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Abstract. We introduce the on-the-fly model-checker OFMC, a tool
that combines two methods for analyzing security protocols. The first
is the use of lazy data-types as a simple way of building an efficient
on-the-fly model checker for protocols with infinite state spaces. The
second is the integration of symbolic techniques for modeling a Dolev-
Yao intruder, whose actions are generated in a demand-driven way. We
present experiments that demonstrate that our tool is state-of-the-art,
both in terms of coverage and performance, and that it scales well to
industrial-strength protocols.

1 Introduction

A wide variety of model-checking approaches have recently been applied to ana-
lyzing security protocols, e.g. [1,7,13,22,23,25,26]. The key challenge they face is
that the general security problem is undecidable [14], and even semi-algorithms,
focused on falsification, must come to terms with the enormous branching factor
in the search space resulting from using the standard Dolev-Yao intruder model,
where the intruder can say infinitely many different things at any point.

In this paper, we show how to combine and extend different methods to build
a highly effective security protocol model-checker. Our starting point is the ap-
proach of [4] of using lazy data-types to model the infinite state-space associated
with a protocol. A lazy data-type is one where data-type constructors (e.g. cons
for building lists, or node for building trees) build data-types without evaluating
their arguments; this allows one to represent and compute with infinite data
(e.g. streams or infinite trees), generating arbitrary prefixes of the data on de-
mand. In [4], lazy data-types are used to build, and compute with, models of
security protocols: a protocol and description of the powers of an intruder are
formalized as an infinite tree. Lazy evaluation is used to decouple the model from
search and heuristics, building the infinite tree on-the-fly, in a demand-driven
fashion.
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This approach is conceptually and practically attractive as it cleanly sep-
arates model construction, search, and search reduction techniques. Unfortu-
nately, it doesn’t address the problem of the prolific Dolev-Yao intruder and
hence scales poorly. We show how to incorporate the use of symbolic techniques
to substantially reduce this problem. We formalize a technique that significantly
reduces the search space without excluding any attacks. This technique, which we
call the lazy intruder technique, uses a symbolic representation to avoid explic-
itly enumerating the possible messages the intruder can generate, by represent-
ing intruder messages using terms with variables, and storing and manipulating
constraints about what must be generated and from which knowledge.

The lazy intruder is a general, technology-independent technique that can
be effectively incorporated in different approaches to protocol analysis. Here, we
show how to combine it with the lazy infinite-state approach to build a tool
that scales well and has state-of-the-art coverage and performance. In doing
so, we see our contributions as follows. First, we extend previous approaches,
e.g. [17,7,1,22,16,8,10] to the symbolic representation of the intruder so that our
lazy intruder technique is applicable to a larger class of protocols and properties.
Second, despite the extensions, we simplify the technique, leading to a simpler
proof of its correctness and completeness. Third, the lazy intruder introduces
the need for constraint reduction and this introduces its own search space. We
formalize the integration of the technique into the search procedure induced
by the rewriting approach of our underlying protocol model, which provides an
infinite-state transition system. On the practical side, we also investigate the
question of an efficient implementation of the lazy intruder, i.e. how to organize
state exploration and constraint reduction.

The result is OFMC, an on-the-fly model-checker for security protocol analy-
sis. We have carried out a large number of experiments to validate our approach.
For example, the OFMC tool finds all (but one) known attacks and discovers
a new one (on the Yahalom protocol) in a test-suite of 36 protocols from the
Clark/Jacob library [9] in under one minute of CPU time for the entire suite.
Moreover, we have successfully applied OFMC to large-scale protocols including
IKE, SET, and various other industrial protocols currently being standardized
by the Internet Engineering Task Force IETF. As an example of industrial-scale
problem, we describe in §5 our analysis of the H.530 protocol [18], a proto-
col invented by Siemens and proposed as an Internet standard for multimedia
communications. We have modeled the protocol in its full complexity and have
detected a replay attack in 1.6 seconds. The weakness is serious enough that
Siemens has changed the protocol.

We proceed as follows. In §2 we give the formal model that we use for protocol
analysis. In §3 we review the lazy protocol analysis approach. In §4 we formalize
the lazy intruder and how constraints are reduced. We present experimental
results in §5, and discuss related and future work in §6. Due to lack of space,
examples and proofs have been shortened or omitted; details can be found in [5].
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2 Protocol Specification Languages and Model

The formal model we use for protocol analysis with our tool OFMC is based on
two specification languages, which we have been developing in the context of the
AVISPA project [2]: a high-level protocol specification language (HLPSL) and
a low-level one (the Intermediate Format IF). HLPSL allows the user to specify
the protocols in an Alice & Bob style notation. A translator called HLPSL2IF
automatically translates HLPSL specifications into the IF, which the OFMC tool
takes as input. Due to space limitations and since the ideas behind our protocol
specification languages are fairly standard, e.g. [11,19], we restrict ourselves here
to the presentation of the IF; discussions and examples can be found in the
technical report [5].

The Syntax of the IF. Let C and V be disjoint countable sets of constants
(denoted by lower-case letters) and variables (denoted by upper-case letters).
The syntax of the IF is defined by the following context-free grammar:

ProtocolDescr ::= (State,Rule∗,State∗)
Rule ::= State NegFacts ⇒ State
State ::= PosFact ( . PosFact)∗

NegFacts ::= ( . not(PosFact) )∗

PosFact ::= state(Msg) | msg(Msg) | i knows(Msg)
Msg ::= AtomicMsg | ComposedMsg

ComposedMsg ::= 〈Msg ,Msg〉 | {|Msg |}Msg | {Msg}Msg | Msg−1

AtomicMsg ::= C | V | N | fresh(C,N)

We write vars(t) to denote the set of variables occurring in a (message, fact, or
state) term t, and say that t is ground when vars(t) = ∅.

An atomic message is a constant, a variable, a natural number, or a fresh
constant. The fresh constants are used to model the creation of random data, like
nonces, during protocol sessions. We model each fresh data item by a unique term
fresh(C,N), where C is an identifier and the number N denotes the particular
protocol session C is intended for.

Messages in the IF are either atomic messages or are composed using pairing
〈M1,M2〉, or the cryptographic operators {|M1|}M2

and {M1}M2
(for symmetric

and asymmetric encryption of M1 with M2), or M−1 (the asymmetric inverse
of M). Note that by default the IF is untyped (and the complexity of messages
is not bounded), but it can also be generated in a typed variant, which leads to
smaller search spaces at the cost of abstracting away any type-flaw attacks on
the protocol.

Note also that we follow the standard perfect cryptography assumption, i.e.
the only way to decrypt an encrypted message is to have the appropriate key.
Moreover, like most other approaches, we here employ the free algebra assump-
tion and assume that syntactically different terms represent different messages,
facts, or states. In other words, we do not assume that algebraic equations hold
on terms, e.g. that pairing is associative. Note too that unlike other models,
e.g. [12,22], we are not bound to a fixed public-key infrastructure where every
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agent initially has a key-pair and knows the public key of every other agent.
Rather, we can also consider protocols where keys are generated, distributed,
and revoked.

The IF contains both positive and negative facts. A positive fact represents
either the local state of an honest agent, a message on the network (i.e. one
sent but not yet received), or that a message is known by the intruder. To ease
the formalization of protocols, we introduce negative facts as well as additional
fact symbols, expressing, e.g. secrecy or set membership; see [5] for details. To
illustrate how these additions allow for the explicit encoding of problems in a
natural way, consider the Needham-Schroeder public-key protocol with a key-
server [9]. In a realistic model of this protocol, an agent should maintain a
database of known public keys, which is shared over all protocol executions he
participates in, and ask the key-server for the public key of another agent only if
this key is not contained in his database. This situation can be directly modeled
using negation and an additional fact symbol knows pk.

Note also that the set of composed messages can similarly be easily extended,
e.g. with cryptographic primitives for hashes and key-tables, without affecting
the theoretical results we present below. In this paper, we focus on this smaller
language for brevity.

A state is a set of positive facts, which we denote as a sequence of positive
facts, separated by dots. Note that in our approach we actually employ set
rewriting instead of multiset rewriting, as the HLPSL2IF translator ensures that
in no reachable state the same positive fact can appear more than once, so we
need not distinguish between multisets and sets.

We define in the usual way the notions related to substitution and unification,
such as ground term, ground substitution, unifier, most general unifier (mgu),
and matching ; see, e.g., [3]. We denote the application of a substitution σ to a
term t by writing tσ and denote the composition of substitutions σ1 and σ2 by
writing σ1σ2. As we only consider substitutions with finite domains, we represent
a substitution σ with dom(σ) = {v1, . . . , vn} by [v1 �→ v1σ, . . . , vn �→ vnσ]. The
identity substitution id is the substitution with dom(id) = ∅. We say that two
substitutions σ1 and σ2 are compatible, written σ1 ≈ σ2, if vσ1 = vσ2 for every
v ∈ dom(σ1) ∩ dom(σ2). For two sets of ground substitutions Σ1 and Σ2, we
define their intersection modulo the different domains as Σ1 	 Σ2 = {σ1σ2 |
σ1 ∈ Σ1 ∧ σ2 ∈ Σ2 ∧ σ1 ≈ σ2}. Since the composition of compatible ground
substitutions is associative and commutative, so is the 	 operator.

A protocol description ProtocolDescr is a triple (I, R, G) consisting of an
initial state I, a set of rules R, and a set of goal states G. A protocol description
constitutes a protocol when two restrictions are met: (i) the initial state is ground,
and (ii) vars(l1) ⊇ vars(l2) ∪ vars(r) for every rule l1.l2 ⇒ r in R, where l1
contains only positive facts and l2 contains only negative facts.

Rules describe state transitions. Intuitively, the application of a rule l1.l2 ⇒ r
means that if (i) there is a substitution σ such that no positive fact f with
not(f) ∈ l2 can be matched under σ with the current state, and (ii) all positive
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facts in l1 can be matched under σ with the current state, then l1σ is replaced
by rσ in the current state. Otherwise, the rule is not applicable.

In this paper, we consider only IF rules of the form

msg(m1).state(m2).P1.N1 ⇒ state(m3).msg(m4).P2 , (1)

where N1 is a set of negative facts, and P1 and P2 are sets of positive facts that do
not contain state or msg facts. Moreover, if i knows(m) ∈ P1 then i knows(m) ∈
P2, which ensures that the intruder knowledge is monotonic, i.e. that the intruder
never forgets messages during a transition.

More specifically, every rule describes a transition of an honest agent, since
a state fact appears on both the left-hand side (LHS) and the right-hand side
(RHS) of the rule. Also, on both sides we have a msg fact representing an incom-
ing message that the agent expects to receive in order to make the transition
(LHS) and an answer message from the agent (RHS).

Rules of the form (1) are adequate to describe large classes of protocols
(including those discussed in §5); see [5] for examples of actual IF rules.

The Dolev-Yao Intruder. We follow Dolev and Yao [12] and consider the
standard, protocol-independent, asynchronous model in which the intruder con-
trols the network but cannot break cryptography. In particular, he can intercept
messages and analyze them if he possesses the corresponding decryption keys,
and he can generate messages and send them under any agent name.

Definition 1. For a set M of messages, let DY(M) (for Dolev-Yao) be the
smallest set closed under the following generation (G) and analysis (A) rules:

m ∈ M

m ∈ DY(M)
Gaxiom,

m1 ∈ DY(M) m2 ∈ DY(M)
〈m1,m2〉 ∈ DY(M)

Gpair,
〈m1,m2〉 ∈ DY(M)

mi ∈ DY(M)
Apairi

,

m1 ∈ DY(M) m2 ∈ DY(M)
{|m2|}m1

∈ DY(M)
Gscrypt,

{|m|}k ∈ DY(M) k ∈ DY(M)

m ∈ DY(M)
Ascrypt.

The generation rules express that the intruder can compose messages from
known messages using pairing and symmetric encryption; the analysis rules
describe how he can decompose messages. For brevity, we have omitted the
rules for asymmetric encryption and decryption, which are straightforward. Note
that this formalization correctly handles non-atomic keys, for instance m ∈
DY({{|m|}(〈k1,k2〉), k1, k2}), as opposed to other models such as [1,20,24,26] that
only handle atomic keys.

The Semantics of the IF. Using DY, we now define the protocol model pro-
vided by the IF in terms of an infinite-state transition system, where the IF rules
define a state-transition function. In this definition, we incorporate an optimiza-
tion that we call step-compression, which is based on the idea [1,7,8,10,22] that
we can identify the intruder and the network: every message sent by an honest
agent is received by the intruder and every message received by an honest agent
comes from the intruder. Formally, we compose (or “compress”) several steps:
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when the intruder sends a message, an agent reacts to it according to his rules,
and the intruder diverts the agent’s answer. A bisimulation proof shows that,
for large classes of properties, the model with such composed transitions (which
we present here) is “attack-equivalent” to the model with single (uncompressed)
transitions, i.e. we end up in an attack state using composed transitions iff that
was the case using uncomposed transitions.

Definition 2. The successor function succR(S) =
⋃

r∈R stepr(S) maps a set
of rules R and a state S to a set of states, where

stepr(S) = {S′ | ∃σ. ground(σ) ∧ dom(σ) = vars(m1) ∪ vars(m2) ∪ vars(P1) (2)
∧ m1σ ∈ DY({ i | i knows(i) ∈ S}) (3)
∧ state(m2σ) ∈ S ∧ P1σ ⊆ S ∧ ∀f. not(f) ∈ N1 =⇒ fσ /∈ S (4)
∧ S′ = (S \ (state(m2σ) ∪ P1σ)) ∪ state(m3σ) ∪ i knows(m4σ) ∪ P2σ} (5)

for a rule r of the form msg(m1).state(m2).P1.N1 ⇒ state(m3).msg(m4).P2

Here and elsewhere, we simplify notation for singleton sets by writing, e.g.,
state(m2σ) ∪ P1σ for {state(m2σ)} ∪ P1σ.

The step function implements the step-compression technique in that it combines
three transitions, based on a rule r of the form (1). The three transitions are: the
intruder sends a message that is expected by an honest agent, the honest agent
receives the message and sends a reply, and the intruder diverts this reply and
adds it to his knowledge. More in detail, condition (3) ensures that the message
m1σ (that is expected by the honest agent) can be generated from the intruder
knowledge, where according to (2) σ is a ground substitution for the variables
in the positive facts of the LHS of the rule r. The conjuncts (4) ensure that
the other positive facts of the rule appear in the current state under σ and that
none of the negative facts is contained in the current state under σ. Finally, (5)
defines the successor state S′ that results by removing from S the positive facts
of the LHS of r and replacing them with the RHS of r (all under σ).

We define the set of reachable states associated with a protocol (I, R, G) as
reach(I, R) =

⋃
n∈N

succn
R(I). The set of reachable states is ground as no state

reachable from the initial state I may contain variables (by the conditions (i)
and (ii) in the definition of protocol). As the properties we are interested in
are reachability properties, we will sometimes abstract away the details of the
transition system and refer to this set as the ground model of the protocol.

We say that a protocol is secure iff goalcheckg(S) = ∅ for all S ∈ reach(I, R)
and all goals g ∈ G, where we define goalcheckg(S) = {σ | gσ ⊆ S}.

3 The Lazy Infinite-State Approach

The transition system defines a (computation) tree in the standard way, where
the root is the initial system state and children represent the ways that a state
can evolve in one transition. The tree has infinitely many states since, by the
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definition of DY, every node has infinitely many children. It is also of infinite
depth, provided we do not bound the number of protocol sessions. The lazy
intruder technique presented in the next section uses a symbolic representation to
solve the problem of infinite branching, while the lazy infinite-state approach [4]
allows us to handle the infinitely long branches. As we have integrated the lazy
intruder with our previous work, we now briefly summarize the main ideas of [4].

The key idea behind the lazy infinite-state approach is to explicitly formalize
an infinite tree as an element of a data-type in a lazy programming language.
This yields a finite, computable representation of the model that can be used to
generate arbitrary prefixes of the tree on-the-fly, i.e. in a demand-driven way. One
can search for an attack by searching the infinite tree for a goal state. Our on-
the-fly model-checker OFMC uses iterative deepening to search this infinite tree
for an attack state. When an attack is found, OFMC returns the attack trace,
i.e. the sequence of exchanged messages leading to the attack state. This yields a
semi-decision procedure for protocol insecurity: our procedure always terminates
(at least in principle) when an attack exists. Moreover, our search procedure
terminates for finitely many sessions (formally: if there are finitely many agents
and none of them can perform an unbounded number of transitions) when we
employ the lazy intruder to restrict the infinite set of messages the intruder can
generate.

The lazy approach has several strengths. It separates (both conceptually and
structurally) the semantics of protocols from heuristics and other search reduc-
tion procedures, and from search itself. The semantics is given by a transition
system generating an infinite tree, and heuristics can be seen as tree transducers
that take an infinite tree and return one that is, in some way, smaller or more
restricted. The resulting tree is then searched. Although semantics, heuristics,
and search are all formulated independently, lazy evaluation serves to co-routine
them together in an efficient, demand-driven fashion. Moreover, there are ef-
ficient compilers for lazy functional programming languages like Haskell, the
language we used.

4 The Lazy Intruder

The lazy intruder is an optimization technique that significantly reduces the
search tree without excluding any attacks. This technique uses a symbolic repre-
sentation to avoid explicitly enumerating the possible messages that the Dolev-
Yao intruder can generate, by storing and manipulating constraints about what
must be generated. The representation is evaluated in a demand-driven way,
hence the intruder is called lazy.

The idea behind the lazy intruder was, to our knowledge, first proposed
by [17] and then subsequently developed by [7,1,22,16,8,10]. Our contributions to
the symbolic intruder technique are as follows. First, we simplify the technique,
which, as we formally show in [5], also leads to a simpler proof of its correctness
and completeness. Second, we formalize its integration into the search procedure
induced by the rewriting approach of the IF and, on the practical side, we present
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an efficient way to organize and implement the combination of state exploration
and constraint reduction. Third, we extend the technique to ease the specification
and analysis of a larger class of protocols and properties, where the introduction
of negative facts alongside standard positive facts in the IF rewrite rules leads
to inequality constraints in the lazy intruder.

Constraints. The Dolev-Yao intruder leads to an enormous branching of the
search tree when one näıvely enumerates all (meaningful) messages that the in-
truder can send. The lazy intruder technique exploits the fact that the actual
value of certain parts of a message is often irrelevant for the receiver. So, when-
ever the receiver will not further analyze the value of a particular message part,
we can postpone during the search the decision about which value the intruder
actually chooses for this part by replacing it with a variable and recording a
constraint on which knowledge the intruder can use to generate the message.
We express this information using constraints of the form from(T, IK ), meaning
that T is a set of terms generated by the intruder from his set of known messages
IK (for “intruder knowledge”).

Definition 3. The semantics of a constraint from(T, IK ) is the set of satisfying
ground substitutions σ for the variables in the constraint, i.e. [[from(T, IK )]] =
{σ | ground(σ) ∧ ground(Tσ ∪ IKσ) ∧ (Tσ ⊆ DY(IKσ))}. A constraint set is a
finite set of constraints and its semantics is the intersection of the semantics of
its elements, i.e., overloading notation, [[{c1, . . . , cn}]] = 	n

i=1[[ci]]. A constraint
set C is satisfiable if [[C]] �= ∅. A constraint from(T, IK ) is simple if T ⊆ V,
and we then write simple(from(T, IK )). A constraint set C is simple if all its
constraints are simple, and we then write simple(C).

Constraint Reduction. The core of the lazy intruder technique is to reduce a
given constraint set into an equivalent one that is either unsatisfiable or simple.
(As we show in Lemma 2, every simple constraint set is satisfiable.) This reduc-
tion is performed using the generation and analysis rules of Fig. 1, which describe
possible transformations of the constraint set (for brevity, we have again omitted
the rules for asymmetric encryption and decryption, which are straightforward).
Afterwards, we show that this reduction does not change the set of solutions,
roughly speaking [[C]] = [[Red(C)]], for a relevant class of constraints C.

The rules are of the form C′, σ′

C, σ
, with C and C ′ constraint sets and σ and σ′

substitutions. They express that (C ′, σ′) can be derived from (C, σ), which we
denote by (C, σ) � (C ′, σ′). Note that σ′ extends σ in all rules. As a consequence,
we can apply the substitutions generated during the reduction of C also to the
facts of the lazy state.

The generation rules Gl
pair and Gl

scrypt express that the constraint stating
that the intruder can generate a message composed from submessages m1 and
m2 (using pairing and symmetric encryption, respectively) can be replaced by
the constraint stating that he can generate both m1 and m2. The rule Gl

unif
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from(m1 ∪ m2 ∪ T, IK ) ∪ C, σ

from(〈m1,m2〉 ∪ T, IK ) ∪ C, σ
Gl

pair ,
from(m1 ∪ m2 ∪ T, IK ) ∪ C, σ

from({|m2|}m1
∪ T, IK ) ∪ C, σ

Gl
scrypt ,

(from(T, m2 ∪ IK ) ∪ C)τ, στ

from(m1 ∪ T, m2 ∪ IK ) ∪ C, σ
Gl

unif (τ = mgu(m1, m2), m1 /∈ V) ,

from(T, m1 ∪ m2 ∪ 〈m1,m2〉 ∪ IK ) ∪ C, σ

from(T, 〈m1,m2〉 ∪ IK ) ∪ C, σ
Al

pair ,

from(k, IK ) ∪ from(T, m ∪ {|m|}k ∪ IK ) ∪ C, σ

from(T, {|m|}k ∪ IK ) ∪ C, σ
Al

scrypt .

Fig. 1. Lazy intruder: constraint reduction rules

expresses that the intruder can use a message m2 from his knowledge if this
message can be unified with the message m1 that he has to generate (note
that both the terms to be generated and the terms in the intruder knowledge
may contain variables). The reason that the intruder is “lazy” stems from the
restriction that the Gl

unif rule cannot be applied when the term to be generated
is a variable: the intruder’s choice for this variable does not matter at this stage
of the search and hence we postpone this decision.

The analysis of the intruder knowledge is more complex for the lazy intruder
than in the ground model, as messages may now contain variables. In particular,
if the key of an encrypted message is a variable, then whether or not the intruder
can decrypt this message is determined by the substitution we (later) choose for
this variable. We solve this problem by using the rule Al

scrypt, where the variable
key can be instantiated during further constraint reduction1. More specifically,
for a message {|m|}k that the intruder attempts to decrypt, we add the content
m to the intruder knowledge of the respective constraint (as if the check was
already successful) and add a new constraint expressing that the symmetric
key k necessary for decryption must be generated from the same knowledge.
Hence, if we attempt to decrypt a message that cannot be decrypted using the
corresponding intruder knowledge, we obtain an unsatisfiable constraint set.

Definition 4. Let � denote the derivation relation described by the rules in
Fig. 1. The set of pairs of simple constraint sets and substitutions derivable
from (C, id) is Red(C) = {(C ′, σ) | ((C, id) � (C ′, σ)) ∧ simple(C ′)}.

Properties of Red . By Theorem 1 below, proved in [5], the Red function is
correct, complete, and recursively computable (since � is finitely branching). To
show completeness, we restrict our attention to a special form of constraint sets,
called well-formed constraint sets. This is without loss of generality, as all states
reachable in the lazy intruder setting obey this restriction (cf. Lemma 3).
1 This solution also takes care of non-atomic keys since we do not require that the key

is contained in the intruder knowledge but only that it can be generated from the
intruder knowledge, e.g. by composing known messages.
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Definition 5. A constraint set C is well-formed if one can index the con-
straints, C = {from(T1, IK 1), . . . , from(Tn, IKn}), so that the following condi-
tions hold: (i) IK i ⊆ IK j for i ≤ j, and (ii) vars(IK i) ⊆ ∪i−1

j=1 vars(Tj).

Intuitively, (i) requires that the intruder knowledge increases monotonically and
(ii) requires that every variable that appears in intruder-known terms is part of
a message that the intruder created earlier, i.e. variables only “originate” from
the intruder.

Theorem 1. Let C be a well-formed constraint set. Red(C) is finite and � is
well-founded. Moreover, [[C]] = [[Red(C)]].

The Lazy Intruder Reachability. We describe now the integration of con-
straint reduction into the search procedure for reachable states. The space of
lazy states consists of states that may contain variable symbols (as opposed to
the ground model where all reachable states are ground) and that are associated
with a set of from constraints as well as a collection of inequalities. The inequal-
ities will be used to handle negative facts in the context of the lazy intruder.
We assume that the inequalities are given as a conjunction of disjunctions of
inequalities between terms. We will use the inequalities to rule out certain uni-
fications, e.g. to express that both the substitutions σ = [v1 �→ t1, v2 �→ t2] and
τ = [v1 �→ t3] are excluded in a certain state, we use the inequality constraint
(v1 �= t1 ∨∨∨ v2 �= t2) ∧∧∧ (v1 �= t3), where we write ∨∨∨ and ∧∧∧ to avoid confusion with
the respective meta-connectives ∨ and ∧.

A lazy state represents the set of ground states that can be obtained by in-
stantiating the variables with ground messages so that all associated constraints
are satisfied.

Definition 6. A lazy state is a triple (P, C, N), where P is a sequence of (not
necessarily ground) positive facts, C is a constraint set, and N is a conjunction
of disjunctions of inequalities between terms. The semantics of a lazy state is
[[(P, C, N)]] = {Pσ | σ ∈ [[C]]∧σ |= N}, where σ |= N is defined for a substitution
σ as expected.

Let freshvarsr(S) be a renaming of the variables in a lazy state S = (P, C, N)
with respect to a rule r such that vars(freshvarsr(S)) and vars(r) are disjoint.
The lazy successor function lsuccR(S) = ∪r∈R lstepr(freshvarsr(S)) maps a set
of rules R and a lazy state S = (P, C, N) to a set of lazy states, where

lstepr(P, C, N) = {(P ′, C ′, N ′) | ∃ σ.

dom(σ) ⊆ vars(m1) ∪ vars(m2) ∪ vars(P1) ∪ vars(P ) ∪ vars(C) ∪ vars(N)
∧ C ′ = (C ∪ from(m1, {i | i knows(i) ∈ P}))σ (6)
∧ state(m2σ) ∈ Pσ ∧ P1σ ⊆ Pσ (7)

∧ N ′ = N ∧∧∧
∧∧∧

φ∈subCont(N1σ,Pσ) φ (8)
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∧ P ′ = (Pσ \ (state(m2σ) ∪ P1σ))
∪ state(m3σ) ∪ i knows(m4σ) ∪ P2σ} (9)

for a rule r of the form msg(m1).state(m2).P1.N1 ⇒ state(m3).msg(m4).P2 ,

where subCont(N, P ) = {φ | ∃ t, t′, σ. not(t) ∈ N ∧ t′ ∈ P ∧ tσ = t′σ

∧ ∃ v1, . . . , vn, t1, . . . , tn. σ = [v1 �→ t1, . . . , vn �→ tn] ∧ φ =
∨∨∨

n
i=1 vi �= ti}

Similar to the successor function of the ground model, the lazy successor
function also performs step-compression, i.e. it performs three operations in one
transition: the intruder sends a message, an honest agent reacts to it, and the
intruder adds the answer to his knowledge. The most notable change is the
renaming of the variables of the rules to avoid clashes with the variables that may
appear in the lazy states. More in detail, the constraint in condition (6) expresses
that the message m1 that occurs on the LHS of the rule r must be generated by
the intruder from his current knowledge. Condition (7) is similar to the first two
conjuncts in condition (4) in the ground model, where the substitution is now
applied also to the set of positive facts in the state (i.e., instead of matching, we
now perform unification). Condition (8) states that the inequalities are conjoined
with the conjunction of all formulae that subCont(N1σ, Pσ) yields. For a set
of negative facts N and a set of positive facts P , subCont(N, P ) generates a
disjunction of inequalities that excludes all unifiers between two positive facts t
and t′ such that not(t) ∈ N and t′ ∈ P . Note that in the special case that t = t′

we obtain the solution σ = [], and naturally we define ∨∨∨0
i=1 φ to be simply false

for any φ. Finally, condition (9) describes the positive facts P ′ in the successor
state, which result by removing the positive LHS facts from P (under σ) and
adding the RHS facts (under σ).

We define the set of reachable lazy states associated to a protocol (I, R, G)
as lreach(I, R) =

⋃
n∈N

lsuccn
R(I, ∅, ∅). We also call lreach(I, R) the lazy model

of the protocol (I, R, G). The lazy model is equivalent to the ground model,
i.e. they represent the same set of reachable states.

Lemma 1. reach(I, R) = ∪(P,C,N)∈lreach(I,R)[[(P, C, N)]] for every initial state
I and every set R of rules of the form (1).

Recall that we have defined that a protocol is secure iff goalcheck (which
represents the negation of the property the protocol aims to provide, i.e. it
represents the attacks on the protocol) is empty for all reachable ground states.
A similar check suffices in the lazy intruder model. We define the lazy goal-check
for a lazy state S = (P, C, N) and a goal state g as lgoalcheckg(P, C, N) = {σ |
gσ ⊆ Pσ}. If lgoalcheck is not empty in a reachable lazy state S, then either S
represents an attack or S is unsatisfiable, i.e. its semantics is the empty set.

Theorem 2. A protocol (I, R, G) is secure iff σ ∈ lgoalcheckg(P, C, N) implies
[[(P, C, N)σ]] = ∅ for all (P, C, N) ∈ lreach(I, R) and all g ∈ G.

Using the above results, we now show how we can build an effective semi-
decision procedure for protocol insecurity based on the lazy intruder. (In the case
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of a bounded number of sessions, our procedure is actually a decision procedure.)
To this end, we have to tackle three problems.

First, the lstep function yields in general infinitely many successors, as there
can be infinitely many unifiers σ for the positive facts of the rules and the current
state. However, as we follow the free algebra assumption on the message terms,
two unifiable terms always have a unique mgu, and we can, without loss of
generality, focus on that unifier. (Note also that there are always finitely many
mgu’s as the set of rules is finite and a lazy state contains finitely many facts.)

Second, we must represent the reachable states. The lazy infinite-state ap-
proach provides a straightforward solution to this problem, where we represent
the reachable states as the tree generated using the lazy intruder successor func-
tion. (For an unbounded number of sessions, this tree is infinitely deep.) We can
apply the lazy goal-check as a filter on this tree to obtain the lazy goal states.

Third, we must check whether one of these lazy goal states is satisfiable,
i.e. represents a possible attack. (We will see that this check can also be applied
as a filter on the tree.) The constraint reduction is the key to achieve this task.
By Theorem 1, we know that, for a well-formed constraint set C, the reduction
produces a set of simple constraint sets that together have the same semantics
as C. The following lemma shows that a lazy state with a simple constraint set
and a satisfiable collection of inequalities is always satisfiable.

Lemma 2. Let (P, C, N) be a lazy state where C is simple and N is satisfiable
(i.e. ∃σ. σ |= N). Then [[(P, C, N)]] �= ∅.
The proof, given in [5], is based on the observation that a simple constraint
set with inequalities is always satisfiable as the intruder can always generate
sufficiently many different messages. This is the key idea behind inequalities in
our lazy model.

From this lemma we can conclude the following for a well-formed constraint
set C and a collection of inequalities N . If there is at least one solution (C ′, τ) ∈
Red(C) and Nτ is satisfiable, then [[(P, N, C)]] �= ∅, since C ′ is simple and [[C ′]] ⊆
[[C]], by Theorem 1. Otherwise, if Red(C) = ∅ or if N is unsatisfiable, then
[[(P, C, N)]] = ∅, also by Theorem 1.

So, for a reachable lazy state (P, C, N) we can decide if [[(P, C, N)]] is empty,
as long as C is well-formed. To obtain simple constraint sets, we call Red , which
only applies to well-formed constraint sets. It thus remains to show that all
constraint sets of reachable lazy states are well-formed, which follows from the
way new constraints are generated during the lstep transitions.

Lemma 3. For a protocol (I, R, G), if (P, C, N) ∈ lreachR(I) then C is well-
formed.

We have now put all pieces together to obtain an effective procedure for
checking whether a protocol is secure: we generate reachable lazy states and
filter them both for goal states and for constraint satisfiability. We now briefly
discuss how to implement this procedure in an efficient way.
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Organizing State Exploration and Constraint Reduction. When imple-
menting the lazy intruder we are faced with two design decisions: (i) in which
order the two “filters” mentioned above are applied, and (ii) how constraint
reduction should be realized.

With respect to (i), note that the definition of reachable lazy states does
not prescribe when Red should be called; Red is only used to determine if a
constraint set is satisfiable. In OFMC we apply Red after each transition to
check if the constraints are still satisfiable. This allows us to eliminate from
the search all states with unsatisfiable constraint sets, as the successors of such
states will again have unsatisfiable constraint sets. We also extend this idea to
checking the inequalities and remove states with unsatisfiable inequalities. In the
lazy infinite-state approach this can be realized simply by swapping the order
in which the “filters” are applied, i.e. the tree of reachable lazy states is first
filtered for satisfiable lazy states (using Red), thereby pruning several subtrees,
and then for goal states (using lgoalcheck). Note that Red can lead to case splits
if there are several solutions for the given constraint set; in this case, to avoid
additional branching of the search tree, we continue the search with the original
constraint set.

With respect to (ii), note that the question of how to compute the constraint
reduction (in particular, how to analyze the intruder knowledge) is often ne-
glected in other presentations of symbolic intruder approaches. One solution is
to proceed on demand: a message in the intruder knowledge is analyzed iff the
result of this analysis can be unified with a message the intruder has to generate.
We adopt a more efficient solution. We apply the analysis rules to every con-
straint as long as they are applicable. The result is that the intruder knowledge
is “normalized” with respect to the analysis rules. As a consequence, we need not
further consider analysis rules during the reduction of the constraints. This has
the advantage that to check if the Gl

unif rule is applicable to a message m that
the intruder has to generate, we must simply check if in the (analyzed) intruder
knowledge some message m′ appears that can be unified with m. In contrast,
with analysis on demand it is in this case necessary to check if a unifiable message
may be obtained through analysis.

However, when normalizing the intruder knowledge, we must take into ac-
count that the analysis may lead to substitutions. Every substitution restricts
the set of possible solutions and in this case the restriction is only necessary if the
respective decrypted content of the message is actually used later (which is, in
contrast, elegantly handled by applying the analysis on demand)2. Our solution
to this problem is to distinguish between analysis steps that require a substitu-

2 As an example, suppose that the intruder wants to analyze the message {|{|m|}k|}{|M|}k
,

where the variable M represents a message the intruder generated earlier, and that
he already knows the message {|m|}k. Obviously the new constraint expressing that
the key-term can be derived from the rest of the knowledge, from({|M|}k, {|m|}k), is
satisfiable, unifying M = m. The point is that the result of the decryption does not
give the intruder any new information (he already knows {|m|}k), hence by unifying
M = m we unnecessarily limit the possible messages the intruder could have said.



266 David Basin, Sebastian Mödersheim, and Luca Viganò

tion and those that do not. The latter can be performed without restriction, the
former are not performed; rather, we add to the intruder knowledge the term
that would be obtained in case of a successful analysis (without unification), and
mark the term to express that the intruder may know it, but only under a certain
substitution. If a marked term is actually needed, then the respective analysis
steps are performed, else the marked term stays in the intruder knowledge.

Our strategy, which is a combination of demand-driven analysis and normal-
ization, is somewhat complex but very efficient, as the occurrence of marked
terms is rare and the use of a marked term is even rarer.

5 Experimental Results

To assess the effectiveness and performance of OFMC, we have tested it on a large
protocol suite, which includes the protocols of the Clark/Jacob library [9,13], as
well as a number of industrial-scale protocols. Since OFMC implements a semi-
decision procedure, it does not terminate for correct protocols, although it can
establish the correctness of protocols for a bounded number of sessions. We give
below search times for finding attacks on flawed protocols.

The Clark/Jacob Library. The OFMC can find an attack for 32 of the 33
flawed protocols of the Clark/Jacob library3. As the times in Table 1 show,
OFMC is a state-of-the-art tool: for each of the flawed protocols, a flaw is found
in under 4 seconds and the total analysis of all flawed protocols takes less than
one minute of CPU time. (Times are obtained on a PC with a 1.4GHz Pentium
III processor and 512Mb of RAM, but note that, due to the use of iterative deep-
ening search, OFMC requires a negligible amount of memory.) To our knowledge,
no other tool for finding attacks is this fast and has comparable coverage.

Note that the analysis of the untyped and typed IF specifications may lead
to the detection of different kinds of attacks. When this is the case, in Table 1
we report the two attacks found. (In all other cases, the times are obtained using
the default untyped model.) Also note that the table contains four variants of
protocols in the library, marked with a “∗”, that we have additionally analyzed,
and that “MITM” abbreviates man-in-the-middle attack and “STS” abbreviates
replay attack based on a short-term secret. Table 1 also reports a new attack
that we have found on the Yahalom protocol, which we describe in [5].

The H.530 Protocol. We have applied OFMC to a number of industrial-scale
protocols, such as IKE (for which we found the weaknesses already reported
in [21]), and in particular, the H.530 protocol of the ITU [18]. H.530, which has
been developed by Siemens, provides mutual authentication and key agreement
in mobile roaming scenarios in multimedia communication.
3 Missing is the CCITT X.509 protocol, where agents may sign messages they cannot

analyze completely. OFMC cannot find this attack since the HLPSL does not (yet)
allow us to specify an appropriate goal that is violated by this weakness.
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Table 1. Performance of OFMC over the Clark/Jacob library

Protocol Name Attack Time

ISO symm. key 1-pass unilateral auth. Replay 0.0
ISO symm. key 2-pass mutual auth. Replay 0.0
Andrew Secure RPC prot. Type flaw 0.0

Replay 0.1
ISO CCF 1-pass unilateral auth. Replay 0.0
ISO CCF 2-pass mutual auth. Replay 0.0
Needham-Schroeder Conventional Key STS 0.3
Denning-Sacco (symmetric) Type flaw 0.0
Otway-Rees Type flaw 0.0
Wide Mouthed Frog Parallel-session 0.0
Yahalom Type flaw 0.0
Woo-Lam Π1 Type flaw 0.0
Woo-Lam Π2 Type flaw 0.0
Woo-Lam Π3 Type flaw 0.0
Woo-Lam Π Parallel-session 0.2
Woo-Lam Mutual auth. Parallel-session 0.3
Needham-Schroeder Signature prot. MITM 0.1
∗ Neuman Stubblebine initial part Type flaw 0.0
∗ Neuman Stubblebine rep. part STS 0.0
Neuman Stubblebine (complete) Type flaw 0.0

Protocol Name Attack Time

Kehne Langendorfer Schoenw. (rep. part) Parallel-session 0.2
Kao Chow rep. auth., 1 STS 0.5
Kao Chow rep. auth., 2 STS 0.5
Kao Chow rep. auth., 3 STS 0.5
ISO public key 1-pass unilateral auth. Replay 0.0
ISO public key 2-pass unilateral auth. Replay 0.0
∗ Needham-Schroeder Public Key NSPK MITM 0.0
NSPK with key server MITM 1.1
∗ NSPK with Lowe’s fix Type flaw 0.0
SPLICE/AS auth. prot. Replay 4.0
Hwang and Chen’s modified SPLICE MITM 0.0
Denning Sacco Key Distr. with Public Key MITM 0.5
Shamir Rivest Adelman Three Pass prot. Type flaw 0.0
Encrypted Key Exchange Parallel-session 0.1
Davis Swick Private Key Certificates Type flaw 0.1
(DSPKC), prot. 1 Replay 1.2
DSPKC, prot. 2 Type flaw 0.2

Replay 0.9
DSPKC, prot. 3 Replay 0.0
DSPKC, prot. 4 Replay 0.0

H.530 is deployed as shown in the left part of Fig. 2: a mobile terminal (MT )
wants to establish a secure connection and negotiate a Diffie-Hellman key with
the gatekeeper (VGK ) of a visited domain. As they do not know each other in
advance, the authentication is performed using an authentication facility AuF
within the home domain of the MT ; both MT and VGK initially have shared
keys with AuF . The right part of Fig. 2 shows the messages exchanged: first,
both MT and VGK create Diffie-Hellman half-keys, along with hashes that are
encrypted for the AuF (denoted by the messages ReqMT and ReqVGK , respec-
tively). After a successful check of these messages, AuF replies with appropriate
acknowledge messages AckMT and AckVGK that also contain encrypted hashes
for the respective recipients. Finally, MT and VGK perform a mutual challenge-
response using the new Diffie-Hellman key that was authenticated by AuF (di-
rectly or over a chain of trustworthy servers).

We have applied OFMC to automatically analyze the H.530 protocol in col-
laboration with Siemens. The main problem that we had to tackle for this analy-
sis is the fact that the protocol employs the Diffie-Hellman key-agreement, which
is based on a property of cryptographic algorithms (namely the commutativity
of exponents) that violates the free algebra assumption. We lack space here to
discuss in detail how we solved this problem in our model. The central point is
this: while the messages exchanged in the H.530 protocol are considerably more
complex than the ones of the Clark/Jacob protocols, this complexity is not a
problem for our approach, unlike for other model-checking tools, e.g. [13,20].
We could directly analyze the original specification of the H.530 without first
simplifying the messages.

OFMC takes only 1.6 seconds to detect a previously unknown attack to
H.530. It is a replay attack where the intruder first listens to a session between
honest agents mt in role MT , vgk in role VGK , and auf in role AuF . Then
the intruder starts a new session impersonating both mt and auf . The weakness
that makes the replay possible is the lack of fresh information in the message
AckVGK , i.e. the message where auf acknowledges to vgk that he is actually
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Home DomainVisited Domain

VGKMT AuF

AuF
ReqMT

RespMT

AckMT ChalVGK

MT VGK

ChalMT RespVGK

ReqMT ReqVGK

AckMT AckVGK

Fig. 2. The H.530 protocol (simplified). The deployment of the protocol is on the left,
the messages exchange between the participants are summarized are on the right.

talking with mt . Replaying the respective message from the first session, the
intruder impersonating mt can negotiate a new Diffie-Hellman key with vgk ,
“hijacking” mt ’s identity. To perform the attack, the intruder must at least
be able to eavesdrop and insert messages both on the connection between MT
and VGK , and on the connection between VGK and AuF . We have suggested
including MT ’s Diffie-Hellman half-key in the encrypted hash of the message
AckVGK to fix this problem. With this extension we have not found any further
weaknesses of the protocol and Siemens has changed the protocol accordingly.

6 Related Work and Concluding Remarks

There are several model-checking approaches similar to ours. As a prominent
example, we compare our approach with Casper [13,20], a compiler that maps
protocol specifications, written in a high-level language similar to HLPSL (which
was inspired by CAPSL [11]), into descriptions in the process algebra CSP.
The approach uses finite-state model-checking with FDR2. Casper/FDR2 has
successfully discovered flaws in a wide range of protocols: among the protocols of
the Clark/Jacob library, it has found attacks on 20 protocols previously known to
be insecure, as well as attacks on 10 other protocols originally reported as secure.
Experiments indicate that OFMC is considerably faster than Casper/FDR2,
despite being based on a more general model: Casper limits the size of messages
to obtain a finite-state model. This limitation is problematic for the detection of
type-flaw attacks, e.g. Casper/FDR also misses our type-flaw attack on Yahalom
(cf. [5]). Finally, Casper does not support non-atomic keys, which hinders its
application to protocols like IKE, where each participant constructs only a part
of the shared key that is negotiated.

The Athena tool [26] combines model-checking and interactive theorem-
proving techniques with strand spaces [15] to reduce the search space and au-
tomatically prove the correctness of protocols with arbitrary numbers of con-
current runs. Interactive theorem-proving in this setting allows one to limit the
search space by manually proving lemmata (e.g. “the intruder cannot find out
a certain key, as it is never transmitted”). However, the amount of user inter-
action necessary to obtain such statements can be considerable. Moreover, like
Casper/FDR2, Athena supports only atomic keys and cannot detect type flaws.
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To compare with related approaches to symbolically modeling intruder ac-
tions, we expand on the remarks in §4. The idea of a symbolic intruder model
has undergone a steady evolution, becoming increasingly simpler and general.
In the earliest work [17], both the technique itself and the proof were of sub-
stantial complexity. In [1,7], both based on process calculi, the technique and its
formal presentation were considerably simplified. [22] generalized the approach
to support non-atomic symmetric keys, while [10] improved the approach of [22]
by increasing its expressiveness and providing a more efficient implementation.
[8] lifted the restriction of a fixed public-key infrastructure, where every agent
has a fixed key-pair and knows his own private key and each agent’s public key.
This work is the closest to ours. Both approaches are based on HLPSL/IF and
(multi)set rewriting. However, there are important differences. For instance, we
have removed all procedural aspects from the symbolic intruder rules, making
the approach more declarative and the proofs simpler. Moreover, we have ex-
tended the lazy intruder by introducing inequalities, which, together with the
notion of simple constraints, has a very natural interpretation: “the intruder can
generate as many different terms as he likes”.

As we have seen, most approaches are restricted to atomic keys. This prevents
the modeling of many modern protocols like IKE. Moreover, untyped protocol
models with atomic keys exclude type-flaw attacks where keys are confused with
composed terms. We believe that this is why our type-flaw attack on the Yahalom
protocol was not discovered earlier, even though Yahalom has been extensively
studied.

To summarize, we have presented an approach to security protocol analysis
implemented by the model-checker OFMC, which represents a substantial devel-
opment of the idea of on-the-fly model-checking proposed in [4]. The original tool
required the use of heuristics and, even then, did not scale to most of the pro-
tocols in the Clark/Jacob library. The use of the symbolic techniques described
here has made an improvement of many orders of magnitude and the techniques
are so effective that heuristics play no role in the current system. Moreover,
OFMC scales well beyond the Clark/Jacob protocols, as our example of the
H.530 suggests. Current work involves applying OFMC to other industrial-scale
protocols, such as those proposed by the IETF. Although initial experience is
positive, we see an eventual role for heuristics in leading to further improvements.
For example, a simple evaluation function could be: “has the intruder learned
anything new through this step, and how interesting is what he learned?” We
have also been investigating the integration of partial-order reduction techniques
in our model-checker and the first results are very positive [6].
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