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Abstract. We propose to use a robust method for appearance-based
matching that has been shown to be insensitive to illumination and oc-
clusion for robot self-localization. The drawback of this method is that
it relies on panoramic images taken in one certain orientation, restricts
the heading of the robot throughout navigation or needs additional sen-
sors for orientation, e.g. a compass. To avoid these problems we propose
a combination of the appearance-based method with odometry data.
We demonstrate the robustness of the proposed self-localization against
changes in illumination by experimental results obtained in the RoboCup
Middle-Size scenario.

1 Introduction

Mobile robot localization is the problem of determining a robot’s pose (i.e. its
location and orientation) from sensor data such as odometry, proximity sensors
or vision. Self localization is a key problem in autonomous robotics, it has even
been referred to as ”the most fundamental problem to providing a mobile robot
with autonomous capabilities” [1].

Good results have been achieved by using combinations of metric maps of
the environment, sensor models, i.e. that model the expected response from the
environment, and probabilistic sensor fusion [2, 3]. These approaches show very
accurate localization. But generation and storage of the maps and the models
are very time and memory consuming. Especially, if the environment gets large.

In contrast, evidence has been provided that topological localization, which
recognizes certain spots in the environment, is sufficient to navigate a mobile
robot through an environment. This also appears more naturally, if one thinks
how humans navigate through a building or a city.

Appearance-based approaches use images to recognize known spots in the
environment. This is done by comparing the current image with a set of refer-
ence images, previously captured at some reference locations. The approaches
differ in the type of the camera used, the representation of the reference images
and the calculation of the similarity of different images. Ishiguro et.al. [4] use
panoramic cylinder images obtained from an omnidirectional camera and row by
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row Fourier transformation as a compact representation. The similarity of im-
ages is determined by calculating the sum of the absolute difference of the most
significant Fourier coefficients. Menegatti and colleagues [5] extend the method
by Monte Carlo Localization to solve the problem of perceptual aliasing. That
means the response of the current image to several reference images. In [6] topo-
logical localization is applied to the RoboCup Middle-Size. A standard camera
and an eigenspace based representation are used. The reference images are trans-
formed to eigenimages by Principal Component Analysis and represented by the
coefficients in the corresponding eigenspace. The calculation of the similarity of
images is done by a k-nearest neighbor algorithm within the eigenspace.

As changes in illumination dramatically effect the appearance of locations
in the environment [7], the mentioned methods are sensitive to such changes
in illumination. Currently, we have well restricted lighting conditions in the
RoboCup Middle-Size, which are a compromise to the vision algorithm applied to
robotic soccer today. Due to the decision to introduce a certain amount of natural
illumination to the RoboCup Size-Middle and the vision that our robots someday
will leave the field and work in more realistic environments, the importance of
illumination insensitive algorithms is undoubted.

To cope with such changes in illumination in [8] another representation and
calculation of similarity were proposed. An illumination insensitive eigenspace
representation and a randomized voting algorithm are used. The illumination
insensitive eigenspace approach was originally developed for robust object recog-
nition under varying lighting conditions [9]. The approach exploits the property
that the eigenspace representation also holds after linearly filtering the current
image and the eigenimages. This filtering is the key to the illumination insensitiv-
ity. Additionally, a voting algorithm based on a randomly drawn subset of pixels
of the images makes the approach insensitive to highlights, noise and occlusions.
The drawback of this method is that it assumes that the reference images and the
current image are captured at one certain orientation of the robot. To meet this
assumption either the heading of the robot is restricted to that orientation or
an additional sensor for orientation, e.g. a compass, is needed. Both are rigorous
limitations for the practical use on mobile robots.

In a recent publication [10] a rotation invariant representation of eigenimages
was presented. But this representation is not robust, computationally expensive
and still sensitive to changes in illumination.

There are also other representations of panoramic images, that are invariant
to rotation [11]. But again they are neither robust nor illumination insensitive.

In this work, we propose the combination of the robust illumination insen-
sitive eigenspace approach and sensor fusion with odometry data as a solution
to the limitations mentioned above. The basic idea is to use odometry to keep
track of the orientation of the robot, to use the predicted orientation to rotate
the current image back to the reference orientation and correct the orientation
delivered by the odometry by the response of the eigenspace framework.

In the next section we will outline the self-localization based on illumination
insensitive eigenspaces. In Section 3 we introduce our extensions and their the-
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oretical foundations. In Section 4 we present preliminary results obtained from
experiments in the RoboCup Middle-Size scenario. Finally, in Section 5 some
conclusions are drawn and future research perspectives explained.

2 Illumination Insensitive Self-Localization Using
Eigenspace

In appearance-based localization the robot is provided with a set of views of the
environment taken at several locations in the environment. These locations are
called reference locations because the robot will refer to them to locate itself in
the environment. The corresponding images are called reference images. When
the robot moves, it can compare the current view with reference images captured
during a training phase. When the robot finds which of the reference image is
more similar to the current view it can infer its position in the environment. The
problem of finding the position in the environment is reduced to the problem
of finding the best match of the current image among the reference images. A
higher localization accuracy can be achieved by interpolation between reference
points within the eigenspace, while keeping the number of reference images con-
stant. In the remainder of this section we outline the appearance-based approach
presented in [8] and its solution for illumination insensitivity.

2.1 Eigenspace Based Recognition

An eigenspace based representation is used for a compact storage of the refer-
ence images and a robust calculation of the similarity of images. To build the
eigenspace, we first represent the images from the training set as image vectors,
from which the mean image is subtracted, xi; i = 0...N −1, which form an image
matrix X = [x0 x1 ... xN−1], X ∈ Rn×N ; where n is the number of pixels in the
image and N is the number of images. These training images serve as input for
the Principal Components Analysis (PCA) algorithm, which results in a set of
p eigenimages ei, i = 1, ..., p, that span a low-dimensional eigenspace. Eigenim-
ages are selected on the basis of the variance that they represent in the training
set. Every original image xi can be transformed and represented with a set of
coefficients qij = xiej , j = 1, ..., p, which represent a point in the eigenspace.
That way, every image is approximated as x̃i =

∑p
j=1 qijej . Figure 1 depicts

the first four eigenimages for a RoboCup Middle-Size field.
The standard approach to localization is to find the coefficient vector q of

the momentary input image y by projecting it onto the eigenspace using the dot
product qi = 〈y, ei〉, so that q = [q1, ..., qp]T is the point in the eigenspace.

If we want the image y to be recognized as its most similar counterpart in the
training set (or in a representation constructed by means of interpolation, see
[12]), the corresponding coefficients have to lie close together in the eigenspace.
However, in the case when the input image is distorted, either due to occlu-
sion, noise or variation in lighting, the coefficient we get by projecting onto the
eigenspace can be arbitrarily erroneous [9].
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(a) 1st Eigenimage (b) 2nd Eigenimage

(c) 3th Eigenimage (d) 4th Eigenimage

Fig. 1. Eigenspace representation of reference images (Experiments on a RoboCup
Middle-Size field)

However, it has been shown, that one can also calculate the coefficient vector
q by solving a system of k linear equations on k ≥ p points r = (r1, ...rk)

yri
=

p∑

j=1

qjejri
1 ≤ i ≤ k (1)

using a robust equation solver and multiple hypotheses [13].

In [14] it has been shown how this method can be used to allow robust
localization in presence of occlusions. However it does not solve the problem of
illumination.

2.2 Illumination Insensitivity

The method presented in [15] takes the computations of parameters one step
further. Since Eq. (1) is linear, it also holds that (f ∗ x)(r) =

∑p
i=1 qi(f ∗ ei)(r),

where f denotes a filter kernel. This means that if we convolve both sides of the
equation with a filter kernel, the equality still holds. Therefore, we can calculate
the coefficients qi also from the filtered eigenimages if we filter the input image.

By using a set of t linear filters F we can construct a system of equations

(fs ∗ x)(r) =
p∑

i=1

qi(fs ∗ ei)(r) s = 1, ..., t. (2)

It is now possible to calculate the coefficients q either by using k points, or using
t filter responses at that single point, or a combination of these two.
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It is well known from the literature that gradient-based filters are insensitive
to illumination variations. By taking a filter bank of gradient filters in several ori-
entations, we can therefore augment the descriptive power of the representation
and achieve illumination invariance in the recognition phase.

Illumination invariant localization of a mobile robot can therefore be per-
formed as follows: once the eigenspace is built, we filter the eigenimages by a
bank of filters. Then, for localization, the momentary input image y from the
panoramic camera has to be filtered with the same filters; only after that we
retrieve its coefficient vector q using the robust equation solver. The calculated
coefficients are used to infer the momentary location of the robot.

2.3 Robust Voting

In order to robustly recover the coefficients in the presence of noise and oc-
clusions a robust voting algorithm is used. The voting consists of the following
steps: Multiple hypotheses are generated by robustly solving the sets of equations
obtained from a random selection of pixel subsets. Then the nearest neighbor
of each hypothesis in the eigenspace (coefficient vector of the closest point on
the parametric manifold) is determined. This selected coefficient vector gets a
vote. For voting we use a voting function v(d) → [0, 1] which gives votes that
are inversely proportional to the distance d of the hypothesis from its nearest
neighbor. Based on the distribution of the votes we decide whether the coeffi-
cients should be accepted (e.g. coefficients with accumulated votes above a given
threshold). We use the following voting function:

v(dij , σ) = e
−dij

2

2σ2 , (3)

where

dij = arccos
aT

i a
(t)
j

‖ai‖‖a
(t)
j ‖

(4)

is the angle between the estimated coefficient vector ai and the nearest coef-
ficient vector in the eigenspace a

(t)
j . We use the angle instead the Euclidean

distance between the coefficients as criteria, because coefficient vectors with the
same direction but different lengths represent the same image but in different
brightness. The parameter σ determines the width of the voting function.

3 Keeping Track of the Orientation

The approach presented in Section 2 has been shown to be robust against changes
in illumination, noise and occlusion. The drawback of that approach is that it
relies on reference and current images captured in one certain orientation or that
the orientation is known trough an additional sensor, e.g. a compass. The reason
for that limitation is that the eigenspace-based representation is not invariant to
rotation. Therefore, only images taken in the same orientation as the reference



Illumination Insensitive Robot Self-Localization 89

images can be recognized in a robust way. Instead of capturing images at one
orientation one could take images at several orientations (e.g. all 10◦), but this
approach has several drawbacks: First, the number of images and therefore the
training time is significantly increased. Second, and more important due to the
larger set of images which need to be represented, the number of eigenimages
needs to be increased, which on the one hand increases the running time and
more importantly as experiments have demonstrated decreases the robustness
of the whole approach.

In order to overcome this limitation we use a combination of the robust
eigenspace-based approach and sensor fusion with odometry data. The basic
idea is to use a Kalman filter to keep track of the orientation of the robot. The
odometry data are fused into the filter and provide a prediction of the orientation
Θ of the robot. This prediction is used to rotate the current image back into the
orientation the reference images were captured. This rotated image is used for
the localization step. But, instead of using only one rotated image we repeat the
localization step with a set of images rotated by angles drawn from the predictive
distribution. That image which gets the highest response from the recognition
process determines the new position of the robot. Its corresponding rotation is
used to correct the Kalman filter.

3.1 Sensor Fusion

Sensor fusion of odometry data and data from other sensors (e.g., vision, prox-
imity sensors) with Kalman filters is a commonly applied method. So we skip a
deeper discussion of this topic. An overview on Kalman filters could be found in
[16]. But it should be mentioned that we use the fusion method presented in [17].
The method is an extension of the standard Kalman filter. It uses a bank of
Kalman filters working on the same state vector to deal with asynchronous mea-
surements. This is a common problem in real robot systems, as also in our system.

3.2 The Extended Localization

In [18] and [19] it has been shown that the distance between the coefficient of a
rotated image and the coefficient of its reference image smoothly increase with
the absolute rotation angle, while still keeping the shortest distance to its ref-
erence coefficient in the eigenspace, assuming moderate rotation. This property
is used in the development of an extension to the approach presented in Section
2 which preserves the illumination insensitivity and overcomes the limitations
cased by rotated images.

The extended localization algorithm can be outlined as follows: In a first step
N omnidirectional reference images are captured around the environment in one
certain reference orientation, i.e. ΘR = 0. The reference images are unwrapped
creating panoramic cylinders (see Figure 2). Panoramic cylinders have the ad-
vantage that rotating the original omnidirectional image is only a row wise shift
on the panoramic cylinder. Using the algorithm of section 2 the set of panoramic
cylinders is transfered into the filtered eigenspace representation.
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Fig. 2. An omnidirectional image (left) and its panoramic cylinder (right)

The localization cycle consists of the following steps: We assume that the
initial orientation is known. Odometry data are fused into a Kalman filter at
the time they are available. The Kalman filter provides a prediction for the true
orientation of the robot and its uncertainty about this orientation Θt at time
t, KF (t) → 〈Θ̂t, σ̂t〉, where 〈Θ̂t, σ̂t〉 determines a normal distribution for the
true orientation Θt of the robot. When a new omnidirectional image is cap-
tured at time t the image is transfered into its panoramic cylinder and a set of
orientation hypotheses Σt = [Θt,1, ..., Θt,M ] are randomly drawn from the dis-
tribution 〈Θ̂t, σ̂t〉. With high probability Σt contains the true orientation Θt of
the robot.

Instead of performing the recognition step only once for the captured im-
age, the recognition step is repeated M times on the captured image shifted
by −Θt,i, i = 1, ..., M . This generates M votes for all N reference images:
vij ; i = 1, ..., M ; j = 1, ..., N . The shifted images are equivalent to images
captured around the reference orientation ΘR. The property mentioned at the
beginning of this section guarantees that the shifted image i with the rotation
closest to the true orientation of the robot Θt, i = argminj(|Θt,j − Θt|), will
collect the highest votes vij for its corresponding reference image j. The cor-
responding reference position of the reference image j is reported as the new
determined location of the robot. The corresponding orientation Θi of the cap-
tured image is used as a measurement update for the Kalman filter.

4 Experimental Results

We evaluated the extended Localization by carrying out several real and simu-
lated experiments in the RoboCup Middle-Size scenario. The experiments were
conducted using robots of our RoboCup Middle-Size team [20]. Our Middle-Size
test-field served as the test environment. The test-field is a rule-compliant field
except of its size (5m x 6m). It is situated under a glass roof in an open hall.
Therefore, the field is directly effected by changes of illumination during the
day. The change of the appearance of a location on the field is illustrated in
Figure 3.
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Fig. 3. The appearance of the same location at noon (left), in the afternoon (center)
and in the evening (right)

4.1 Real Experiments

The real experiments were carried out in three runs. In a first step the field was
divided into a grid with 1 m resolution. The points on the grid served as reference
locations on the field. This lead to a total number of 42 locations. At noon for
all reference locations a reference image in the reference orientation ΘR = 0 was
captured. All reference images were transformed into a panoramic cylinder with
a resolution of 360 x 145 pixels. Using the method described in Section 2 the
reference images were transformed into the filtered eigenspace representation.
For representation only 15 of the 42 available eigenimages are enough. Due to
performance reasons we used a bank of 3 gradient filters with a 3x3 filter kernel
instead of the recommended steerable filters.

Within the experiments we used M = 5 image orientations randomly drawn
from the prediction of the Kalman filter 〈Θ̂t, σ̂t〉 and tested 50 hypotheses with
1000 randomly selected pixel for each rotated image. The σ for the voting algo-
rithm was set to 0.3. The measurement noise of the odometry data was deter-
mined during ground truth measurements [21]. The level of measurement noise
for the angle measurement was optimized by hand and was kept constant during
the experiments.

Three test runs were conducted at noon (immediately after the reference im-
ages were captured), in the afternoon and in the evening. Prior to each run the
illumination on the field was measured to document the changes in illumination
during the runs and its unsteadiness across the field. The illumination was mea-
sured on the 42 reference locations and the minimum, the maximum, the mean
and the standard deviation was calculated. The results are shown in Table 1.

Table 1. Change of illumination between the test runs

Run Min/Lux Max/Lux Mean/Lux Std.Dev/Lux
Reference/Noon 335 1288 690.9 248.8
Afternoon 219 857 498.6 157.9
Evening 111 320 203.7 63.1
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Table 2. Results of the Localization under different illumination

Test Run Trials Reference Positions Reference Positions Correct Tracks Lost
passed recognized Recognitions/%

Noon 10 225 225 100 0
Afternoon 10 231 220 95 0
Evening 10 193 161 83 2

Note that the parameters of the camera remained unchanged during capturing
the reference images and all runs and no artificial illumination was used.

The test runs were conducted as follows: For each run (noon, afternoon and
evening) the robot was randomly placed ten times on a reference location with
a random but known orientation. The robot then randomly moved around for a
while. Each time the robot passed a reference location (robot entered a cycle of
30 cm diameter around the reference location) it was recorded if the reference
location was correctly recognized. The results shown in Table 2 document clearly
the performance of the extended localization under different illumination.

In the noon and afternoon runs the robot correctly recognized nearly all
reference locations and never lost track of the orientation. The latter is crucial
for continuing correct recognition of reference locations. In the evening run the
recognition ratio decreased and the robot twice lost track of the orientation due
to the very bad illumination (see Figure 3). The lost track was caused by wrong
votings on the shifted images and their corresponding rotation, which prevented
an adequate correction of the odometry data. Note that we used the Matlab to
C++ compiler to convert the Matlab-prototype into a C++ module, executable
on the robot. That lead to a frame-rate of only 0.8 Hz. We suppose that a
speedup of the implementation will decrease the number of lost tracks, due to
the faster correction of erroneous odometry data.

4.2 Offline Experiments

To verify the smooth decreasing of votes for rotated images and the robustness
of the method against noise and occlusion we conducted two offline experiments.
First we offline calculated the votes for the rotated version of an image captured
near a reference location. Figure 4 shows the votes for an image captured in
the reference orientation ΘR near reference location 20. It clearly shows the
smooth decreasing of the votes for reference location 20 with increasing absolute
rotation angle. For an absolute angle approximately below 10◦ a clear voting for
the reference image 20 is provided. This is an encouraging result, as predictions
of the orientation with a higher error do not occur very frequently.

In the second offline experiment we evaluated the robustness of the method
against noise. Therefore, we used the images and orientations recorded in the
real run at noon. We did the same experiment as in the real run except that we
introduced a certain amount of noise into the recorded images. This is done by
randomly replacing a certain percentage of the pixels in the image by random
pixels. Figure 5 depicts an image before and after introducing 50% random pixels.
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Fig. 4. Collected votes for an image take near reference position 20 in respect to shifts
of the image

(a) (b)

Fig. 5. Original image (a) and the same image after introducing 50% random pixels (b)

Fig. 6. Recognition rate of reference locations in respect to the amount of introduced
random pixels
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(a) (b)

Fig. 7. Original image (a) and the same image after introducing 70% occlusion (b)
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Fig. 8. Recognition rate of reference locations in respect to the amount of introduced
occlusion (1000 sampled pixel and 50 hypotheses)

The results are shown in Figure 6. It shows clearly the robustness of the
method against noise. Note, due to performance reasons we used a very small
number of hypotheses (50) and selected pixels (1000) during the previous exper-
iments. Anyway, the recognition rate remained satisfyingly high until an amount
of approximately 25% of random pixels. When we increase the number of hy-
potheses or the number of selected pixels the robustness against noise increases
significantly. But of course also the computational costs raises.

In the third offline experiment we evaluated the robustness of the method
against occlusion. The third experiment was the same as the prior experiment
except that we introduced a certain amount of occlusion instead of noise. This
was done by inserting black bars with different width into the images. We used
1000 sampled pixels and tested 50 hypotheses. Figure 7 depicts an image before
and after introducing 70% occlusion.

The results are shown in Figure 8. It shows clearly the robustness of the
method against occlusion. Up to 70 % of occlusion the method is robust against
occlusion and all positions were recognized correctly.
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5 Conclusion and Future Work

In this work we propose an extension of the appearance-based self-localization
presented in [8] which overcomes the limitations of that method. The limitations
are restrictions of the heading of the robot to a reference orientation or the need
of an additional sensor for orientation. The extension is based on a combina-
tion of the illumination insensitive localization and sensor fusion with odometry
data. A prediction for orientation is used for a robust recognition process and
its rotation sensitive feedback is used to correct the odometry data. Preliminary
experiments within the RoboCup Middle-Size scenario show that the proposed
extended localization is robust against changes of illumination, noise and occlu-
sions while it overcomes the limitations mentioned above. However, a speedup of
the implementation is necessary to reliably keep track of the orientation under
very bad illumination.

Furthermore, we believe that a combination of the illumination insensitive
localization with particle filter methods will further improve the method. Es-
pecially, because the robot is unable to recover from dramatic errors in the
orientation and it has to know its initial orientation.

Currently, we are working on the application of our extended localization in
larger environments, e.g. office buildings. As the recording of reference images
and its location by hand is time consuming in large environments, we perform
research on map-building and SLAM in combination with the illumination in-
sensitive localization.
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