service form and function, at a level of detail commensurate with the 
task, and in a language with a well-defined semantics 
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2. Web service interoperation frameworks embed automated reasoning technology 
into their systems and specifications that is capable of reasoning about semantic 
descriptions of Web services. 

With the Semantic Web grounded in firm industrial support, we can begin to attain 
the manifold benefits of fully integrated, Web-wide distributed computation. 
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