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Abstract. The existing reinforcement learning approaches have been
suffering from the policy alternation of others in multiagent dynamic
environments such as RoboCup competitions since other agent behav-
iors may cause sudden changes of state transition probabilities of which
constancy is necessary for the learning to converge. A modular learn-
ing approach would be able to solve this problem if a learning agent
can assign each module to one situation in which the module can re-
gard the state transition probabilities as constant. This paper presents a
method of modular learning in a multiagent environment, by which the
learning agent can adapt its behaviors to the situations as results of the
other agent’s behaviors. Scheduling for learning is introduced to avoid
the complexity in autonomous situation assignment.

1 Introduction

There have been an increasing number of work to robot behavior acquisition
based on reinforcement learning methods [1, 2]. The conventional approaches
need an assumption that the environment is almost stationary or changing slowly
so that the learning agent can regard the state transition probabilities as con-
stant during its learning. Therefore, it seems difficult to apply the reinforcement
learning method to a multiagent system because a policy alteration of other
agents may occur, which dynamically changes the state transition probabilities
from the viewpoint of the learning agent. RoboCup provides such a typical sit-
uation, that is, a highly dynamic, hostile environment, in which an agent has to
obtain purposive behaviors.

There are a number of studies on reinforcement learning systems in a multia-
gent environment. Asada et al. [3] proposed a method which estimates the state
vectors representing the relationship between the learner’s behavior and those
of other agents in the environment using a technique of system identification,
then reinforcement learning based on the estimated state vectors is applied to
obtain a cooperative behavior. However, this method requires a global learning
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schedule in which only one agent is specified as a learner and the rest of agents
have a fixed policies. Therefore, the method cannot handle the alternation of
the opponents policies. This problem happens because one learning module can
maintain only one policy. A modular learning approach would provide one so-
lution to this problem. If we can assign multiple learning modules to different
situations in each of which module can regard the state transition probabilities
as constant, then the system could show a reasonable performance.

Jacobs and Jordan [4] proposed the mixture of experts, in which a set of
the expert modules learn and the gating system weights the output of the each
expert module for the final system output. This idea is very general and has
wide applications. Singh [5, 6] has proposed compositional Q-learning in which
an agent learns multiple sequential decision tasks with a number of learning mod-
ules. Each module learns its own elemental task while the system has a gating
module which learns to select one of the elemental task modules. However, there
are no such measure to identify the situation that the agent can switch modules
corresponding to the change of the situation. Tani and Nolfi [7, 8] extended the
idea to mixture of recurrent neural network and introduced it to predict sensory
flow pattern under a navigation task. Their scheme, however, doesn’t have any
control learning structure, which makes it difficult to acquire a purposive behav-
ior by itself. Doya et al. [9] have proposed MOdular Selection and Identification
for Control (MOSAIC), which is a modular reinforcement learning architecture
for non-linear, non-stationary control tasks. Their idea was applied to relatively
simple tasks/dynamic environment, however, it is uncertain that it is possible to
assign modules automatically in the multi-agent system that has highly dynamic
ones.

We adopt the basic idea of the mixture of experts into an architecture of
behavior acquisition in the multi-agent environment. In this paper, we propose
a method by which multiple modules are assigned to different situations and
learn purposive behaviors for the specified situations which are expected as the
result of other agent’s behavior under different policies. Takahashi et al. [10]
have shown preliminary experimental results under same domain, however, the
learning modules were assigned by the human designer. In this paper, schedul-
ing for learning is introduced to avoid the complexity in autonomous situation
assignment.

2 A Basic Idea and an Assumption

The basic idea is that the learning agent could assign one behavior learning module
to each situation which is caused by the other agents and the learning module
would acquire a purposive behavior under the situation if the agent can distinguish
a number of situations in which the state transition probabilities are constant.
We introduce a modular learning approach to realize this idea. A module consists
of learning component that models the world and an execution-time planning
component. The whole system performs these procedures simultaneously.
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– find a model which represents the best estimation among the modules,
– update the model, and
– calculate action values to accomplish a given task based on dynamic pro-

gramming (DP).

As a experimental task, we prepare a case of ball passing behavior without
interception by the opponent player (Figs. 3,5). In the environment there are
a learning agent (passer), a ball, an opponent, and two teammates (receivers).
The problem here is to find the model which can most accurately describe the
opponent’s behavior from the viewpoint of the learning agent and to execute
the policy which is calculated under the estimated model. It may take a time
to distinguish the situation, therefore, we put an assumption : The opponent
continues the one of its policies during one trial and changes after the trial.

3 A Multi- odule Learning System

Fig. 1 shows a basic architecture of the proposed system, that is, a multi-module
reinforcement learning system. Each module has a forward model (predictor)
which represents the state transition model, and a behavior learner (policy plan-
ner) which estimates the state-action value function based on the forward model
in a reinforcement learning manner. This idea of combination of a forward model
and a reinforcement learning system is similar to the H-DYNA architecture [11]
or MOSAIC [9]. The system selects one module which has the best estimation of
a state transition sequence by activating a gate signal corresponding to a module
while deactivating the gate signals of other modules, and the selected module
sends action commands based on its policy.

Predictor

Planner

Gate

Environments s a

s

Fig. 1. A multi-module learning system

3.1 Predictor

Each learning module has its own state transition model. This model estimates
the state transition probability P̂a

ss′ for the triplet of state s, action a, and next
state s′:

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (1)

m
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Each module has a reward model R̂a
ss′ :

R̂a
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (2)

We simply store all experiences (sequences of state-action-next state and reward)
to estimate these models.

3.2 Planner

Now we have the estimated state transition probabilities P̂a
ss′ and the expected

rewards R̂a
ss′ , then, an approximated state-action value function Q(s, a) for a

state action pair s and a is given by

Q(s, a) =
∑
s′

P̂a
ss′

[
R̂a

ss′ + γ max
a′

Q(s′, a′)
]

, (3)

where P̂a
ss′ and R̂a

ss′ are the state-transition probabilities and expected rewards,
respectively, and γ is discount rate.

3.3 Module Selection

The gating signal of the module becomes larger if the module does better state
transition prediction during a certain period, else it becomes smaller. We assume
that the module which does the best state transition prediction has the best
policy against the current situation because the planner of the module is based
on the model which describes the situation best. In our proposed architecture,
the gating signal is used for gating the action outputs from modules. We calculate
the gating signals gi of the module i as follows:

gi =
0∏

t=−T+1

eλpt
i

where pi is an occurrence probability of the state transition from the previous
(t − 1) state to the current (t) one according to the model i, and λ is a scaling
factor.

3.4 New Module Assignment

If all modules show worse prediction of state transition, that means all gating
signals gi of the modules become small, the system add one learning module and
feed data of sensory-motor sequence to this modules for a while.

4 Task and Assumption

The task of the learning agent is to pass the ball to one of the teammates while
it avoids interception by the opponent. The game is like a three on one; there are
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Fig. 2. A real robot Fig. 3. A simulation environment

one opponent and other three players. The player nearest to the ball becomes to
a passer and passes the ball to one of the teammates while the opponent tries
to intercept it.

Fig. 2 shows a mobile robot we have designed and built. Fig. 3 shows the
simulator of our robots and the environment. The robot has an omni-directional
camera system. A simple color image processing is applied to detect the ball
area and opponent ones in the image in real-time (every 33ms). The left of Fig.
3 shows a situation in which the agent can encounter and the bottom right shows
the simulated image of the camera with the omni-directional mirror mounted on
the robot. The robot consists of an omni-directional vehicle of which motion
(any translation and rotation on the plane) can be controlled.

The state space is constructed in terms of the centroid of the ball on the
image, the angle between the ball and the opponent, and the angles between
the ball and the teammates (see Fig. 4 (a) and (b)). We quantized the ball
position space 11 by 11 as shown in Fig. 4 (a) and the each angle into 8. As a
result, the number of state becomes 112 × 8 × 8 × 8 = 61952. The action space
is constructed in terms of desired three velocity values (xd, yd, wd) to be sent
to the motor controller (Fig. 4 (b)). Each value is quantized into three, then the
number of action is 33 = 27. The robot has a pinball like kick device, and it
automatically kicks the ball whenever the ball comes to the region to be kicked.
It tries to estimate the mapping from sensory information to appropriate motor
commands by the proposed method.

The initial positions of the ball, the passer, the opponent, and teammates
are shown in Figs. 5. The opponent has two kinds of behaviors; it defend the
left side, or right side. The passer agent has to estimate which direction the
opponent will defend and go to the position in order to kick the ball to the
direction the opponent does not defend. From a viewpoint of the multi-module
learning system, the passer agent will estimate which situation of the module
is going on, select the most appropriate module to behave. The passer agent
acquires a positive reward when it approach to the ball and kicks it to one of
the teammate dodging the opponent.
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Fig. 4. A state-action space
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Fig. 5. Task : 3 on 1
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Fig. 6. Module switching

4.1 Learning Scheduling

We prepare a learning schedule composed of three stage to show its validity. The
opponent fixes its defending policy as right side block at the first stage. After
250 trials, the opponent changes the policy to block the left side at the second
stage and continues this for another 250 trials. Then, the opponent changes the
defending policy randomly after one trial.

4.2 Simulation Result

We have applied the method to a learning agent and compared it with one
module learning system. We have also compared the performances between the
methods with and without the learning scheduling. Fig. 7 shows the success
rates of those during the learning. The success indicates that the learning agent
successfully kick the ball without interception by the opponent. The success rate
indicates the rate of the number of successes in 50 trials. The multi-module sys-
tem with scheduling shows better performance than the one-module system. The
“mono. module” in the figure indicates “monolithic module” system and it tries
to acquire a behavior for both policies of the opponent with one learning module.
The monolithic module with scheduling means that we applied learning schedul-
ing mentioned in 4.1 even though the system has only one learning module. The



554 Y. Takahashi, K. Edazawa, and M. Asada

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

multi module
(scheduling)

multi module
(without scheduling)

mono. module
(without scheduling)

mono. module
(scheduling)

R block L block R block and L block

R block and L block

scheduling

without
scheduling

su
cc

es
s 

ra
te

trials

Fig. 7. Success rate during the learning

performance of this system is similar with multi-module system until the end of
first stage (250 trials), however, it goes down at the second stage because the ob-
tained policy is biased against the experiences at the fist stage and cannot follow
the policy change of the opponent. Since the opponent takes one of the policies at
random at the third stage, the learning agent obtains about 50% of success rate.
“without scheduling” means that we do not applied learning scheduling and the
opponent changes its policy at random from the start. Somehow the performance
of the monolithic module system without learning scheduling is getting worse
after the 200 trials. The multi-module system without learning schedule shows
the worst performance in our experiments. This result indicates that it is very
difficult to recognize the situation at the early stage of the learning because the
modules has too few experiences to evaluate their fitness, then the system tends
to select the module without any consistency. As a result, the system cannot
acquires any valid policies at all.

5 Conclusion and Future Work

In this paper, we proposed a method by which multiple modules are assigned to
different situations which are caused by the alternation of the other agent policy
and learn purposive behaviors for the specified situations as consequences of the
other agent’s behaviors. We have shown reffectiveness of the proposed method
with a simple soccer situation and the importance of the learning scheduling.
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