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Abstract. In the RoboCup four-legged league, robots mainly rely on
artificial coloured landmarks for localisation. As it was done in other
leagues, artificial landmarks will soon be removed as part of the RoboCup
push toward playing in more natural environments. Unfortunately, the
robots in this league have very unreliable odometry due to poor modeling
of legged locomotion and to undetected collisions. This makes the use of
robust sensor-based localization a necessity. We present an extension of
our previous technique for fuzzy self-localization based on artificial land-
marks, by including observations of features that occur naturally in the
soccer field. In this paper, we focus on the use of corners between the
field lines. We show experimental results obtained using these features
together with the two nets. Eventually, our approach should allow us to
migrate from landmarks-only to line-only localisation.

Keywords: Autonomous robots, fuzzy logic, image processing, localiza-
tion, state estimation.

1 Introduction

The current soccer field in the Four-Legged Robot League has a size of ap-
proximately 4,5m - 3m, and the only allowed robot is the Sony AIBO [I0]. The
exteroceptive sensor of the robot is a camera, which can detect objects on the
field. Objects are color coded: there are four uniquely colored beacons, two goal
nets of different color, the ball is orange, and the robots wear colored uniforms.

However, in a real soccer field there are not characteristic colored cues. The
rules of RoboCup are gradually changed year after year in order to push progress
toward the final goal. Removal of the artificial colored beacons will be the next
step in this direction. Accordingly, some preliminary development has been done
by some teams in this league to allow the robot to self-localize without using the
artificial beacons.

For instance, the German Team uses a sub-sampling technique to detect pixels
that belong to the field lines. These pixels are used in a Monte-Carlo localisation
(MCL) schema [4]. MCL is a probabilistic method, in which the current location
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of the robot is modeled as the density of a set of particles. Each particle can
be seen as the hypothesis of the robot being located at that position. Using
only a small number of samples, it increases the stability of the localization by
maintaining separate probabilities for different edge types for each sample. These
probabilities are only adapted slowly.

This paper describes the process of self-localization using the field lines as
a source of features. In fact, what it is used are the corners produced by the
intersection of the field lines, instead of the classical approach of using the line
segments. Then, these corners are treated as natural landmarks in a technique
based on [B], which uses fuzzy logic to account for errors and imprecision in
visual recognition of landmarks and nets, and for the uncertainty in the estimate
of robot’s displacement. This technique allows for large odometric errors and
inaccurate observations with excellent results. However, it should be noted that
the idea of corner-based localisation presented here could also be incorporated
into other localisation approaches, like MCL.

2 Perception

The AIBO robots [I0] use a CCD camera as the main exteroceptive sensor.
The perception process is in charge of extracting convenient features of the
environment from the images provided by the camera. As the robot will localize
relying on the extracted features, both the amount of features detected and their
quality will clearly affect the process. Currently the robots rely only on coloured
landmarks for localization, and thus the perception process is based on color
segmentation for detecting the different landmarks. Soon artificial landmarks
will be removed, as it was done in other leagues. For this reason, our short term
goal is to augment the current landmark based localization with information
obtained from the field lines, and our long term goal is to rely only on the field
lines for localisation.

Because of the League rules all the processing must be done on board and
for practical reasons it has to be performed in real time, which prevents us from
using time consuming algorithms. A typical approach for detecting straight lines
in digital images is the Hough Transform and its numerous variants. The vari-
ous variants have been developed to try to overcome the major drawbacks of the
standard method, namely, its high time complexity and large memory require-
ments. Common to all these methods is that either they may yield erroneous
solutions or they have a high computational load.

Instead of using the field lines as references for the self-localization, we de-
cided to use the corners produced by the intersection of the field lines (which
are white). The two main reasons for using corners is that they can be labeled
(depending on the type of intersection) and they can be tracked more appropri-
ately given the small field of view of the camera. In addition, detecting corners
can be more computationally efficient than detecting lines. There are several
approaches, as reported in the literature, for detecting corners. They can be
broadly divided into two groups:
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(a) (b)

Fig. 1. Brightness gradient-based detector. (a) From raw channel. (b) From smoothed
channel. The detected corners are indicated by a white small square

— Extracting edges and then searching for the corners. An edge extraction
algorithm is pipelined with a curvature calculator. The points with maximum
curvature (partial derivative over the image points) are selected as corners.

— Working directly on a gray-level image. A matrix of “cornerness” of the
points is computed (product of gradient magnitude and the rate of change
of gradient direction), and then points with a value over a given threshold
are selected as corners.

We have evaluated two algorithms that work on gray-level images and detect
corners depending on the brightness of the pixels, either by minimizing regions
of similar brightness (SUSAN) [8] or by measuring the variance of the directions
of the gradient of brightness [9]. These two methods produce corners, without
taking into account the color of the regions. As we are interested in detecting
field lines corners, the detected corners are filtered depending on whether they
come from a white line segment or not.

The gradient based method [9] is more parametric, produces more candidate
points and requires similar processing capabilities than SUSAN [§], and thus it
is the one that we have selected to implement corner detection in our robots.

Because of the type of camera used [10], there are many problems associated
to resolution and noise. The gradient based method detects false corners in
straight lines due to pixelation. Also, false corners are detected over the field due
to the high level of noise. These effects are shown in Fig.[{(a). To cope with the
noise problem, the image is filtered with a smoothing algorithm. Fig. D](b) shows
the reduction in noise level, and how it eliminates false detections produced by
this noise (both for straight lines and the field).

The detected corners are then filtered so that we keep only the relevant ones,
those produced by the white lines over the field. For applying this color filter,
we first segment the raw image. Fig. Bl(b) shows the results obtained using a
threshold technique for a sample image. We can observe that this technique
is not robust enough for labeling the pixels surrounding the required features.
Thus, we have integrated thresholding with a region-based method, namely the
Seed Region Growing (SRG), by using the pixels classified by the a conservative
thresholding as seeds from which we grow color regions. (See for details.)
The resulting regions for our image are shown in Fig. 2l(c). Finally, we apply a
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Fig. 2. Feature detection. (a) RGB image. (b) Segmented image by thresholding.
(c) Segmented image by seeded region growing. (d) Gradient-based detected corners
(white) and color-based filtered corners (black). The two detected corner-features are
classified as a C and a T, respectively

color filter for all corners obtained with the gradient-based method. We show in
Fig. 2(d) the corners obtained with the gradient-based method (white) and the
corners that comply with the color conditions (black).

Once we have obtained the desired corner pixels, these are labeled by looking
at the amount of field pixels (carpet-color) and line or band pixels (white) in
a small window around the corner pixel. Corners are labeled according to the
following categories.

Open Corner. A corner pixel surrounded by many carpet pixels, and by a
number of white pixels above a threshold.

Closed Corner. A corner pixel surrounded by many white pixels, and by a
number of carpet pixels above a threshold.

Net Closed Corner. A corner surrounded by many white pixels, and by a
number of carpet and net (blue or yellow) pixels above a threshold.

Note that in order to classify a corner pixel, we only need to explore the
pixels in its neighborhood. From these labeled corners, the following features are
extracted.

Type C. An Open corner nearby of a closed corner. This feature can be
detected in the goal keeper area of field.

Type T-field. Two closed corner. Produced by the intersection of the walls
and the inner field lines.

Type T-net. A closed corner nearby of a net closed corner. Produced by
the intersection of goal field lines and the net.

In Fig. RI(d), four detected corner pixels have been combined into two corner-
features, respectively classified as a C and a T-field.

The resulting corner-features, together with the landmarks and the nets, are
used for localizing a robot in the field. In the rest of this paper, we show how
to represent the uncertainty associated to these features, and how to use these
features in our fuzzy localization technique in order to obtain an estimate of the
robot position.
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3 Uncertainty Representation

3.1  Fuzzy Locations

Location information may be affected by different types of uncertainty, includ-
ing vagueness, imprecision, ambiguity, unreliability, and random noise. An uncer-
tainty representation formalism to represent locational information, then, should
be able to represent all of these types of uncertainty and to account for the dif-
ferences between them. Fuzzy logic techniques are attractive in this respect [6].
We can represent information about the location of an object by a fuzzy subset
w of the set X of all possible positions [I2,[I3]. For instance, X can be a 6-D
space encoding the (z,y,z) position coordinates of an object and its (6, ¢,n)
orientation angles. For any z € X, we read the value of u(x) as the degree of
possibility that the object is located at = given the available information.

Fig. Bl shows an example of a fuzzy location, taken in one dimension for
graphical clarity. This can be read as “the object is believed to be approximately
at 6, but this belief might be wrong”. Note that the unreliability in belief is
represented by a uniform bias b in the distribution, indicating that the object
might be located at any other location. Total ignorance in particular can be
represented by the fuzzy location p(z) =1 for all x € X.

3.2 Representing the Robot’s Pose

Following [5], we represent fuzzy locations in a discretized format in a position
grid: a tessellation of the space in which each cell is associated with a number
in [0, 1] representing the degree of possibility that the object is in that cell. In
our case, we use a 3D grid to represent the robot’s belief about its own pose,
that is, its (z,y) position plus its orientation #. A similar approach, based on
probabilities instead of fuzzy sets, was proposed in [3].

This 3D representation has the problem of having a high computation com-
plexity, both in time and space. To reduce complexity, we adopt the approach
proposed by [5]. Instead of representing all possible orientations in the grid, we
use a 2D grid to represent the (z,y) position, and associate each cell with a
trapezoidal fuzzy set p, , = (6, A, i, h, b) that represents the uncertainty in the
robot’s orientation. Fig. Blshows this fuzzy set. The § parameter is the center, A

A

B

Fig. 3. Fuzzy set representation of an angle measurement 6
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is the width of the core, « is the slope, h is the height and b is the bias. The latter
parameter is used to encode the unreliability of our belief as mentioned before.

For any given cell (z,y), ftz,y can be seen as a compact representation of a
possibility distribution over the cells {(z,y,0) | 6 € [-m, 7]} of a full 3D grid.
The reduction in complexity is about two orders of magnitude with respect to a
full 3D representation (assuming a angular resolution of one degree). The price
to pay is the inability to handle multiple orientation hypotheses on the same
(z,y) position — but we can still represent multiple hypotheses about different
positions. In our domain, this restriction is acceptable.

3.3 Representing the Observations

An important aspect of our approach is the way to represent the uncertainty
of observations. Suppose that the robot observes a given feature at time ¢. The
observed range and bearing to the feature is represented by a vector 7. Knowing
the position of the feature in the map, this observation induces in the robot a
belief about its own position in the environment. This belief will be affected by
uncertainty, since there is uncertainty in the observation.

In our domain, we consider three main facets of uncertainty. First, impreci-
sion in the measurement, i.e., the dispersion of the estimated values inside an
interval that includes the true value. Imprecision cannot be avoided since we
start from discretized data (the camera image) with limited resolution. Second,
unreliability, that is, the possibility of outliers. False measurements can originate
from a false identification of the feature, or from a mislabelling. Third, ambi-
guity, that is, the inability to assign a unique identity to the observed feature
since features (e.g., corners) are not unique. Ambiguity in observation leads to
a multi-modal distribution for the robot’s position.

All these facets of uncertainty can be represented using fuzzy locations. For
every type of feature, we represent the belief induced a time ¢ by an observation
7 by a possibility distribution S (z,y, 0| 7) that gives, for any pose (z,y, 0), the
degree of possibility that the robot is at (x,y, ) given the observation 7. This
distribution constitutes our sensor model for that specific feature.

The shape of the Si(z,y,0|7) distribution depends on the type of feature.
In the case of net observations, this distribution is a circle of radius | 7| in
the (z,y) plane, blurred according to the amount of uncertainty in the range
estimate. Fig. [ and Bl show an example of this case. In the figure, darker cells
indicate higher levels of possibility. We only show the (x,y) projection of the
possibility distributions for graphical clarity.

Note that the circle has a roughly trapezoidal section. The top of trapezoid
(core) identifies those values which are fully possible. Any one of these values
could equally be the real one given the inherent imprecision of the observation.
The base of the trapezoid (support) identifies the area where we could still
possibly have meaningful values, i.e., values outside this area are impossible
given the observation. In order to account for unreliability, then, we include
a small uniform bias, representing the degree of possibility that the robot is
“somewhere else” with respect to the measurement.
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(a) (b)

Fig. 4. Belief induced by the observation of a blue net (a) and a yellow net (b). The
triangle marks the center of gravity of the grid map, indicating the most likely robot
localization

F

Fig. 5. Belief induced by the observation of a feature of type C (a) and T (b). Due to
symmetry of the field, the center of gravity is close to the middle of the field

The Si(x,y,0|7) distribution induced by a corner-feature observation is the
union of several circles, each centered around a feature in the map, since our
simple feature detector does not give us a unique ID for corners. Fig. [ shows
an example of this. It should be noted that the ability to handle ambiguity in
a simple way is a distinct advantage of our representation. This means that we
do not need to deal separately with the data association problem, but this is
automatically incorporated in the fusion process (see below). Data association
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is one of the unsolved problems in most current self-localization techniques, and
one of the most current reasons for failures.

4  Fuzzy Self-Localization

Our approach to feature-based self-localization extends the one proposed by
Buschka et al in [5], who relied on unique artificial landmarks. Buschka’s ap-
proach combines ideas from the Markov localization approach proposed by Bur-
gard in [3] with ideas from the fuzzy landmark-based approach technique pro-
posed by Saffiotti and Wesley in [[7].

The robot’s belief about its own pose is represented by a distribution G; on
a Z%D possibility grid as described in the previous section. This representation
allows us to represent, and track, multiple possible positions where the robot
might be. When the robot is first placed on the field, G is set to 1 everywhere
to represent total ignorance. This belief is then updated according to the typical
predict-observe-update cycle of recursive state estimators as follows.

Predict. When the robot moves, the belief state G;_1 is updated to G; using a
model of the robot’s motion. This model performs a translation and rotation
of the G;_; distribution according to the amount of motion, followed by a uni-
form blurring to account for uncertainty in the estimate of the actual motion.

Observe. The observation of a feature at time ¢ is converted to a possibility
distribution Sy on the 2% grid using the sensor model discussed above. For
each pose (z,y,0), this distribution measures the possibility of the robot
being at that pose given the observation.

Update. The possibility distribution S; generated by each observation at time
t is used to update the belief state G; by performing a fuzzy intersection
with the current distribution in the grid at time ¢. The resulting distribution
is then normalized.

If the robot needs to know the most likely position estimate at time ¢, it does
so by computing the center of gravity of the distribution G;. A reliability value for
this estimate is also computed, based on the area of the region of G; with highest
possibility and on the minimum bias in the grid cells. This reliability value is
used, for instance, to decide to engage in an active re-localization behavior.

In practice, the predict phase is performed using tools from fuzzy image
processing, like fuzzy mathematical morphology, to translate, rotate and blur
the possibility distribution in the grid [1,2]. The intuition behind this is to see
the fuzzy position grid as a gray-scale image.

For the update phase, we update the position grid by performing pointwise
intersection of the current state Gy with the observation possibility distribution
Si(-|r) at each cell (z,y) of the position grid. For each cell, this intersection
is performed by intersecting the trapezoid in that cell with the corresponding
trapezoid generated for that cell by the observation. This process is repeated for
all available observations. Intersection between trapezoids, however, is not nec-
essarily a trapezoid. For this reason, in our implementation we actually compute
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the outer trapezoidal envelope of the intersection. This is a conservative approx-
imation, in that it may over-estimate the uncertainty but it does not incur the
risk of ruling out true possibilities.

There are several choices for the intersection operator used in the update
phase, depending on the independence assumptions that we can make about the
items being combined. In our case, since the observations are independent, we
use the product operator which reinforces the effect of consonant observations.

Our self-localization technique has nice computational properties. Updating,
translating, blurring, and computing the center of gravity (CoG) of the fuzzy
grid are all linear in the number of cells. In the RoboCup domain we use a
grid of size 36 x 54, corresponding to a resolution of 10 cm (angular resolution
is unlimited since the angle is not discretized). All computations can be done

in real time using the limited computational resources available on-board the
AIBO robot.

Fig. 6. Feature detection in different states. First the opponent net is detected (upper
row), and then two C-type corners (middle and bottom rows). (a) Raw image. (b)
Segmented image. (c) Gradient-based detected corners (white) and color-based filtered
corners (black)
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5 Experimental Results

To show how the self-localisation process works, we present an example gener-
ated from the goal keeper position. Let’s suppose that the robot starts in its
own area, more or less facing the opposite net (yellow). At this moment the
robot has a belief distributed along the full field — it does not know its own
location. Then the robot starts scanning its surroundings by moving its head
from left to right. As soon as a feature is perceived, it is incorporated into the
localization process.

When scanning, the robot first detects a net and two features of type C
(Figh). The localization information is shown in (Figlf), where the beliefs as-
sociated to the detection are fused. The filled triangle represents the current
estimate.

In order to cope with the natural symmetry of the field, we use unique fea-
tures, like the nets are. When the robot happens to detect the opposite net
(yellow), it helps to identify in which part of the field the robot is currently
in, and the fusion with the previous feature based location gives a fairly good
estimate of the robot position.

(a) (b)

Fig. 7. Belief induced by the observation of: (a) the opponent net, (b) the first C-corner
feature, and (c) the second C-corner feature. The initial position is fully unknown
(belief is distributed uniformly over the full field)

6 Conclusions

The fuzzy position grid approach [5] provides an effective solution to the problem
of localization of a legged robot in the RoboCup domain. In this domain mo-
tion estimates are highly unreliable, observations are uncertain, accurate sensor
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models are not available, and real time operation is of essence. The fuzzy position
grid approach approach has been shown to work in real matches using artificial
landmarks and the nets. In this paper, we have extended this approach to use
naturally occurring features like corners between the field lines. Corner-feature
recognition was based on gray-level image processing for detecting corner pixels,
and on colors to reject corners that do not come from field lines and to classify
different types of corner-features.

The main advantage of this approach, given the current RoboCup rules, is
the ability of having more references for guidance, and thus the amount of time
spent for looking for the colored landmarks is reduced because when the robot
is playing for the ball or aiming at a net, at the same time it can detect corners.
In addition, in the near future colored landmarks will be eliminated from the
RoboCup fields, and techniques based on natural features will be of paramount
importance. The experimental results presented in this paper show that our
technique is suitable in that respect.
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