
An Epidemic Protocol for Managing Routing

Tables in Very Large Peer-to-Peer Networks

Spyros Voulgaris and Maarten van Steen

Vrije Universiteit, Amsterdam
{spyros,steen}@cs.vu.nl

Abstract. Building self-maintained overlay networks for message rout-
ing has recently attracted significant research interest [5, 6, 7, 8, 9]. All
suggested solutions have a common goal: To build and maintain struc-
tures (routing tables) that can be used to route messages. Several of the
proposed algorithms focus on efficiency of bandwidth usage. However,
their behavior is uncertain in the presence of highly dynamic environ-
ments, or serious disasters (i.e. half of the nodes crashing). In this pa-
per we present an alternative approach to managing routing tables for
peer-to-peer routing overlay networks, based on the Newscast epidemic
protocol [1]. We substantiate our claims by presenting experimental re-
sults. We, therefore, demonstrate the potential of the Newscast epidemic
protocol to create highly robust, self-administered overlay networks, able
to sustain and adapt fast to severe network changes.

1 Introduction

The Internet has dramatically expanded over the past few years, proving the
traditional client-server model of communication inadequate for a number of
services in the large scale. The network research community has realized that
using centralized servers is not the way to go with respect to managing and
administering very large scale distributed systems, as well as for certain ap-
plications for such systems. As a result, considerable effort has been made in
designing peer-to-peer (P2P) overlay networks. These networks are highly (or
totally) decentralized distributed systems, where nodes are equal peers cooper-
ating to provide a service all together. The major advantage of such systems is
that they do not involve any central point of administration or control.

A significant part of the recent research in P2P systems has been in designing
overlay networks for routing. These networks operate in the application layer, on
top of an existing physically interconnected set of nodes (such as the Internet).
They assign each participating node an ID, and route messages to a node based
on that, rather than based on its IP address. Performance (in terms of routing
hops) is usually inferior compared to traditional IP routing. However, they offer
a number of other, attractive advantages, such as higher fault tolerance, flexi-
bility of deployment, adaptivity, as well as lack of central control. A number of
such P2P systems has been proposed, such as CAN [5], Chord [6], Pastry [7], and
Tapestry [8]. Their common property is that they all try to form and maintain

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 41–54, 2003.
c© IFIP International Federation for Information Processing 2003



42 Spyros Voulgaris and Maarten van Steen

some sort of structure across the large number of participating nodes, that is
then used to route packets among them.

Other P2P algorithms (such as Newscast [1]) fall in the category of epidemic
(or gossip) protocols. They aim at exploiting randomness to disseminate infor-
mation across a large set of nodes to keep that set of nodes highly connected
even in the event of major disasters, without keeping any static structures or
requiring any sort of administration. Connection between nodes in such systems
is highly dynamic. These systems are more adaptive to major network changes,
and appear to have a self-healing behavior with respect to major network dis-
asters. Their lack of structure, however, restricts them from carrying out some
types of services (i.e. routing) in an efficient way.

In this paper we combine the advantages of routing overlay networks with
those of highly fault tolerant, self-healing epidemic networks. In particular, we
investigate how to bootstrap and maintain structures used for peer-to-peer rout-
ing based on the highly dynamic emergent behavior of Newscast. Moreover, this
paper demonstrates the power of an epidemic protocol as simple as the Newscast
protocol, in managing structures across very large-scale distributed systems, in
a totally distributed and scalable way, with no need for external administration,
and with very high fault tolerance.

Section 2 provides a brief description of Newscast, concentrating more on its
epidemic protocol. Section 3 describes structures that can be used for peer-to-
peer routing. The architecture proposed for management of peer-to-peer routing
tables is presented in section 4. Section 5 describes the experiments we con-
ducted, and section 6 discusses the results obtained. Finally, we present conclu-
sions and directions for future research.

2 The Newscast Protocol

Newscast (introduced in [1]) is a model for information dissemination and mem-
bership management in large-scale, agent-based distributed systems. It deploys
a simple, peer-to-peer data exchange protocol. The Newscast protocol forms an
overlay network and keeps it connected by means of an epidemic algorithm. The
protocol is extremely simple: each agent knows only a (continuously changing)
small set of peers, and periodically picks randomly one of them to exchange
information with. In the following, we present a brief overview of the protocol’s
operation, and explore some properties of its emergent behavior.

In Newscast information is exchanged by means of news items. A news item is
a 4-field structure containing (a) the ID of the agent where it originated, (b) the
network address of that agent, (c) a timestamp of the moment it was generated,
and (d) some application-specific data. Each agent maintains a fixed-sized cache
of c news items (with typical value 20 to 40). The basic idea is that each agent
periodically picks a random peer from its cache and subsequently both agents
replace their cache entries with the c freshest news items of the union of their
original caches.



An Epidemic Protocol for Managing Routing Tables 43

More formally, but omitting specific details described in [1], each agent ex-
ecutes the following four steps once every ∆T time units (∆T is referred to as
the refresh interval)

1. Add a fresh (agent-specific) news item to the cache.
2. Randomly select a peer agent by considering the network addresses of other

agents as found in the cache.
3. Send all cache entries to the selected peer agent, and, in turn, receive all

that peer’s cache entries.
4. Out of the (up to) 2c cache entries, keep the c newest ones, and discard the

rest.

The selected peer from step 2 executes the last two steps as well, so that after
the exchange both agents have the same cache. Note that as soon as any of these
two agents executes the protocol again, their respective caches will most likely
be different again.

This algorithm resembles the traditional push-pull epidemic protocol [2].
A critical difference, however, is that no correspondent knows the complete mem-
ber list, but only a small, random fraction of it.

The protocol does not require that the clocks of the agents are synchronized,
but only that the timestamps of news items in a single cache are mutually consis-
tent. We assume that the communication time between two agents is negligible
compared to ∆T (which is generally in the order of minutes). When an agent A
passes its cache to B, it also sends along its current local time, TA. When B
receives the cache entries, it subsequently adjusts the timestamp of each entry
with a value TA−TB, effectively normalizing the time of each new entry to those
already cached.

As it turns out, this simple model of communication has desirable statistical
properties. To understand the behavior of newscasting, we consider the undi-
rected communication graphs Gt at different time instants t. Each such graph is
constructed as follows. The vertex set Vt of Gt contains the agents that are alive
at time t. A link between agents a, b ∈ Vt exists if and only if either a is in the
cache of b or b is in the cache of a at that time. The cache-exchange algorithm
leads to a series of graphs Gt, given an initial graph G0. Graph Gt expresses the
possibility of cache exchanges, and in essence information flow, at time t.

Now consider the series of graphsG0, G∆T , G2∆T , . . .. Note that during a time
interval ∆T each agent initiates the cache-exchange algorithm. In other words,
after ∆T time units, all agents will have added a fresh news item to their caches,
and will have exchanged and merged caches with at least one of their neighbors
(and possibly more). We say that a cycle of the Newscast protocol has completed.

We have conducted simulations with up to 50,000 agents [1] assuming an ide-
alized communication infrastructure with no communication delays and packet
losses, and emulations by deploying up to 128,000 actual Newscast agents on
a real wide-area network [4]. Both our simulations and emulations show that
even for small cache sizes (say, c = 20), each graph Gk∆T stays connected.
Moreover, it turns out that the average path length (average length of shortest



44 Spyros Voulgaris and Maarten van Steen

paths between any two nodes) converges to a very low value in just a few cy-
cles, and which is only slightly longer than the average path length in random
graphs. For real experiments with 128,000 nodes, and cache size of c=20, 30, and
40 entries, the average path length converges to 6, 5, and 4, respectively within
the first 30 cycles. Additional experiments showed insignificant dependence on
network latencies and packet losses, except when these were exceptionally high.

A more significant property of Newscast is, however, its strong connectivity.
Let G′

t be a subgraph of Gt, where a number of random nodes (and their links)
have been removed. Our simulations and emulations show that G′

t remains con-
nected even when more than half of the nodes are removed. This means that
when even half of the agents of a Newscast network are removed, the rest of
the nodes remain connected in a single cluster. In fact, Newscast’s connectivity
property is so strong that one needs to remove over 75% of the nodes to start
breaking up the remaining network into disjoint clusters. The nodes surviving
such a major disaster, quickly converge to an independent strongly connected
Newscast network, capable of sustaining further major disasters of similar sever-
ity.

Our experiments also show that we need only an extremely simple way of
handling membership, which is an important improvement in comparison to
other epidemic models, such as [3]. Consider the worst solution to handling
membership that could possibly disrupt the emergent behavior of our protocol:
an agent contacts the agent running on a well-known central server and simply
initiates the cache-exchange protocol with it. This approach systematically biases
the content of caches, which now all depend on what is stored at the central
server.

We conducted a simulation experiment in which we admitted 50 new agents at
every communication cycle until 5,000 agents had joined the network, after which
no new agents were allowed to join. By measuring the average path length again,
we saw that shortly (i.e. approximately 15 cycles) after the last agents had been
added, the average path length quickly converged to the one we would expect
in a stable graph. We can conclude that even this worst-imaginable membership
protocol does not affect the general properties of newscasting. In effect, when
a node wants to join, it needs to know only the address of a single other node
and can simply start executing the newscast protocol. Leaving is done by simply
stopping communication.

3 Peer-to-Peer Routing

One of the key issues in designing large-scale peer-to-peer overlay networks is to
provide an efficient way to do routing. Several architectures have been proposed
as peer-to-peer routing substrates, such as CAN [5], Chord [6], Pastry [7], and
Tapestry [8]. Such distributed systems that map “keys” onto “values” in a way
similar to hash tables, are referred to as distributed hash table (DHT ) based
networks [9]. Two of the most popular of them, Pastry and Tapestry, employ
routing based on the same concept: incrementally matching the destination’s



An Epidemic Protocol for Managing Routing Tables 45

ID, digit by digit. In this section we present the structure and operation of the
principal structures used for routing, the routing tables.

Each node is assigned a unique numeric identifier, its nodeId, or simply ID.
When presented with a message and a numeric key, a node routes the message
towards the node whose ID is equal to the given key. NodeIds and keys are N-bit
integers, forming a nodeId space that spans from 0 to 2N − 1. N has a typical
value of at least 64 to provide a sufficiently large nodeId space to accommo-
date possibly billions of nodes. Nodes pick their nodeIds randomly with uniform
probability from the set of N-bit strings. We assume that the nodeId space is
large enough compared to the actual number of nodes, such that the probability
that nodes pick unique IDs is high. It is, therefore, assumed that nodeIds are
uniformly distributed across all geographic regions, multiple jurisdictions, and
various networks.

For the purpose of routing, nodeIds and keys can be thought of as a sequence
of digits in base 2b (b-bit long digits), where b is a configuration parameter
with typical value 4 (which implies hexadecimal digits). Routing a message to
its destination is achieved gradually, by matching one additional digit of the
message’s key at a time, say, from left to right. That is, in each step the message
is normally forwarded to a node whose ID shares with the key a prefix at least
one digit (b bits) longer than the prefix the key shares with the present node’s
ID, if such a node is known. If such a node is not known, routing of that message
fails.

To implement the logic described above in message routing, each node main-
tains its routing table. The routing table of a node consists of N/b rows of 2b

entries each. That is, the number of routing table rows grows logarithmically
with the size of the ID space supported. A routing table entry contains the ID
of a node, and its corresponding IP address. A given row of the routing table
contains 2b entries, and represents a matching prefix in the nodeId up to a digit
position. Entries in the rth row (r ∈ {1, . . . , N/b}) contain nodes whose IDs share
the same (r − 1)-digit prefix with the present node. The cth entry of the rth
row contains such a node, with the additional constraint that its ID’s rth digit
is equal to c. For instance, assuming b=4 (hexadecimal digits for the nodeId),
the 2nd entry of the 3rd row of the routing table for node 437BF52. . . (N/4 hex
digits in total) is some node whose ID starts with 432, while the 8th entry of its
5th row has a node whose ID starts with 437B8.

Upon receiving a message, a node compares the message’s key to its nodeId.
If they share a common prefix of i digits, it should forward it to a node whose ID
shares a prefix of i+1 digits with the key. To accomplish that, the present node
looks up the (i+1)th row of its routing table, which contains nodes sharing with
the key the same i first digits. Out of that row, it picks the kth entry, where k
is the value of the key’s (i + 1)th digit, and forwards the message to that node.
That node not only shares with the key the same first i digits, but also the
(i + 1)th one. This process continues either until the node whose ID matches
all digits of the message’s key is reached, or, else, until the message cannot be
forwarded any further.



46 Spyros Voulgaris and Maarten van Steen

4 P2P Routing Based on Newscast

An important issue in DHT-based peer-to-peer systems is managing the routing
tables. These tables are kept up-to-date by having nodes that join or leave the
system contact other nodes explicitly. To handle failures, heartbeat algorithms
are used to probe nodes and to take measures when a failure is detected.

We propose a different approach, namely to separate routing from table man-
agement, similar to the separation deployed in Internet routing protocols such as
OSPF or RIP. We believe such a separation often leads to a cleaner and simpler
design, although sometimes at the cost of performance.

Newscast can typically be used as a distributed background process by which
nodes are kept up-to-date in a lazy fashion. For DHT-based peer-to-peer systems,
we propose to deploy Newscast for maintaining routing tables. Our method
is completely decentralized, highly robust, and quickly adjusts itself to major
changes in the network. These advantages come at the price of continuous band-
width consumption.

4.1 The Principal Idea

Newscast’s epidemic protocol has a number of important properties, as described
in section 2. It maintains a strongly connected graph, it sustains disasters, it
adapts very fast to (possibly major) network changes, and it is highly scalable.
The idea is to combine the adaptivity strength of the Newscast epidemic protocol
with the efficiency of the routing scheme presented in section 3, to create a robust,
highly fault resilient, peer-to-peer overlay network for efficient routing.

Knowledge of peer nodes provided by Newscast can be used to populate the
routing tables. In each iteration of the Newscast protocol every node receives
references to c other nodes, randomly chosen among all the participating nodes.
Each node has to gather enough information to build and maintain all its N/b
rows.

Let us concentrate first on building the first row of a node’s routing table.
This requires references to nodes whose IDs differ from the present node’s ID in
the first digit, which makes a total of 2b−1 nodes. Seen differently, considering 2b

classes of nodes split according to their ID’s first digit, we require a reference to
an arbitrary representative from each class (excluding the present node’s class).
Assuming evenly distributed node IDs, each class contains roughly 1/2b of the
nodes. Therefore, with very high probability, a node will have learned about
at least one representative from each of the 2b − 1 classes when 2b (or a few
more) random nodes become known to it. Assuming 2b = 16 (for b = 4) and
cache size c = 20, this might happen even when a node executes the Newscast
cache-exchange protocol only once.

For the second row of a node’s routing table, we require references to 2b − 1
nodes of IDs with the same first digit, but different second digit than the present
node’s ID. Apparently, we are seeking for representatives of much narrower node
ID ranges, each containing roughly (1/2b)2 of the total nodes. In general, filling
up the kth row requires representatives of 2b − 1 classes, each containing just



An Epidemic Protocol for Managing Routing Tables 47

(1/2b)k of the total nodes. The narrower a node ID range gets, the more difficult
it becomes to find a representative from it by taking random samples across all
the nodes. Obviously it would be inefficient to rely on Newscast over the whole
set of nodes to find representatives of these narrow node ID ranges. A more
focused approach is required, described in the following subsection.

4.2 Multi-layer Newscast Scheme

As we mentioned, executing the Newscast protocol can be seen as running a dis-
tributed background process by which nodes are kept up-to-date. To efficiently
maintain routing tables, we run multiple instances of the Newscast protocol, each
node running several Newscast agents in parallel. In fact, each node runs exactly
N/b Newscast agents, each one being responsible for maintaining one of the rows
of the node’s routing table. The agent responsible for row r ∈ {1, . . . , N/b} of
node X will be referred to as agent #r of node X.

Note that a node’s agent #i deals only with nodes whose IDs share a common
prefix of length i− 1 with the present node’s ID, that is, it does not accept any
nodes with a different prefix in its cache. Moreover, a node’s agent #i interacts,
in terms of the Newscast protocol, only with agent #i of peer nodes, as shown
in figure 1. Apparently, agent #i of a peer node contacted by agent #i of the
present node, contains items whose node IDs share the same i−1 long prefix too.
What we are thus seeing, is that agent #i of node X maintains a small-world
network with some other nodes whose IDs are the same in the first i − 1 digits
as the ID of X . Agent #1 of all nodes maintain a single connected small world
of the whole set of nodes.

To collect all nodes with a particular prefix in a single connected small world,
we apply the following strategy. Peers that become known to a node’s agent #i
are also reported to the same node’s agent #(i+1). That agent, in turn, inserts
the peers that match its prefix requirement in its cache (by replacing the oldest

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Agent 1

Agent 4

Agent 3

Agent 2

Peer X

Peer W

Peer Y

Peer Z

Node A

Fig. 1. Communication of node A during one communication cycle



48 Spyros Voulgaris and Maarten van Steen

cache items), and further reports them to agent #(i + 2) of the same node, if
any. In other words, any peer that becomes known to a node’s agent #i, is also
made known to all the agents #j (j > i) of the same node that are potentially
interested.

An important observation is that once agents #i of all nodes that share the
same first i − 1 ID digits have formed a single small world, agents #(i + 1) of
the nodes among them that also share an arbitrary same ith digit form a single
connected small world very fast. Each agent #i learns about c random peers with
the same first i−1 digits every ∆T time units. Assuming evenly distributed node
IDs, we expect that on average c/2b of the peers that become known every ∆T
time units share the ith ID digit too with the present node, in addition to the
first i − 1 digits. Given typical parameter values of c = 20 and b = 2, one or
more peers sharing i digits become known every ∆T time units on average. This
partly explains why all agents of every node form small worlds quickly, as we
shall see later.

Notice that, initially, every node’s agent #(i+1) forms its own (trivial) small
world, disjoint from all the rest. Such a small world generally expands on each
cycle of agent #i, since a random peer satisfying the prefix requirement of agent
#(i + 1) is introduced. Moreover, two small worlds of n and m nodes unite if
any of the n nodes of the first happens to learn about the existence of any of
the m nodes of the other, respectively. Therefore, the larger disjoint small worlds
become, the more likely they will unite. What we are seeing, is an increasingly
accelerating behavior in the process of merging among disjoint small worlds. It
is therefore reasonable to state that agent #(i+1) of a set of nodes sharing the
same first #i digits form a small world in just a few cycles, provided agent #i
of nodes sharing the same first #(i − 1) digits form a small world too.

The set of all nodes’ agent #1 run a pure Newscast instance that guarantees
a single connected small world of all existing nodes. By induction, and based
on the claims of the previous paragraph, we expect all instances of Newscast
executed by all agents of all nodes, to quickly form the small worlds they are
designed for.

5 Experimental Setting

We implemented the architecture described in section 4.2 in Java and deployed it
on the DAS-2, a 400-processor cluster geographically distributed over a wide-area
network across the Netherlands. We carried out experiments with a set of 65,536
nodes, a number of them running on each DAS-2 processor simultaneously.

Regarding the parameters related to peer-to-peer routing, we considered node
IDs of length N = 16 bits, and digits of length b = 4 bits (hexadecimal digits).
This setting resulted in N/b = 4 rows and 2b = 16 columns per routing table.

As far as the Newscast parameters are concerned, each node was running 4
Newscast agents, one for each of its 4 routing table rows. A cache size of c = 20
was used for each Newscast agent. We ran our experiments with the same refresh
interval of ∆T = 10sec for all agents. That is, every 10 seconds each of the



An Epidemic Protocol for Managing Routing Tables 49

4 Newscast agents of each node initiated a cache exchange. We recorded and
analyzed the behavior of our architecture at intervals of 60 seconds, that is, we
logged the whole network’s state every 6 communication cycles.

Another facet of our experiments that is worth noting is the bootstrapping
mechanism. By bootstrapping we refer to the procedure of providing agents
with the information required to jump-start the overlay network’s formation. In
principle, a new agent joins by contacting any existing agent and exchanging
caches. When the whole network starts from scratch, a systematic way has to be
present to provide one or more initial communication points to each agent. In our
experiments, all nodes’ agents #1 were provided with the address of one single-
selected node’s agent #1. Providing agents with a choice of (possibly random)
agents to connect to initially, enhances the randomness of the network from the
early cycles. However, a bootstrapping mechanism as simple and centralized as
the one we chose further endorses our claims of our architecture’s fast convergent
behavior, as discussed in the following section.

Finally, we imposed a fake large-scale failure while the experiment was run-
ning, to observe and analyze the behavior of our system in such cases. In particu-
lar, we killed 50% of the nodes in the middle of the experiment. Our observations
of the experiments and their analysis are presented in the following section.

6 Experimental Results and Analysis

This section presents the output of our experiments with 65,536 agents. We
recorded and analyzed two aspects of the system’s behavior: dynamic forming
of the routing tables when bootstrapping, and following a large-scale failure.

6.1 Bootstrapping

The first part of our experiment aimed at observing the system’s behavior while
bootstrapping. Figure 2 presents the system’s fast convergence to a fully opera-
tive routing substrate. It shows the average number of routing table rows that
are completely filled per node, as a function of the number of cycles elapsed from
the experiment’s start. A node’s ith routing table row being completely filled
means that the node can route any message whose key shares i − 1 digits with
the node’s ID to a peer node whose ID additionally matches the ith digit of the
message’s key. Note that the system manages to fill all routing table entries in
all nodes in less than 30 cycles.

Figure 3 demonstrates the efficiency in routing messages to random desti-
nations. From each node we routed a number of messages to random nodes.
Figure 3 presents the average values. The left-hand diagram shows how many
routing steps messages took on average en route to their destination. Initially,
routing tables are empty, so messages cannot take any steps towards their des-
tinations. However, as routing tables are gradually formed, messages are cor-
respondingly routed through more steps. This diagram is similar to the one of



50 Spyros Voulgaris and Maarten van Steen

 4

 3

 2

 1

 0
 0  5  10  15  20  25  30

N
um

be
r 

of
 fi

lle
d 

ro
ut

in
g 

ta
bl

e 
ro

w
s

Cycles

# of filled rows

Fig. 2. Average number of filled routing table rows

 0

 1

 2

 3

 4

 0  5  10  15  20  25  30

A
ve

ra
ge

 r
ou

tin
g 

st
ep

s 
ta

ke
n

Cycles

Avg. # of routing steps

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30P
er

ce
nt

ag
e 

of
 m

es
sa

ge
s 

de
liv

er
ed

 to
 d

es
tin

at
io

n

Cycles

% of msgs delivered

Fig. 3. Left: Average routing steps taken. Right: Percentage of messages deliv-
ered

figure 2, as the number of routing steps a message takes is directly dependent
on the number of filled routing table rows.

The right-hand diagram of figure 3 shows what percentage of the messages
manage to actually reach their destinations, as a function of the number of cycles.
For the first 10 cycles few or none of the messages reach their destinations.
However, as routing tables are filled, more messages are routed all the way
through to their destinations. As it turns out, after the first 24 cycles 99.74% of
the messages are delivered to their destinations, and after 30 cycles, this fraction
increased to 99.998%.

6.2 Robustness to Large-Scale Failures

To test the system’s behavior in the face of large-scale failures, we intentionally
killed half of the agents after we knew that all nodes’ routing tables had been
completely filled, at cycle d.1 More specifically, we killed all nodes with an odd
1 This corresponded to approximately 10 minutes after the experiment’s start



An Epidemic Protocol for Managing Routing Tables 51

 4

 3

 2

 1

 0
d+30d+25d+20d+15d+10d+5d

N
um

be
r 

of
 fi

lle
d 

ro
ut

in
g 

ta
bl

e 
ro

w
s

Cycles

# of filled rows

Fig. 4. Average number of filled routing table rows when recovering from a 50%
node crash that happened at cycle d

ID. As we shall see, the network remains connected after such a major disaster,
and adapts very quickly to the set of nodes that remain alive.

Figures 4 and 5 are analogous to the previous figures, 2 and 3. Figure 4 shows
the average number of routing table rows that are completely filled (with valid
entries), per node. Note that outdated entries of crashed nodes (the ones with
odd IDs) are not considered valid, and therefore are not counted. Immediately
after the crash none of the nodes’ rows are filled, which implies that all nodes’
routing rows also had some entries with odd node IDs. However, as can be seen
in the diagram, routing tables are filled very quickly. Within 30 cycles from the
crash all nodes’ first 3 routing table rows have been filled. Note that this is the
maximum number of rows that can be filled per node. Routing tables’ 4th rows
cannot be filled, as they would require nodes that match all possible cases for
the last digit of their IDs. Since nodes with odd IDs do not exist any more, it
is not possible to fill up these rows. This, however, does not affect routing, as
routing paths to all existing nodes (i.e. nodes with an even ID) do exist and are
complete.

The system’s capability to route messages can be seen in figure 5. The left-
hand diagram shows the average number of steps a message is routed through.
Initially, since half of the nodes have been removed, messages are routed on aver-
age half-way through to their destination. As routing tables adjust to the change
imposed by half the nodes crashing, messages are routed through more steps to
their destinations. The right-hand diagram of figure 5 shows the percentage of
messages that are successfully routed all the way through to their destination.
Just like in the bootstrapping case, routing tables are formed very fast. It takes
less than 20 cycles from the moment of the crash to form routing tables that can
route any message from any source to any destination.

6.3 Bandwidth Considerations

In this section we provide an estimation of the individual (per node) and aggre-
gate bandwidth used in our experiments, based on the number of bytes trans-



52 Spyros Voulgaris and Maarten van Steen

 0

 1

 2

 3

 4

d+30d+25d+20d+15d+10d+5d

A
ve

ra
ge

 r
ou

tin
g 

st
ep

s 
ta

ke
n

Cycles

Avg. # of routing steps

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

d+30d+25d+20d+15d+10d+5dP
er

ce
nt

ag
e 

of
 m

es
sa

ge
s 

de
liv

er
ed

 to
 d

es
tin

at
io

n

Cycles

% of msgs delivered

Fig. 5. Message routing while recovering from a 50% node crash that happened
at cycle d. Left: Average routing steps taken. Right: Percentage of messages
delivered

ferred by the application layer. Note that some additional overhead is induced by
the underlying network protocols (i.e. TCP/IP), which we do not consider here.
Despite the 16-bit node IDs we used in our experiments, we make the estimation
assuming node IDs of 64 bits, which would be the ID size in real operation.

A cache entry consists of 16 bytes: 8 bytes for the node’s 16-bit ID, 4 bytes for
its ip address, 2 bytes for the port, and 2 bytes for the entry’s timestamp. One
cache has c = 20 entries, which account for 320 bytes. A cache exchange involves
sending the cache to a peer and receiving the peer’s cache, therefore causes traffic
of 640 bytes. Every ∆T , each node initiates exactly one cache exchange, and also
participates on average in one cache exchange initiated elsewhere. Therefore,
two cache exchanges cause transfer of 1280 bytes. For running 4 agents, a single
node exchanges 4×1280 = 5120 bytes every ∆T = 10sec. That is, 512 bytes per
second, or 4096bps (4Kbps). This is the price to pay for achieving fully operative
routing tables in less than 30× 10 = 300 seconds, which is 5 minutes.

For the aggregate bandwidth we multiply the individual node bandwidth by
the number of nodes and divide by two, since the traffic caused by each cache
exchange has been counted twice, once for the exchange initiator and once for the
peer node. Therefore, we have a total bandwidth of 65, 536×4/2 = 131, 072Kbps,
which is 128Mbps. Note that even though this bandwidth seems too high, it is
in fact distributed across the whole (possibly world-wide) network.

In a real system, with 64-bit node IDs, and a digit length of 4 bits, we would
need 16 Newscast agents running per node. This would require the exchange of
16×1280 = 20, 480 bytes every ∆T per node. Note that the refresh interval, ∆T ,
is a configuration parameter. By setting a longer refresh interval, we can lower
the bandwidth used by each node, at the expense of slower completion of the
routing tables. For instance, a refresh interval of ∆T = 60sec would require a
bandwidth of 20, 480/60 � 341 bytes per second, or roughly 2.7Kbps. However,
in that case routing tables would take longer to be filled, around 30 minutes.



An Epidemic Protocol for Managing Routing Tables 53

7 Conclusions and Future Directions

This paper aimed at demonstrating the potential of the Newscast protocol in
building large-scale, self-managing communities. In particular, we dealt with the
application of managing routing tables for DHT-based peer-to-peer networks.
We introduced a Newscast-based architecture for this application, and analyzed
the system’s behavior through experimentation. We showed that the proposed
system forms routing tables fast, in a totally decentralized, self-organized man-
ner.

This research is very recent, and currently under development. The results
of the experiments suggest that our system can provide highly robust, non-
centralized routing table management. However, more research remains to be
done to discover potential optimizations for our architecture, such as in the field
of bandwidth consumption. Our architecture could possibly use significantly less
bandwidth if adaptive refresh intervals were applied. Also, each agent of a node
could have an individually optimized set of configuration parameters, such as
cache size and refresh interval. Future research aims at optimizing the current
approach.

Another goal for future research, in a broader sense, is exploiting Newscast
for a multitude of diverse peer-to-peer applications. We envision Newscast as
being a basic background process, supporting, organizing, and managing overlay
networks in a fully decentralized way.

The contribution of this paper is that it provides and analyzes a complete
solution to a specific problem, showing the potential of the Newscast protocol
to support such systems.

References

[1] M. Jelasity, M. van Steen. Large-scale newscast computing on the Internet. Tech-
nical Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Sci-
ence, Amsterdam, The Netherlands, Oct. 2002. 41, 42, 43

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database manage-
ment. In Proc. 6th ACM Symp. Principles of Distributed Computing (PODC’87),
pp. 1–12, Vancouver, Aug. 1987. 43

[3] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. Peer-to-peer membership man-
agement for gossip-based protocols. IEEE Transactions on Computers 52(2):139–
149, 2003. 44

[4] S. Voulgaris, M. Jelasity, M. van Steen. A Robust and Scalable Peer-to-Peer
Gossiping Protocol. In Agents and Peer-to-Peer Computing workshop, Melbourne,
Australia, July 2003. 43

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A scalable content-
addressable network. In Proc. ACM SIGCOMM’01, San Diego, CA, Aug. 2001.
41, 44

[6] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for Internet applications. In Proc. ACM SIG-
COMM’01, San Diego, CA, Aug. 2001. 41, 44



54 Spyros Voulgaris and Maarten van Steen

[7] A. Rowstron, P. Druschel. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems In Proc. IFIP/ACM Middleware 2001,
Heidelberg, Germany, Nov. 2001. 41, 44

[8] B. Zhao, J. Kubiatowicz, A. Joseph. Tapestry: An infrastructure for fault-
resilient wide-area location and routing. Technical Report UCB//CSD-01-1141,
U.C. Berkeley, CA, Apr. 2001. 41, 44

[9] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica Looking up
data in P2P systems In Comm. ACM, 46(2):43–48, 2003. 41, 44


	An Epidemic Protocol for Managing Routing Tables in Very Large Peer-to-Peer Networks
	Introduction
	The Newscast Protocol
	Peer-to-Peer Routing
	P2P Routing Based on Newscast
	The Principal Idea
	Multi-layer Newscast Scheme

	Experimental Setting
	Experimental Results and Analysis
	Bootstrapping
	Robustness to Large-Scale Failures
	Bandwidth Considerations

	Conclusions and Future Directions




