
Bridging Model-Based
and Language-Based Security

Rogardt Heldal and Fredrik Hultin

Chalmers University of Technology, SE-412 96 Göteborg, Sweden
heldal@cs.chalmers.se, fredrik@hultin.info

Abstract. We present a way to support the development of software
applications that takes into account confidentiality issues, and how the
developed code can be automatically verified. We use the Unified Mod-
elling Language (UML) together with annotations to permit confiden-
tiality to be considered during the whole development process from re-
quirements to code. We have provided support for software development
using UML diagrams so that the code produced can be be validated by
a language-based checker, in our case Jif (Java information flow). We
demonstrate that the combination of model-based and language-based
security is compelling.

1 Introduction

Our philosophy is that it should be convenient to consider security during the
system development process, and that security should be automatically verifiable
at code level. Addressing both of these aspects of system development is impor-
tant to make a secure software system. We will show the benefits of combining
a modelling language with a language-based security checker.

The development of software systems using UML [RJB99,OMG] has become
the de facto standard for modelling object-oriented software systems in industry.
There are several reasons for this: it is relatively easy to understand and learn,
it permits several views of software systems, and it gives a good overview of the
software’s architecture. We aim to make it possible to consider security during
a development process used in industry today, so UML is the obvious starting
point.

One of the main problems with UML is that there has been a focus on func-
tionality and less on constraints such as security. We want to use UML together
with security annotations in such a way that developing secure programs be-
comes a seamless part of a project. This might seem like a difficult task since
security requires rigorous treatment. Here, language-based checkers play an im-
portant role. In this approach, security information is derived from a program
written in a high-level language during the compilation process and is included
in the compiled object. This extra security information can take several forms
including a formal proof or a type annotation. There have been several overview
papers in this area [Koz99,SMH01,SM03]. Our combination of UML used to-
gether with annotation is intended to be used as a specification language to
support building secure software systems, and a language-based checker should

E. Snekkenes and D. Gollmann (Eds.): ESORICS 2003, LNCS 2808, pp. 235–252, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

236 Rogardt Heldal and Fredrik Hultin

validate that the code really satisfies the security constraints. Therefore, our
extended UML supports development of secure programs, and permits mistakes
in the specification to be caught by the language-based checker. This is similar
to modelling types in UML where the developer only needs to specify the types,
and a type checker validates the types.

When we started to look for language-based security checkers, the Java infor-
mation flow (Jif) system [Mye99a,Mye99b] was a natural choice since it handles
a large subset of the object-oriented language Java [GJS96]. Object-orientation
is important because UML is well suited to developing object-oriented systems.
Jif is based on the Java language with some extra language constructs to control
the release of data. The Jif system contains a type checker which guarantees
that confidential data cannot leak. But, to make the system useful in practice,
it permits data to be leaked in a controlled manner. This is acceptable provided
that the system does not leak so much data that meaningful information can be
derived. Technically, Jif deals with this problem in a simple way by giving part
of the program authority to leak information1.

In the standard security models, like the Bell-LaPadual model [BL73] and
the Biba model [K.J77], the security policy is separated from the code. In this
respect Jif differs in that the policy is incorporated into the code in the form
of labels. Data are annotated with labels that specify the ownership and read
permissions. The Jif type system checks whether the policies declared in the
labels are satisfied. Jif is built on the decentralized label model [ML97,Mye99a].
In section 2 we will consider the labels of this model in more depth.

Java is not adequate for making programs which require tight control of con-
fidentiality. Similarly, UML is not good for developing such programs. Therefore,
we have created an extended version of UML, UMLS (Unified Modelling Lan-
guage for Security). Our choice to support the development of Jif code had a large
impact on how we extended UML. We did not extend UML in the standard way
using UML’s extension mechanisms (stereotypes and tags [OMG]) when mod-
elling confidentiality. This was because we wanted more freedom in the choice of
annotation in the current work. Furthermore, at present we do not automatically
produce Jif code since we do not support any tools.

Several benefits follow from our work. Some of the diagrams — domain mod-
els, use-case diagrams, and activity diagrams — are so simple that most software
system customers can be involved in the process of discussing confidentially is-
sues. Customers are often the domain experts and they know best what in-
formation should be confidential. Therefore, involving the customer enhances
the likelihood that confidentiality issues are handled correctly from the start.
Furthermore, we have considered interaction diagrams and class diagrams where
more detailed confidentiality issues can be considered by software designers. This
permits confidentiality to be considered in greater depth during the development
process.

1 The Jif system has a way of dealing with information leaks, but no solution for
deciding how much information can be leaked without causing problems. To solve
this, information theory or complexity could be considered [VS00].

Bridging Model-Based and Language-Based Security 237

Domain models, use-case diagrams, activity diagrams, and interaction dia-
grams can be used to support the creation of the class diagrams2. Code skele-
tons can be created from class diagrams. There is still a lot of work to be done
by the programmer, but there are confidentiality constraints on the attributes,
operations, and classes which will guide/restrict the way the programmer will
construct the code. This is a much simpler problem than writing the code with-
out any support. The Jif compiler validates the code. If all confidentiality con-
straints are satisfied then the process is finished, otherwise the design/code has
to be modified.

It is important to notice that UML diagrams cannot be validated on the same
level as code. The code is needed to consider for example indirect information
flow [DD77] and covert channels [Lam73]. Furthermore, the semantics of UML
is still an open problem which makes it hard to prove things about UML. A
further problem with validating the UML diagrams is that the transformation
into code also has to be proven correct. We do not suggest our technique as an
alternative for proving security on UML diagrams. It is often beneficial to prove
security properties as early as possible. So, a combination of our technique and
proving properties of the UML diagrams would be preferable.

In this paper we will first consider security labels similar to the ones used
in Jif. Thereafter we will look at how we extended UML to consider confiden-
tiality using labels. Then we will show a case study of how the extended UML
diagrams can be used in a small process for developing a program which requires
confidentiality. Finally, we will look at related work, conclusion, and future work.

2 Label

Modelling confidentiality in UMLS is done by using labels. Labels are used to
specify the ownership and the read permissions of the data. We have chosen to
use the same labels as used in Jif [Mye99b,ML97,ML98,ML00]. Types will be
augmented with labels in UMLS.

Before we can discuss labels we first have to look at principals which are the
building blocks of labels. A principal can be a user, a group, or a role. Principals
can be arranged in hierarchies where a principal can act for another principal
(“A can act for B” means that B can do anything that A can do). Principals are
not purely static entities; they may also be used as values. First-class values of
the new primitive type principal represents principals. For more information on
run-time principals see [Mye99b].

To guarantee confidentiality the data needs to be annotated with labels. A
label consists of policies, where a policy has the syntax: owner:reader-list.
The owner is a principal which owns the confidential data. This owner permits
the principals in the reader-list to read the data. The reader-list is a list of
comma separated principals that are able to read the data. Since a label can
contain several policies, {policy1; . . . ; policyn} the data can be owned by several
2 We construct the code skeleton from the class diagram, which is one of the best

understood diagrams in UML.

238 Rogardt Heldal and Fredrik Hultin

principals. A principal can only read the data if all the owners permit this —
the reader is included in all the reader lists of a label. An owner is implicitly a
reader and the label {} is the least restricted label. Here is an example of a label
where Bob is the owner and Lise and Lars are readers: {Bob:Lise,Lars}.

Labels may exits as run-time entities as well, represented by the new type
label. For more information on run-time labels and their use see [Mye99b].

3 UMLS

In this section we will augment UML with the labels introduced in the previous
section. The UML diagrams augmented with labels are the class, the interaction,
and the activity diagram. We will also give the syntax and informal semantics
for the extension made to UML. We have chosen to give the syntax and seman-
tics in similar fashion as in the OMG Unified Modelling Language Specification
1.4 3[OMG]. In this section we will also show the syntax of UMLS and to make
our extensions clear they will be set in bold type. Let us start by looking at how
we can use labels and principals to annotate class diagrams.

3.1 Class Diagrams

In a software development process, class diagrams are among the last diagrams
to be considered before code is created. They usually contain information about
the class name, the attributes and the operations. This makes it straightforward
to construct a code skeleton directly from class diagrams.

In this section we will look at how to annotate classes, their attributes and
operations in UMLS. We will also describe the parameterised class and some
issues concerning authorities.

Class. The class is the central symbol in the class diagram. A class is modelled
with attributes and operations. In UMLS as in UML, attributes and operations
have specified compartments. We have also defined a new compartment for giving
the authority of the class4, which is needed to be able to declassify confidential
data, see figure 1. The concept of authority in UMLS will be discussed further
when we look at authority constraints later in this subsection.

Here we can see that besides giving the attribute name a type it can also be
given a label. In other words, the type-expression is augmented with a label. If
the label is omitted on an attribute, that means that there are no confidentiality
constraints associated with it. The syntax of an attribute is:

visibility name: type-expression label = initial-value
3 For the purpose of the presentation we have simplified the OMG syntax where it has

no impact on the confidentiality extension.
4 Due to Jif the authority list cannot be inherited, meaning that if a class C has a

superclass Cs, any authority in Cs must also be in the authority clause of C. It is
not possible to obtain authority through inheritance.

Bridging Model-Based and Language-Based Security 239

+check(u:String, p:String):boolean authority:Root

-names:String[]
-passwords:Vector<{Root:}>{Root:}

PasswordFile

AuthorityRoot

Fig. 1. Password file

The expression: x: int{Bob : Lise,Lars} is an example of how to write an at-
tribute with the type int augmented with a label where Bob is the owner and
Bob, Lise and Lars can read the data. Now, when x is defined it can be used
to restrict other variables, for example y : int{x}; meaning that the variable y
should be as restricted as variable x.

The syntax of an operation is given by:

visibility name begin-label (parameter-list) end-label
: return-type-expression return-label constraints

where the parameter-list is a comma separated list of formal parameters, each
given the syntax:

name : type-expression label

Let us look at an example. Here is a public operation m with two arguments,
x and y of type int, and a return value of type String. The two arguments are
labelled with two different labels and in this case the return value is labelled
with the joined label of the two arguments: +m(x:int{Lise:}, y:int{Lars:}) :
String{Lise:; Lars:}

Labels may be omitted from an operation, signifying the use of implicit label
polymorphism, e.g. the arguments of check in figure 1. When a formal argument’s
label is omitted, the operation is generic with respect to the label of the actual
argument. We will come back to this when we consider interaction diagrams.

It is possible to specify the security context of operations with the begin-label
and the end-label. The begin-label prevents a method from causing side effects
that have lower security than the begin-label. The end-label specifies what infor-
mation can be learned from the fact that the method terminates normally. For
details the reader is referred to [Mye99a].

The default label for a return value is the end-label, joined with the labels of
all the arguments. For example, for check in figure 1 the return label is {u; p},
so the return value could be written just as a boolean.

There are three types of constraints in UMLS; authority, caller and actFor
[Mye99a]. In this paper we will only consider the authority constraint:

authority: principal-list This clause lists principals for which the operation
is authorised to act. To be able to specify the authority of an operation the
class needs to have at least this authority. For an example of how the operation

240 Rogardt Heldal and Fredrik Hultin

+elementAt(i:int){L; i}:Object{L}
+setElementAt{L}(o:Object{}, i:int{})
+size():int{L}

-length:int{L}
-elements:Object{L}[]{L}

Vector
L:label

Fig. 2. Vector class, showing attributes and operations

looks in a UMLS diagram see figure 1 where we have a class called PasswordFile
with authority root. The authority is needed by operation check to be able to
declassify information about whether the password is valid or not.

Parameterised Classes. Parameterised classes play an important role in
UMLS for making reusable data structures with respect to labels and princi-
pals.

Let us look at an example. In figure 2 there is a class Vector parameterised
on a label L (in the dotted box). This label is used to annotate attributes and
operations of the class and makes it possible for Vector to be instantiated with
different labels.

The attributes are annotated with the class’s parameter label, L. From the
figure 2 we can also see that elements has two labels. This is because an array
needs special treatment. The first label is the label of the elements of the array.
The second label is for the reference of the array.

The operation, elementAt, can be called with an index i as its argument. The
end-label {L;i} specifies what information can be learned by observing whether
elementAt terminates normally. In this case the value returned will also have the
same restrictions as the end-label.

In the operation setElementAt we need to prevent the method from causing
side effect with a lower security level than {L} by setting the begin-label to {L}.
This is needed to be able to change any value in the array (which would fall into
the category “causing side effects”).

The specification of the Vector class put constraints on the Jif code written.
The Jif code of Vector is given in Appendix A.

3.2 Relationships between Classes

There are many different types of relationships between classes. In this paper we
need only to consider associations. They are modelled by drawing lines between
the classes, see figure 7. Associations can contain multiplicities and role names
[OMG] which we will see an example of in the case-study in section 4.

3.3 Interaction Diagrams

There are two types of diagrams for showing interactions between objects, the
sequence diagram and the collaboration diagram. These two diagrams are similar

Bridging Model-Based and Language-Based Security 241

: PasswordFile passwords:Vector<Root>

elementAt(uid:int{}):Object{Root:} {System looks up userid (uid)
based on username in u}

check(u:String{}, p:String{Anna:}):boolean{Anna:}
Anna : Member

Fig. 3. Password sequence

and for our perspective the distinction between them is not important. Interac-
tion diagrams show dynamic properties of how objects work together to solve a
larger problem, in contrast to class diagrams which shows static properties about
classes, but these two diagrams are strongly related. For each message sent to
an object in the interaction diagram there needs to be a matching operation in
the class diagram5.

Interaction diagrams are good for considering flow of data among objects.
Data values flow to objects through arguments and back from objects via the
result value. These values can be annotated with confidentiality constraints. Here
is the syntax for the sequence-expression:

return-value := message-name (argument-list) :
return-type return-label

where the syntax of argument-list is a comma separated list of arguments and
labels: argument : type-expression label .

Let us consider the sequence diagram in figure 3. First, Anna wants to check
her password using PasswordFile from figure 1. The user name, u, is not confiden-
tial, but the password, p, is owned by principal Anna. Each user name is related
to a number, uid, which is used to find the password in the vector from figure
2. By choosing the template parameter of the vector to be of principal Root, the
data contained within the class will be owned by Root. Since this is the case the
data returned from the vector must be at least as restrictive as Root. The pass-
word from the vector will be compared with the password from Anna producing
a boolean value belonging to them both. Since Anna cannot read this value it
has to be declassified. Here we have an interesting design question: how much
authority should be given to PasswordFile? We decided to give PasswordFile the
authority Root as this permits the method check to remove Root as owner of the
boolean value returned to Anna. As we can see the interaction diagram helps to
identify places where authority declarations must be considered.

In another scenario Bob might want to check his password using the princi-
pal Bob. This is no problem since the operation is defined as: check(u : String ,

5 There is one restriction on the use of interaction diagrams due to the fact that Jif
cannot handle threads, so it makes no sense to talk about asynchronous communi-
cation. This is a limitation we hope will be removed in the future.

242 Rogardt Heldal and Fredrik Hultin

p : String) in PasswordFile which permits any label on u and p. The only change
in the sequence diagram in figure 3 is that we change all principals Anna to
Bob. Now, let us change the operation check belonging to PasswordFile to
check(u : String , p : String{Anna :}). The sequence diagram in figure 3 will look
the same, but now Bob cannot use the check operation any more. This distinc-
tion is shown in the class diagram, but not in the sequence diagram, because all
principals are known in the sequence diagram.

3.4 Use Case Diagrams

Use case diagrams are used to describe the behaviour of the system in the form
of use cases and the actors of the system — actors are the things which interact
with the system through use cases.

The description of use cases is often done informally by description in running
text. Confidentiality constraints might be considered as a part of use cases, but
it is more natural to consider them as separate documents, which can be related
to use cases. It is worth noting that interaction diagrams are often used to realise
use cases. They are more formal than use cases and are therefore a better place
to handle confidentiality constraints in a more formal way.

One benefit of using use case diagrams is that they identify the actors of the
system. These actors can be used to define principal hierarchies.

3.5 Activity Diagrams

The last diagram type we will consider in this paper is the activity diagram.
Activity diagrams can be used to model the flow of activities which happen in
a system, a use case or a method. It is possible to show what kind of data are
moved among activities within these diagrams. Furthermore, activity diagrams
can contain swimlanes which can be used to separate the activities done by sep-
arate people, groups or organisations. This makes the activity diagrams perfect
for showing how confidential data are moved among separate people, groups or
organisations on an abstract level.

4 UMLS a Case Study

In this section we will show how UMLS can be used as part of a process, such as
RUP[JBR99]. We will limit the discussion to the parts which are of interest when
considering confidentiality. How to use UMLS in a process will vary depending
on the project, in the same way as standard UML. Here we are going to look at
stages where we found UMLS useful in a development process when considering
confidentiality based on our case study.

4.1 The System

The example is that of a small medical application where patients can ask for
information about diseases based on symptoms they provide. To obtain this

Bridging Model-Based and Language-Based Security 243

information the patients also have to pay with a bank card. Since patients need
to pay for the information, personal information that identifies the patients is
also sent to the system. Since personal information needs to be sent to the
system together with the symptoms the system could leak information about a
particular patient’s illness. We want to prevent this.

4.2 The Use Cases Diagram

Use-cases were developed to explore the behaviours of the system. Here we only
consider the use case where a patient requires information about a disease. This
use case contains interesting confidentiality issues. Due to the limited space we
can only describe the Casual Version [Coc01] of the use case:

Use case: Obtain information about disease
The patient sends information about the symptoms and the payment
to the medical-system. The medical-system validates the payment and
charges the patient the specified amount. Based on the symptoms the
medical-system looks up a matching disease, prepares a response and
sends it to the patient.
Confidentiality constraints: Any information sent to the system re-
garding the patient’s symptoms are strictly confidential to the patient.
Only the patient himself and the medical-system should be permitted
to read the payment information. The medical-system should not leak
more information than absolutely necessary to inform the patient about
his illness[VS00].
As we can see from this description, interesting confidentiality issues can be

considered at use-case level in an informal way. This description can easily be
discussed with the customer.

4.3 The Activity Diagram

We use the activity diagram to better show the flow of confidential data in the
medical system.

In figure 4 we have two swimlanes which separate the patient, here repre-
sented by Lise, and the medical system. It is interesting to consider what con-
fidential data flows between the patient and the medical system. For example
we can see that Symptom and Payment flow from the patient to the medical
system. Look at Payment, this object contains amount and cardNumber which
are owned by Lise and are readable by Doctor. In the case of Symptom we want
the data to be owned by Lise but not readable by the medical system. This
is because the patient do not trust the medical system and therefore want to
prevent the system from sending the Symptom to an output channel such as a
monitor or a printer. The medical system can still use the Symptom to find the
correct treatment.

The interesting part is the activity Lookup disease which uses information
from the patient, Symptom, and the doctor to find a disease. The result, Disease,
contains data owned by both patient and doctor and therefore not readable by

244 Rogardt Heldal and Fredrik Hultin

Lise Doctor

Lookup disease

Read disease
information

Charge

Declassify

Pay

Request disease
 information

:Payment<Lise>
amount:float{Lise:Doctor}
cardNumber:String{Lise:Doctor}

:Disease<Lise>
name:String{Doctor:;Lise:}
treatment:String{Doctor:;Lise:}

:Disease<Lise>
name:String{Lise:}
treatment:String{Lise:}

description:String{Lise:}
:Symptom<Lise>

Fig. 4. Medical system activity diagram

anyone. To make the data readable by the patient the data has to be declassified,
which is done in the activity Declassify.

This diagram contains more information about the activities and flow of
data than the use case diagram, but it is still quite informal. From this diagram
we have obtained a better understanding of how the confidential data flows.
Furthermore, we have started to consider principals, labels, and declassification.
It is also natural to review this diagram together with the customer of the system.

4.4 The Domain

A domain model contains only concepts from the domain under consideration,
and not software classes. A restricted form of class diagram is used for modelling
domains, containing class names, attributes, and associations among classes.
Since the domain model is a central part of the problem description this is an
appropriate place to consider confidentiality.

Based on information in our use case and the activity diagram, we create a
domain model6, see figure 5. Notice that all the concepts in our domain model
correspond to real world concepts: Payment, Symptom, Patient, Doctor, and
Disease. A Patient is related to a Payment, Symptom and Doctor via associa-
tions. Furthermore, the multiplicity 1 on the association between Patient and
Payment says that the Patient is associated with one Payment while the Doctor
is associated with several Diseases, since the multiplicity is *. The names at-
tached to one side of the associations are role names, here used to give the

6 Some people prefer to model the system directly in the domain model, skipping the
use cases. They believe that they obtain an object-oriented system of higher quality,
which is easier to extend, reuse, and maintain.

Bridging Model-Based and Language-Based Security 245

1
*

1
symptom{Doctor:}

symptom{p:}

1

1 1

1

1

1

1

payment{p:Doctor}

diseases{Doctor:}

doctor{}

Patient
p:principal

name : String{Doctor:}
treatment : String{Doctor:}

Disease

description : String{p:}

Symptom

amount : float{p:Doctor}
cardNumber : String{p:Doctor}

Payment
p:principal

diseaseCnt:int{Doctor:}

Doctor

diseases:Disease{Doctor:}[]{Doctor:}

p:principal

Fig. 5. Medical system domain mode

names of the attributes, for example payment is an attribute in Patient refer-
ring to Payment .

We will only consider a few of the confidentiality constraints considered in
figure 5. The label {} on the role name doctor{} shows that the reference is not
confidential. But, the attributes inside Doctor have confidentiality constraints
on them. We have chosen principal-templates, to make Patient, Symptom, and
Payment reusable, for example Symptom〈Lise〉 would have an attribute
description with the label {Lise:}.

In our case study the domain model provides deeper information about con-
fidentiality issues than the use-case and activity diagram. But, it is still possible
for a customer to consider the domain model. By using use-case diagrams, ac-
tivity diagrams, and a domain model one can build up an understanding of the
confidentiality issues with the system to be built.

4.5 The Interaction Diagram

Now we move from analysis to design. From the previous diagram we have ob-
tained an informal understanding of how objects communicate confidential data.
Here we will make this more precise with the help of a collaboration diagram.

In figure 6 we can see how DataDoctor , Disease, and Symptom collaborate to
give information back to the patient, Lise, about her disease. From the numbers
in front of the calls, we can see that the order of calls is: getDisease, charge,
match, equals.

Let us consider getDisease. For each patient we want an instance of
DataDoctor to be able to handle the call from the particular patient. This means
that one instance of the DataDoctor only can handle one patient with a particu-
lar principal. As we can see from the diagram in figure 6, the call getDisease has
the arguments s : Symptom〈{Lise :;Doctor :}〉 and p : Payment〈Lise〉. For the
DataDoctor to handle this call it needs to know about the principal, Lise, which

246 Rogardt Heldal and Fredrik Hultin

disease:=getDisease{Lise:;Doctor:}(s:Symptom<{Lise:;Doctor:}>{Lise:},
 p:Payment<Lise>{Lise:Doctor}):DiseaseInfo<Lise>{Lise:}

2: * [foreach disease]:b:=match(s:Symptom<{Lise:;Doctor}>):boolean{Lise:;Doctor:;s}

1: isOk:=charge(p:Payment<Lise>{Lise:Doctor}):boolean{Lise:Doctor}

: DataDoctor<Lise> :Disease<Lise>

:Symptom<{Lise:;Doctor:}>

2.1: b:=equals(s:Symptom<{Lise:;Doctor:}>):boolean{Doctor:;Lise:;s}

Lise : Patient

Fig. 6. Get disease collaboration diagra

is done through the template mechanism and therefore the DataDoctor〈Lise〉 in
the collaboration diagram. There are similar reasons for the Disease〈Lise〉.

In our system we wanted to compare one Symptom owned by the principal
Doctor and another owned by the patient, Lise. To simplify the comparison, due
to Jif, we chose to make the Symptom owned by both principals — making it
more confidential so it still satisfies the confidentiality constraint for the system.
For this reason we changed Symptom into a class of template label instead of
template principal, see figure 6. This is also the reason why the instance of the
Symptom in getDisease has the label {Lise :;Doctor :}, but there is no need to
make the reference more restrictive than {Lise:}

The instance disease of DiseaseInfo returned to Lise contains information
about the treatment recommended for her illness. This data comes from infor-
mation owned by both the patient, Lise, and the Doctor, the reason being that
we need information from both the medical system and the patient to find the
disease. This is done in the operation match which also uses equals. Therefore
the DataDoctor needs to declassify the information so that the content can be
read by Lise. In our case we found the need for declassification already in the
activity diagram, see figure 4. We do not know if this is the case in general since
the activity diagrams are often treated informal when used in the beginning of
a process. In contrast to the the interaction diagram which by nature is more
formal.

As we can see, collaboration diagrams are useful to show what confidential
data flows from and to objects in the form of parameters and return types. These
diagrams are often too detailed for a customer, but good for a designer moving
one step closer to code.

4.6 The Class Diagram

We constructed the class diagram, figure 7, from the domain and the collabora-
tion diagrams. As we can see from the collaboration diagram in figure 6 we need
one more class, DiseaseInfo, and the template parameter of Symptom changed

Bridging Model-Based and Language-Based Security 247

1
*

1
-symptom{Doctor:}

-symptom{p:}

1

1

1

1
1

11

-payment{p:Doctor}

-diseases{Doctor:}

-doctor{}Patient
p:principal

-name:String{p:}
-treatment:String{p:}

DiseaseInfo
p:principal

+match(s:Symptom<{p:;Doctor:}>):
 boolean{p:;Doctor:;s}

-name:String{Doctor:}
-treatment:String{Doctor:}

Disease
p:principal

+equals(s:Symptom<L>):boolean{L;s}

-description:String{L}

Symptom
L:Label

-amount:float{p:Doctor}
-cardNumber:String{p:Doctor}

Payment
p:principal +getDisease{Doctor:;p:}(symptom:Symptom<{p:;Doctor:}>{p:},

 payment:Payment<p>{p:Doctor}):DiseaseInfo<p>{p:}
 authority:Doctor
-addDisease{Doctor:}(name:String{Doctor:},
 treatment:String{Doctor:}, s:Symptom<{p:;Doctor:}>{})
-charge(pay:Payment<p>{p:Doctor}):boolean{p:Doctor}

AuthorityDoctor

-diseaseCnt:int{Doctor:}

DataDoctor
p:principal

-diseases:Disease<Doctor>{p:;Doctor:}[]{p:;Doctor:}

Fig. 7. Class diagram

to a label. Furthermore, operations in DataDoctor and Disease require that we
make them into template classes.

All the calls from the collaboration diagram are added as operations to the
representing class in the class diagram plus one extra operation, addDisease. The
reason we add the operation addDisease is that it shows one example of how to
consider begin-labels during the creation of the class diagram. This operation
has side-effects on the attribute diseases so it is natural to give it the begin-label
{Doctor:}. The begin-label on getDisease was added for more technical reasons
which came up during the implementation of the system.

From the collaboration diagram we know that the class DataDoctor needs to
declassify information owned by Doctor and therefore needs the authority of the
Doctor.

4.7 From UML to Jif

The diagram we translate into code is the class diagram. The information in
the class diagram contains all the information needed to create the class skele-
ton containing the attributes and the method definitions (not the body). We
have implemented the case study in Jif, see Appendix B for a code skeleton of
DataDoctor. The translation from UMLS’s class diagram to code skeleton is not
hard, so we should be able to do this automatically.

After the code has been constructed the Jif compiler validates the confiden-
tiality constraints. One of the major strengths of using UMLS for specification
and Jif for validation is that the designer can consider security during the design
phase, then gets an extra software validation step of the code which guarantees
that indirect information flows [DD77] are not introduced.

248 Rogardt Heldal and Fredrik Hultin

4.8 Discussion

Each diagram is used to consider a different aspect of the confidentiality of the
system. These diagrams are used to enhance the understanding of the system
during the design phase much in the same way as the standard UML is used in
the industry today.

The case study has been presented sequentially in this paper, however during
the development we iterated several times through the different diagrams. The
construction of the system was done by writing the diagrams on a white-board.
This created a lot of discussion and several interesting confidentiality issues came
up during this process. Coding confidential systems is a hard and error prone
task. We feel that by using visual diagrams this task is simplified, and it is easy
to invent a process to create code directly from the diagrams, making it easy for
the developers to create large systems.

5 Related Work

To consider security in UML is a relatively new idea. Blobel, Pharow and Roger-
France [BPRF99] used use cases to consider security in a very informal way
in a medical setting. We find it very difficult to say anything about use cases
since they are very informal and not very well understood semantically [GLO̧02].
Furthermore, there has been work on developing a framework for model-based
risk assessment of security-critical system using UML [HBLS02].

The connection between language-based security and security on the level
of specifications has also been previously established by Mantel and Sabelfeld
[MS01]. They have chosen a more theoretical approach than we have done. We
hope that by choosing a more practical approach we will be able to reach more
designers.

The research which is mostly related to ours is Jan Jürjens’ work on mod-
elling confidentiality in UML [Jür01b,Jür01a,Jür02]. Jürjens uses state-chart di-
agrams to handle confidentiality problems of a system. Being the first to consider
confidentiality with UML it is only natural that his approach has several limi-
tations. Firstly, the developer has to convince himself that the system is correct
by examining the UML diagrams, which might be quite complex. Secondly, it is
uncertain that the code created from these diagram is correct since that depends
on how the code is created. Thirdly, the code is needed in order to find the covert
channels. So, even if confidentiality properties are proved on the UML diagrams,
which might be quite difficult in itself, there is no guarantee that the code cor-
rectly implements confidentiality constraints. All these problems are addressed
by our approach.

One further problem is that Jürjens’ work relies on a precise semantic def-
inition of the state-chart diagram. Jürjens overcomes this problem by using a
limited part of UML to which he gives his own semantics. Jürjens has moved
towards using UML’s extending mechanism for modelling confidentiality [Jür02],
stereotypes and tags [OMG]. We have chosen not to do this, because we have not

Bridging Model-Based and Language-Based Security 249

found any good way of expressing our extensions using stereotypes and tags that
is as readable as our annotations.

There has been some work that considers role-based access control in a UML
setting[ES99,LBD02]. Even though we have focused on information-flow, there
are some interesting parallels to this research. UMLS/Jif permits declassification
of data and this can perhaps be viewed as a form of access control.

6 Conclusion and Future Work

In this paper we have used a case study to demonstrate that our extensions
to UML simplify the process of producing programs with confidentiality con-
straints/requirements. Furthermore, we have motivated the importance of using
a language-based checker to validate the code. We believe that the combina-
tion of modelling confidentiality with a modelling language and validating the
code with a language-based checker is crucial for building large applications that
require a high degree of confidentiality.

The UML diagrams we have considered in this paper are, in our experience,
often used in the development of object-oriented software which is the main
reason behind our choice of diagram types. It would be interesting to look at
state-chart diagrams as well, because state-chart diagrams can be used to gener-
ate additional code which considers confidentiality. Work done by Jürjens might
be useful to consider here [Jür01b].

The main purpose of this paper is to show the powerful combination of a
modelling language and a language-based checker. To take this research a step
further requires more work on Jif, UMLS, and a tool to integrate them. Another
interesting direction would be to see if there are other language-based checkers
which also can be combined with UMLS or UML.

There is one area we have not addressed in this paper, but which is important
for our work: secure environments. Here, the deployment diagram in UML might
be very useful when specifying secure environments for Jif programs. This is also
something we intend to study further.

Acknowledgement

Thanks to Andrew Myers, Stephen Chong, and Lantian Zheng at Cornell for
enhancing our knowledge about the Jif environment, and for advising us in how
to implement correct Jif code for our case-study. Furthermore, we want to thank
Daniel Hedin for several important discussions about our research. We also want
to thank colleagues at computing science department at Chalmers for comments
on the paper, and the three anonymous referees.

References

BL73. D. Bell and L. LaPadula. Secure Computer Systems:Mathematical Founda-
tions and Model. Technical Report MTR 2547 v2, The MITRE Corporation,
Nov 1973.

250 Rogardt Heldal and Fredrik Hultin

BPRF99. B. Blobel, P. Pharow, and F. Roger-France. Security Analysis and Design
Based on a General Conceptual Security Model and UML. In P. M. A. Sloot,
M. Bubak, A. G. Hoekstra, and B. Hertzberger, editors, High-Performance
Computing and Networking, 7th International Conference, HPCN Europe
1999, Amsterdam, volume 1593 of Lecture Notes in Computer Science, pages
918–930. Springer, April 12-14 1999.

Coc01. Alistar Cockburn. Writing Effective Use Cases. Addison Wesley, 2001.
DD77. D. E. Denning and P. J. Denning. Certification of programs for secure

information flow. Comm. of the ACM, 20(7):504–513, July 77.
ES99. P. Epstein and R. Sandhu. Towards A UML Based Approach to Role En-

gineering. In RBAC ’99, Proceedings of the Fourth ACM Workshop on
Role-Based Access Control, pages 135–143, October 28-29 1999.

GJS96. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

GLO̧02. G. Génova, J. Llorens, and V. O̧uintana. Digging into use case relationships.
In J. Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002, volume 2460
of LNCS, pages 115–127. springer, September/October 2002.

HBLS02. S. H. Houmb, F. Braber, M. Soldal Lund, and K. Stolen. Towards a UML
Profile for Model-Based Risk Assessment. In Critical Systems Development
with UML-Proceedings of of the UML’2 workshop, pages 79–91, September
2002.

JBR99. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Develop-
ment Process. Number ISBN 0-201-57169-2 in Object Technology. Addison-
Wesley, 1999.

Jür01a. J. Jürjens. Secure Java Development with UMLsec. In B. De Decker,
F. Piessens, J. Smits, and E. Van Herrenweghen, editors, Advances in Net-
work and Distributed Systems Security, pages 107–124, Leuven (Belgium),
November 26-27 2001. International Federation for Information Processing
(IFIP) TC-11 WG 11.4, klu. Proceedings of the First Annual Working
Conference on Network Security (I-NetSec ’01).

Jür01b. J. Jürjens. Towards Development of Secure Systems using UMLsec. In
H. Hußmann, editor, Fundamental Approaches to Software Engineering
(FASE, 4th International Conference, Part of ETAPS), volume 2029, pages
187–200, 2001.

Jür02. J. Jürjens. UMLsec: Extending UML for Secure Systems Development.
In J.-M. Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002 – The
Unified Modeling Language, volume 2460 of lncs, pages 412–425, Dresden,
Sept. 30 – Oct. 4 2002. sv. 5th International Conference.

K.J77. K.J.Biba. Integrity consideration for secure computer system. Technical
Report ESDTR-76-372,MTR-3153, The MITRE Corporation, Bedford,MA,
April 1977.

Koz99. Dexter Kozen. Language-Based Security. In Mathematical Foundations of
Computer Science, pages 284–298, 1999.

Lam73. Butler W. Lampson. A Note on the Confinement Problem. Communications
of the ACM, 16(10):613–615, 1973.

LBD02. Torsten Lodderstedt, David Basin, and Jürgen Doser. SecureUML: A UML-
Based Modeling Language for Model-Driven Security. In Jean-Marc Jeze-
quel, Heinrich Hussmann, and Stephen Cook, editors, The unified modeling
language: model engineering, concepts, and tools; 5th international, volume
2460, pages 426–441. Springer, 2002.

Bridging Model-Based and Language-Based Security 251

ML97. Andrew C. Myers and Barbara Liskov. A Decentralized Model for Informa-
tion Flow Control. In Symposium on Operating Systems Principles, pages
129–142, 1997.

ML98. Myers and Liskov. Complete, Safe Information Flow with Decentralized
Labels. In RSP: 19th IEEE Computer Society Symposium on Research in
Security and Privacy, 1998.

ML00. Andrew C. Myers and Barbara Liskov. Protecting privacy using the de-
centralized label model. ACM Transactions on Software Engineering and
Methodology, 9(4):410–442, 2000.

MS01. H. Mantel and A. Sabelfeld. A Generic Approach to the Security of Multi-
Threaded Programs. In Proceedings of the 14th IEEE Computer Security
Foundations Workshop, pages 126–142, Cape Breton, Nova Scotia, Canada,
June 2001. IEEE Computer Society Press.

Mye99a. A. Myers. Mostly-Static Decentralized Information Flow Control. Technical
Report MIT/LCS/TR-783, MIT, 1999.

Mye99b. Andrew C. Myers. JFlow: Practical Mostly-Static Information Flow Con-
trol. In Symposium on Principles of Programming Languages, pages 228–
241, 1999.

OMG. OMG. Unified Modeling Language Specification.
RJB99. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language

Reference Manual. Number ISBN 0-201-30998-X in Object Technology.
Addison-Wesley, 1999.

SM03. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security.
IEEE J. Selected Areas in Communications, 21(1):5–19, January 2003.

SMH01. Fred B. Schneider, Greg Morrisett, and Robert Harper. A Language-Based
Approach to Security. Lecture Notes in Computer Science, 2000:86–101,
August 2001.

VS00. Dennis M. Volpano and Geoffrey Smith. Verifying Secrets and Relative
Secrecy. In Symposium on Principles of Programming Languages, pages
268–276, 2000.

252 Rogardt Heldal and Fredrik Hultin

A Jif Code of Vector

public class Vector[label L] {
private int{L} length;
private Object{L}[]{L} elements;

public Vector{L}(){ resize(10); }

public Object{L} elementAt(int i):{L;i}
throws (ArrayIndexOutOfBoundsException){

return elements[i];
}

public setElementAt{L}(Object{} o, int{} i) {
if (i >= length)

resize(); // make the array larger
elements[i] = o;

}

public int{L} size(){ return length; }
private void resize{L}(){...}

}

B Code Skeleton of DataDoctor

class DataDoctor[principal patient] authority(Doctor) {

private Disease[patient]{Doctor:;patient:}[]{Doctor:;patient:} diseases;
private int{Doctor:} diseaseCnt;

public DiseaseInfo[patient]{patient:} getDisease{Doctor:;patient:}
(Symptom[{patient:;Doctor:}] {patient:} s, Payment[patient]
{patient:Doctor} payment) where authority(Doctor){...}

public void addDisease{Doctor:} (String{Doctor:} name, String
{Doctor:} treatment,Symptom[{Doctor:;patient:}] {} s) {...}

private boolean{patient:Doctor}charge(Payment[patient]
{patient:Doctor} pay){...}

}

	1 Introduction
	2 Label
	3 UMLS
	3.1 Class Diagrams
	3.2 Relationships between Classes
	3.3 Interaction Diagrams
	3.4 Use Case Diagrams
	3.5 Activity Diagrams

	4 UMLS a Case Study
	4.1 The System
	4.2 The Use Cases Diagram
	4.3 The Activity Diagram
	4.4 The Domain
	4.5 The Interaction Diagram
	4.6 The Class Diagram
	4.7 From UML to Jif
	4.8 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References
	Appendix
	A Jif Code of Vector
	B Code Skeleton of DataDoctor

