ERRATUM 1989

CONTENTS: The title of the third article is "Langlands's construction of the

Tanivama group".

General Introduction: The authors considered it so well-known that Grothendieck was the originator of the theory of motives and the theory of Tannakian categories that they neglected to mention it; perhaps they should have.

p82: motivic Galois group

p154: This is not quite so transparent as the "and so" suggests.

p218: $0 \longrightarrow \mathcal{O}_{\mathbf{Y}}^{\times} \longrightarrow 0 \longrightarrow ...$

p2711: ... and remain true, if ...

p282: Hi(X)(d)

p423: from

p4212: The complex conjugate $\overline{\mu(\lambda)}$ of

 $\mu(\lambda)$ satisfies $\overline{\mu(\lambda)} \cdot \mathbf{v}^{pq} = \overline{\lambda}^{-q} \cdot \mathbf{v}^{pq}$.

p439: It is more natural to let ν act as ν . p456: complex conjugation on $H_{\sigma}(\mathbb{C})$ corresponds to σ •(complex conjugation) on H(C).

p569: and an

p619: to $\psi = \operatorname{Tr}_{\mathbf{E}/\mathbf{O}}(f\varphi)$.

p752: There is no need to refer to Borel-Springer for the proof, since it is given in the remainder of the paragraph.

p80₃: When all $a_i = 0$, the dimension of $H^n(V,\mathbb{C})_a$ is 1 only if n is even; otherwise

p85₆: Replace $\mathbf{F}_{\mathbf{q}}^{\mathbf{n+1}}$ with $\mathbf{F}_{\mathbf{q}}^{\mathbf{n+2}}$. p85₅: Replace $\mathbf{P}^{\mathbf{n}}$ with $\mathbf{P}^{\mathbf{n+1}}$.

p893: $\sum a_i \equiv 0 \pmod{d}$.

p9815: Springer.

p1016: Replace 149 with 147.

p1043: $(X,Y) \mapsto X \otimes Y$.

p119¹: (<u>C</u>,⊗)

p1249: indeterminate

p1477: form

p14810: representable p1547: if and only if

p1575: Aut (ω)

p1684: 18a-1

p1984: H2r-s(X)

p19910; id⊗ *

p216₈: [2.0.10]

p2188: Kuga-Satake

p23111: For any L Galois over Q,

p2327: $\lambda(\iota\sigma) + \lambda(\sigma)$

p2329: $\Lambda^{L} \subset \Lambda^{F}$ where $F = L \cap Q^{cm}$

 $p232^{11}$: $\Lambda^{L} \supset \Lambda^{F}$

p232₁: The diagram should be:

$$F^{x}/F_{0}^{x} \stackrel{\approx}{\longrightarrow} S^{F}/hw(Q^{x})$$

$$\uparrow \qquad \uparrow$$

$$1 \rightarrow Ker \longrightarrow F^{x} \longrightarrow S^{F} \longrightarrow 1$$

$$\uparrow \approx \qquad \uparrow hw$$

$$1 \rightarrow Ker \longrightarrow F_{0}^{x} \stackrel{norm}{\longrightarrow} Q^{x} \longrightarrow 1$$

p2591: Delete the second b from the first diagram.

p264₁₄: z-pz-q

D2712: KS°

p286₄: $\phi^0(\tau;\mu',\mu) \cdot \phi^0_{\tau,\mu} = \phi^0_{\tau,\mu'}$. p331¹: Delete "Shimura Varieties V.7"

p3434: being in Gad(R)+.

p38114: disco(H_d)