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Abstract. We have developed an automatic calibration method for a
global camera system. Firstly, we show how to define automatically the
color maps we use for tracking the robots’ markers. The color maps
store the parameters of each important color in a grid superimposed
virtually on the field. Secondly, we show that the geometric distortion
of the camera can be computed automatically by finding white lines
on the field. The necessary geometric correction is adapted iteratively
until the white lines in the image fit the white lines in the model. Our
method simplifies and speeds up significantly the whole setup process at
RoboCup competitions. We will use these techniques in RoboCup 2004.

1 Introduction

Tracking colored objects is an important industrial application and is used in
the RoboCup small-size league for locating robots using a video camera which
captures the field from above. The two most important problems which arise in
this kind of object tracking are: a) elimination of the geometric distortion of the
cameras, and b) calibration of the colors to be tracked. It is not possible to cali-
brate geometry and colors manually, once and for all, since lightning conditions
change from one place to another, and even from one hour to the next.

In this paper we describe the techniques we have developed for fast calibra-
tion of the global camera(s) used in the RoboCup small-size league. The paper
is organized as follows. First we comment on related work. Then we describe
in detail our new semi-automatic color calibration method and compare its re-
sults to the hand-optimized ones. The next section deals with the calibration of
the geometric transformation of the field and compare the automatic with the
manual method. Finally, we describe our future plans.

2 Related Work and Motivation

Zrimec and Wyatt applied machine learning methods to the color calibration
problem [10]. They recognize regions delimited by edges and classify them ac-
cording to features such as average hue, saturation, intensity, and others. A com-
puter vision module for Sony robots uses those features to locate field landmarks.
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Another approach for automatic calibration is to compute global histograms
of images under different lightning conditions. Lookup tables for color segmen-
tation are initialized in such a way as to make the new histogram equal to that
found under controlled conditions [6]. In our case this approach would not work,
since we do not use a single lookup table for the whole field. We recognize colors
locally, using a color map which can change from one part of the field to the
other. Some authors have tried decision trees in order to segment colors inde-
pendently from light. However, they focus on object localization robustness and
do not deal with the automation of the calibration [1].

Regarding the correction of the geometric distortion introduced by a camera,
the canonical approach relies on determining first intrinsic camera parameters
and then extrinsic parameters [2]. The intrinsic parameters can be measured in
the laboratory. The extrinsic can be fitted by least squares, identifying points
on the image with points in a geometric non-distorted model. We do not want
to identify points on the field by clicking on them; the software should be able
to automatically recognize the orientation of the camera and to select relevant
points for matching them with the model.

Whitehead and Roth described an evolutionary optimization approach to
camera auto-calibration [9]. Their method does not apply to our case, because
they optimize the fundamental calibration matrix directly, without considering
the radial camera distortion. Projective geometry methods alone solve one part of
our problem, but not the whole problem. Some authors have studied real-time
distortion correction for digital cameras, but without handling the projective
transformation correction [4].

3 Semi Automatic Color Calibration

In [7] we described our use of color maps for robust color recognition of the
robot’s markers. They consist of a virtual grid superimposed on the field, one
grid for each important color. At each grid node we store the RGB parameters
of the color and the size of visible color markers for that part of the field, as seen
by the camera. The grid must be initialized before starting to track objects, that
is, we need an initialization step for each individual color. The color and marker
size maps are further adapted during play, so that the tracking system updates
the grid information whenever a change of illumination occurs.

3.1 Initializing the Color Maps

The global camera captures images in RGB format. This color space is not
very useful when trying to achieve color constancy. Therefore, we operate in the
HSV(hue/saturation/intensity value) color space. Fig. 1 shows the variability of
the HSV components over the field as captured in our lab.

Fig. 2 shows the functional relationship between the intensity of the back-
ground pixels (green) and the color blobs on the field. The relationship is an
affine function, whose parameters can be computed from the background inten-
sity and from two probes of the desired color positioned on the field. The function
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Fig. 1. The HSV components for the field of play with blue test blobs on it. The first
image shows the hue component, the second the saturation, and the third the intensity.
As can be seen, the intensity changes significantly throughout the field

(a) (b)

Fig. 2. The graph compares the intensity values of some random points on the green
background and the color map. Illumination inhomogeneities produce different changes
for different colors – scaling and translation factors are present: (a) shows the depen-
dency of the intensities as a function of the field coordinates (three lines over the
field); (b) shows the intensity of the color blobs as a function of the intensity of the
background at the same points. The correlation is clearly visible

has two parameters: an additive constant and a scale factor. We compute both
twice, from two probes, and average them for subsequent computations. More
probes could also be taken, resulting in better averaging.

Given b1 and b2, the intensity of the background color at the point P1 and
P2, and given c1 and c2, the intensities of the color C whose map we want to
derive at the points P1 and P2, respectively, the translation factor t and the scale
factor s are given by

t =
(c1 − b1) + (c2 − b2)

2
s =

( c1
b1
) + ( c2

b2
)

2
(1)

When the background intensity b at a point P is known, the unknown inten-
sity c of the color C at this point P is given by

c = bs+ (b + t)
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We also want to estimate the size of the robot markers (color blobs) around
the field. The apparent size of the markers varies with lightning conditions and
camera distortion. We assume that their size is proportional to the intensity of
the blob. We estimate the marker size by interpolating the sizes of the samples,
according to the intensity. One can also use the camera distortion to calculate
the size of the robot markers according to it.

To reduce the influence of noise, a median color is computed for the marker
and the background color at the picked point. The radius for the area around
the blob is predefined with respect to the blob-object which is identified by this
color (for example the orange ball is a little bit smaller than a team marker). The
size of the median filter for the background color, for its color grid, is exactly
the size of a grid tile [7].

3.2 Results and Comparison

In Table 1, the different forms of initializing the color map before starting a game
are compared to the manual adjustment method, exemplarily for the ball. As
shown, automatic initialization gives better results and smaller errors, compared
to a uniform initialization of the color map. The most important improvement
is the reduction of the maximum error, the relevant magnitude when trying not
to lose track of an object in the field. The improvement in estimation of the
ball size, as seen from the camera at different coordinates on the field, is also
significant.

Table 1. Statistical results comparing initializations of color maps. The table shows the
performance (relative to the hand-optimized color map) of a uniformly initialized color
map and two different automatically initialized maps. The performance of one specific
map is measured with the maximum and mean percentage deviation of computed values
from those in the hand-optimized map

Deviation from hand-optimized
Uniform Automatic

maximum mean maximum mean
hue 1.94% 0.85% 1.28% 0.61%

saturation 7% 1.4% 4.6% 1.7%
intensity 48% 9% 25% 9.4%

size 31 pixel 13 pixel 18 pixel 9.15 pixel
RGB distance 27.9% 5.2% 14.5% 5.7%
HSV distance 48% 8.7% 25.4% 9.73%

4 Automatic Geometric Calibration

The second camera setup problem we consider is the correction of the geometric
distortion. Traditional methods require identifying pairs of points in the image
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and model space. One could artificially define those calibration points by using a
carpet with marks, but that requires too much manual intervention. In this pa-
per we show how to use the white lines on the field to determine the parameters
of the transformation. The correlation between the extracted, and transformed
lines, and the lines of the model, is a measure for the quality of the transforma-
tion. This measure enables us to find the best transformation with conventional
optimization algorithms.

Our method is divided into the following steps: First, we extract the contours
of field regions from the video image. Next, we find a simple initialization, which
roughly matches the lines of the field to the model. Finally, we optimize the
parameters of the transformation.

4.1 Extraction of Contours

The non-white regions on the field are

Fig. 3. F-180 Field Padova 2003, with ar-
tificial shadows with strong edges. Dashed
lines show the field and out-of-field con-
tours

found by applying our region growing
algorithm as described in [3]. Discrim-
ination between white and non-white
pixels is based on their relative inten-
sity with respect to the local back-
ground. First, we average the intensity
of a larger region around a given pixel,
which is assured to contain a high per-
centage of background pixels. Relative
to that rough approximation, we re-
ject foreground pixels in a smaller re-
gion and locally determine the inten-
sity from the remaining pixels. The
contours of the regions found are the
borders of the field lines (see Fig. 3).

4.2 Quality Measure

Assume that we have a hypothetical geometric transformation T and that we
want to measure its error. Since we cannot determine the exact location of a
contour point p in the model, we approximate its error E(T, p) with the distance
between the transformed point T (p) and the nearest white line in the model. For
a set of points P , we compute the quality error Ê as

Ê(T, P ) := Ē(T, P ) + σ (E(T, P ))

where Ē is the mean error, and σ its standard deviation.

4.3 Initialization of the Transformation

To minimize the complexity of the optimization step, a smart initialization of
the transformation T is useful. We assume that the field has only limited dis-
tortion, radially and in the perspective. A linear transformation is a good initial
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approximation, except for the alignment of the field. Finding a matching pair of
rectangles in model and field let us compute such a transformation. In our case
a bounding box around region 1 (see Fig. 3) results in a good approximation to
a rectangle corresponding to one half of the field in the model. The alignment
can easily be determined by testing all four orientations of the bounding box as
initialization for the linear transformation. Using the quality measure described
above for the contour of region 1, the best match identifies the orientation of the
field, since the region is not symmetric with respect to rotation. The association
between the field sides in image and model is arbitrary. The transformation T
can be initialized accordingly to the linear transformation Tinit. We use a bi-
quadratic transformation as our standard transformation (see Section 4.4), but
other transformation models are possible.

4.4 Optimization

We use for both coordinates in model space a biquadratic interpolation in a single
3×3 grid to determine the coordinates in model-space, giving us 18 parameters to
be optimized. The initialization can be analytically derived from Tinit. However,
our approach relies only on the convergence properties of the transformation
function and not on the function itself.

Given the transformation T , gradient descent with linearly falling step-length
suffices to optimize the placement of the vertices with sub-pixel accuracy. To
achieve faster convergence adaptive selection of step-length and/or conjugate-
gradient methods can be used. Gradient descent only requires a non-degenerate
initializationwith the approximate orientation. In our experiments, even thewhole
image as rectangle for the initialization converged against the global minimum.

Other transformation-functions can be optimized similarly. Depending on
its convergence properties, a global optimization method may be necessary, for
example simulated annealing.

4.5 Calibration Results

We applied our algorithm to a set of real video images, captured two different
camera-systems (Basler 301fc, Sony XC-555). We presented the algorithm with
two different fields, the field of the PadovaWorld Cup 2003, built according to the
F-180 2003 rules, and our lab-field, which has slightly different dimensions and
several rough inaccuracies. The images had different brightness, and some were
artificially modified to simulate shadows with strong edges (as can be seen in
Fig. 3), which normally are not present on the field and strain region-extraction
more than the soft shadows usually observed. Furthermore, some images were
rotated up to 20o.

For a correct field model, our algorithm could adjust the geometric biquadratic
transformation for all images presented, given the constraints on the distortion,
without further adjustments to the algorithm after the initial selection of the
Padova images. Subsequent attempts to improve manually the parameters of
the transformation function resulted only in worse results, both with respect to
the average and standard-deviation of the error.
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(a) (b)

Fig. 4. The model matched on the rotated field (a) after the initialization and (b) after
the optimization step

In order to speed up the algorithm, initially only a subset of the contour
points is taken into account for the quality measure. The amount is gradually
increased as the error decreases. We use an adaptive step-width, which slowly
increases, unless the gradient step increases the error. Then the step-width is
reduced. The step-width is independent of the norm of the gradient.

We started the optimization with a step-width of 1 pixel and only using every
20th contour point in the measure. The optimization step required on our set
of images at most 6 seconds (5 seconds with conjugated gradient) to adopt the
parameters in 1/100 pixel accuracy and in average 4 seconds (4 seconds) on an
Athlon XP -2400+ (2GHz).

5 Future Work

The color map for a specific color is initialized by clicking on two markers during
setup. This takes a few seconds. In the future, our vision system will automati-
cally detect colors differing from the background, and will initialize a color map
for them.

For the geometric calibration, we want to evaluate other transformation-
functions, which are probably more accurate, due to their better modeling of
the distortion.

The improvements reported in this paper have the objective of achieving true
“plug & play” capability. In the future it should be possible just to place robots
on the field and start playing immediately against another team, whose col-
ors and marker orientation will be determined automatically. This would speed
RoboCup competitions significantly.

References

1. Brusey, J., and Padgham, L., “Techniques for Obtaining Robust, Real-Time,
Colour-Based Vision for Robotics”, Proceedings IJCAI’99 - International Joint
Conference on Artificial Intelligence, The Third International Workshop on
RoboCup – Stockholm, 1999.



Plug and Play: Fast Automatic Geometry and Color Calibration 401

2. Forsyth, D. A., and Ponce, A., Computer Vision: A Modern Approach, Prentice
Hall., 1st edition, 2002.

3. von Hundelshausen, F., and Rojas, R., “Tracking Regions”, in D. Polani, B. Brown-
ing, A. Bonarini, K. Yoshida (Eds.): RoboCup-2003 - Robot Soccer World Cup VII,
Springer-Verlag, 2004.

4. Gribbon, K. T., Johnston, C.T., Bailey, D.G., “A Real-time FPGA Implementation
of a Barrel Distortion Correction Algorithm with Bilinear Interpolation”, Image
and Vision Computing, Palmerston North, New Zealand, pp. 408-413, November
26-28, 2003.

5. Jacobsen, “Geometric Calibration of Space Remote Sensing Cameras for Effi-
cient Processing”, International Archives of Photogrammetry and Remote Sensing,
Vol.32, Part I, pp. 33-43.

6. Kulessa, T., and Hoch, M., “Efficient Color Segmentation under Varying Illumi-
nation Conditions”, Proceedings of the 10th IEEE Image and Multidimensional
Digital Signal Processing Workshop, July 12-16, 1998.

7. Simon, M., Behnke, S., Rojas, R.: “Robust Real Time Color Tracking” In: Stone,
P., Balch, T., Kraetszchmar (eds): RoboCup-2000: Robot Soccer World Cup IV, pp.
239-248, Springer, 2001.

8. Rojas, R., Behnke, S., Liers, A., Knipping, L.: “FU-Fighters 2001 (Global Vision)”,
In: Birk, A., Coradeschi, S., Tadokoro, S. (eds): RoboCup-01: Robot Soccer World
Cup V, Springer, 2001.

9. Whitehead, A., and Roth, G., “Evolutionary Based Autocalibration from the Fun-
damental Matrix”, in S. Cagnoni, Stefano Cagnoni, Jens Gottlieb, Emma Hart,
Martin Middendorf, Gnther R. Raidl (Eds.), Applications of Evolutionary Com-
puting – EvoWorkshops 2002, EvoCOP, EvoIASP, EvoSTIM/EvoPLAN, Kinsale,
Ireland, April 3-4, Springer-Verlag, 2002.

10. Zrimec, T., and Wyatt, A., “Learning to Recognize Objects - Toward Automatic
Calibration of Color Vision for Sony Robots”, Workshop of the Nineteenth Inter-
national Conference on Machine Learning (ICML-2002).


	Introduction
	Related Work and Motivation
	Semi Automatic Color Calibration
	Initializing the Color Maps
	Results and Comparison

	Automatic Geometric Calibration
	Extraction of Contours
	Quality Measure
	Initialization of the Transformation
	Optimization
	Calibration Results

	Future Work
	References



