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Abstract. UCHILSIM is a robotic simulator specially developed for the 
RoboCup four-legged league. It reproduces with high accuracy the dynamics of 
AIBO motions and its interactions with the objects in the game field. Their 
graphic representations within the game field also possess a high level of detail. 
The main design goal of the simulator is to become a platform for learning 
complex robotic behaviors which can be directly transferred to a real robot 
environment. UCHILSIM is able to adapt its parameters automatically, by 
comparing robot controller behaviors in reality and in simulations. So far, the 
effectiveness of UCHILSIM has been tested in some robot learning experiments 
which we briefly discuss hereinafter.  We believe that the use of a highly 
realistic simulator might speed up the progress in the four legged league by 
allowing more people to participate in our challenge. 

1   Introduction 

A fully autonomous robot should be able to adapt itself to the changes in its 
operational environment, either by modifying its behaviors or by generating new 
ones. Learning and evolution are two ways of adaptation of living systems that are 
being widely explored in evolutionary robotics [5]. The basic idea is to allow robots 
to develop their behaviors by freely interacting with their environment. A fitness 
measure determines the degree in which some specific task has been accomplished 
during behavior execution. This measure is usually determined by the designer. One 
of the main factors to consider within this approach is the amount of experience that 
the robot is able to acquire from the environment.  

The process of learning through experience is a time consuming task that requires, 
for real robots, testing a large amount of behaviors by means of real interactions. An 
alternative consists on simulating the interaction between the robot and the 
environment. Unfortunately, since simulation is usually not accurate, the acquired 
behaviors are not directly transferable to reality; this problem is usually referred to as 
the reality gap. There is a large list of experiments in the literature where simulators 
are used for generating simple robotic behaviors [5][6]. However, there are few 
examples of the generation of complex robotic behaviors in a simulation with 
successful transfers to reality.  
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Simulation can be achieved at different levels, for example: one can simulate the 
high-level processes of robot behaviors by simplifying the sensor and actuator 
responses. A more complete representation is obtained when considering the low-
level interactions among sensors, actuators and environment. Nevertheless, this 
usually entails complex models of dynamics and sensor related physical processes. 
We believe that a fundamental requirement for generating low-level behaviors from 
simulations is to consider a complete representation which includes low-level 
physical interactions. Thus, high-level behaviors can be obtained from lower-level 
behaviors in a subsumption fashion.  

Nowadays, generating representative simulators of the dynamics of the interactions 
of robots might not be an impossible task. Once achieved it allows for the easy 
generation of a variety of complex behaviors which otherwise would take a very 
extensive design period. However, we believe that generating a realistic simulator is 
not just a matter of modeling and design. In order to be fully realistic, the simulator 
must be adapted through real robot behavior execution as proposed in [12]. 

The RoboCup four-legged league offers a great challenge and opportunity for 
exploring low-level behavior acquisition. In this context we have decided to 
investigate how the use of a very realistic simulator might help the development of 
new behaviors. Although this league simulation warrants a good degree of attention, 
we identify a lack of accurate dynamic simulators. Aiming at solving this gap we 
present UCHILSIM, an accurate simulator in both the dynamic as well as the graphic 
aspects. The main design goal of the simulator is to become a platform for learning 
complex robotic behaviors by testing in a virtual environment the same controllers 
that operate in the real robot environment. UCHILSIM is able to learn its own 
parameters automatically, by comparing the robot controller behavior fitness values in 
reality and in simulations. We believe that the extensive use of this kind of tool might 
accelerate the generation of complex robotic behaviors within the RoboCup domain. 

The remainder of this paper is ordered as follows. In section 2 some related work is 
presented. The UCHILSIM simulator is described in section 3. In section 4 some real 
learning experiments with AIBO robots using UCHILSIM are shown. Finally, in 
section 5 the conclusions and projections of this work are presented. 

2   Related Work 

So far three simulators have been reported for the RoboCup four-legged league, these 
are the ASURA team simulator [3], the ARAIBO team simulator [1], and the German 
Team Robot Simulator [7]. All these simulators consider a graphic representation of 
AIBO robots and soccer environment, but only the German Team Simulator considers 
as well the dynamics of objects at an elementary level of representation. Table 1 
summarizes the main characteristics of these simulators.    We consider that none of 
them represent with great accuracy both the graphic and the dynamic aspects of the 
environment. In this context there is a lot of work to be done in order to generate a 
simulator that accurately mimics the interaction of a robot in a real environment. We 
believe that it is possible to generate accurate simulators at a level in which it is 
feasible to learn complex behaviors with the successful transfer of these behaviors to 
reality.  
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Table 1. Main characteristics of simulators that have been reported for the RoboCup four 
legged league 

Name of Simulator Presence of 
Dynamics 

Level of 
Graphics 

Functionalities 

ASURA Simulator No dynamics. Good graphic 
representations 

Allows capturing 
AIBO image. 

ARAIBO Simulator No dynamics. AIBO camera 
characteristics 
well treated. 

Allows capturing 
AIBO image. 

German Team 
Simulator 

Present at an 
elementary level. 

Elemental 
graphic 
representations. 

Large set of 
functionalities, e.g. 

interfacing with 
monitor, calibration 

tools, etc. 

3   UCHILSIM 

UCHILSIM is a robotic simulator designed for the RoboCup four-legged league. It is 
built on top of two processing engines: one in charge of reproducing the dynamics of 
articulated rigid bodies and the other in charge of generating accurate graphic 
representations of the objects and the soccer setting. The simulator also includes a 
variety of interfacing functions which allow the core system to be connected with all 
the UChile1 controlling modules and sub-systems, as well as to some learning 
mechanisms.  The simulator includes a complete graphic user interface. Figure 1 
shows a screenshot of the use of UCHILSIM. 

The main design goal of UCHILSIM is to allow robots to acquire behaviors learnt 
in a representative virtual environment. The long-term goal of the simulator is to 
allow the generation of complex behaviors for RoboCup team players by efficiently 
combining the acquisition of knowledge in reality as well as simulations [12]. 

Most of the rigid body dynamics in UCHILSIM are modeled and computed using 
the Open Dynamics Engine (ODE) library [9], which is an industrial quality library 
for simulating articulated rigid body dynamics in virtual environments. ODE is fast, 
flexible and robust; it allows the definition of a variety of advanced joints and contact 
points under friction.  ODE solves equations of motion by means of a Lagrange 
multiplier velocity model. It uses a Coulomb contact and friction model which is 
solved by means of a Dantzig LCP solver method. In UCHILSIM special attention 
has been provided for the modeling of servo motors and ball. 

The graphic representation of the objects in UCHILSIM is obtained by using the 
Open Graphic Library (OpenGL) [10]. The CAD model of the AIBO robots was 
generated starting from standard data provided by Sony [11]. The changes made to 
this model were the incorporation of player’s red and blue jackets, the renewal of the 
robot colors, and the modifications in the original model in order to achieve greater 
accuracy.  

The following is a description of the UCHILSIM main components, such as the 
basic architecture of the system, the dynamic and graphic engines, the user interface, 
the learning capabilities of the system and the object loader. 
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Fig. 1. Illustration of the UCHILSIM software and its user interface. It is possible to observe 
the display of various viewing options 

3.1   Basic Architecture 

Figure 2 illustrates the basic architecture of UCHILSIM. It is possible to observe how 
the core functions of the simulator are interfaced with a variety of applications. In the 
core of the simulator the dynamic engine closely cooperates with the graphic engine 
to generate  a representation of  each object. By means of a learning  interface, a set of  

 

Fig. 2. Illustration of the UCHILSIM architecture. It is possible to observe how the overall 
system is organized as a set of interfaces around a core subsystem which contains the dynamic 
and graphic engines 
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parameters is interchanged with a learning algorithm which runs independently of the 
simulator. These parameters are as a rule for either: defining the simulator variables 
or the robot controller variables which are being adapted during the learning process.  
The user interface allows changing several variables of the simulation, such as the 
way objects are being rendered as well as the external manipulation of objects within 
the game field. An application interface allows running the overall UChile1 package 
[8] on the simulation. We are currently working on an Open-r application interface 
which will allow the compilation of any open-r code under our simulator. We believe 
that such kind of tool will be quite relevant for the development of the league since it 
will allow, for example, to realistically simulate a game against any team in the 
league. Another recently incorporated component is the VRML Object Loader which 
allows to quickly incorporate new robot models into the simulated environment by 
following a fast and reliable procedure.  

3.2   Dynamic Engine 

In UCHILSIM all the AIBO body elements and the soccer field objects are modeled 
as articulated rigid bodies such as: parallelepipeds and spheres, which are connected 
to each other using different types of joints. A joint is a dynamic constraint enforced 
between two bodies, in order that they can only hold certain positions and orientations 
in relation to each other. We use universal joint models for defining the relationship 
among the AIBO torso and its thighs, i.e. rotation is constrained to just two degrees of 
freedom. Simple hinge joints are used for defining the relation among thighs and taps, 
i.e. constraining rotation to only one degree of freedom. Fixed joint models are used 
for defining the relation among the taps and hoofs; in this case one direction of 
deformation is allowed, and as a result the model accurately represents the rotation of 
the hoofs. In addition small spheres are attached to the base of each leg by means of 
fixed joints intended to mimic the effect of the leg tops.  

The mass distribution of each rigid body is specified in the form of inertia tensors. 
For this implementation we assume a uniform distribution of mass for each rigid body. 
Mass estimation was carried out for each rigid body using a weight measuring device.  

Collision detection is performed either with a simple model of spheres and 
parallelepipeds or by using a simplified version of the graphic grid which is attached 
to each rigid body. The latter approach is slightly time consuming although more 
accurate. We have obtained good results in all our experiments by using just the 
parallelepiped-sphere model. Figure 3 illustrate a diagram of the geometries which are 
alternatively attached to each rigid body for performing collision detection, it also 
shows the placement of the servomotors which are included in our model. They apply 
torque over joints according to the output of a PID controller which receives angular 
references given by the actuation module of the UChile1 software package [8].  

On each simulation step the equation dynamics are integrated and a new state is 
computed for each rigid body (velocities, accelerations, angular speeds, etc). Then 
collision detection is carried out, and the resulting forces are applied to the 
corresponding bodies transmitting the effect of collisions along the entire body. Thus, 
the friction parameters deserve to be given special attention since they are used for 
computing the reaction forces between the robot limbs and the carpet. These 
parameters are under automatic adaptation on each performed experiment.  
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Fig. 3. Collision detection models which are alternatively used in UCHILSIM. The figure on 
the left corresponds to the graphic grid model used for collision detection. The figure on the 
right corresponds to the model generated with a set of parallelepipeds and spheres. By using 
this model we are able to perform accurate dynamic experiments while keeping the simulation 
at real time speed. The figure also shows the position of the servomotors which are included in 
the robot model 

3.3   Graphic Engine 

The dynamic engine computes the corresponding positions and rotation matrixes of 
each body in the simulation space at the end of each simulation step. Then, for each 
rigid body, the corresponding graphic object is rendered. This is carried out by 
efficiently calling the corresponding graphic data. The graphic engine is also in 
charge of producing the image acquired from the AIBO’s cameras. This is quite 
relevant for producing experiments with vision based systems. Using this system we 
will specifically intend to produce an extension of the work presented in [14]. We 
haven’t concentrated our efforts on producing extremely realistic images yet, but we 
estimate that this process will be simple. We will incorporate some of the 
transformations which were proposed in [1] such as: the camera distortion and CMOS 
filters. Using a CAD modeler software we gave the AIBO models blue and red 
jackets, which were originally provided by Sony, we also constructed the 
corresponding soccer scenario. The process of importing the graphic data into C++ 
code was quite time consuming before using the object loader. Currently the graphic 
data is directly obtained from the object loader module. 

3.4   User Interface 

The user interface of the simulator currently provides the following set of functions: 

1. Loading of arbitrary AIBO models in modified VRML format.  
2. Placement, at any moment, of different objects within the simulation, such as: 

robots, balls and other objects. 
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3. Arbitrary movement of objects while in motion, this is particularly useful while 
interactively generating games with the robots. 

4. On line Modification of several parameters of the UChile1 controller. 
5. Modification of several rendering options and viewing conditions, such as: wire 

frame representation, bounding box representation, point representation of 
objects, etc. 

6. Management of the images captured by the AIBO’s camera. These images can 
be exported into files or automatically transmitted to some learning software. 

7. Loading and saving of a variety of configurations which define the game 
conditions. 

8. Efficient management of several windows on the screen. 

3.5   Learning Interface 

UCHILSIM is powered with a fast and efficient method for updating its parameters 
during running time. It is designed to communicate with other programs by means of 
a TCP/IP network. We have considered this, given that the simulator needs to adapt 
itself in order to perform experiments with the Back to Reality approach that will be 
discussed ahead.   

 3.6   UChile1 and Open-r API 

The entire UChile1 software package, which allows a team of fully autonomous 
AIBO robots to play soccer, can be compiled for UCHILSIM. We had to carry out 
several modifications on our code in order to make this possible. However, the 
simulator is a great tool given that, besides its learning capabilities, it is very useful 
for debugging any piece of code of our system.  We are currently working towards 
generating an Open-r API for the simulator; the idea is to be capable of compiling any 
Open-r code for UCHILSIM. We believe that there are several applications for such 
kind of tool, for example, it might speed up the progress of the league by allowing 
people around the world to develop and test software without the need of having a 
real AIBO. Thus, incoming research groups might collaborate with the league by 
testing their code in a simulated environment. For those who already have a real 
AIBO it might be interesting to test their systems during long evaluation periods, 
letting teams play against each other during days. This will allow the accurate 
analysis of the differences among teams and of course the possibility of learning from 
these experiences.  

3.7   Object Loader 

The VRML language allows defining objects into a tree like structure of nodes, each 
one containing graphic as well as structural information of body elements, such as: 
mass, articulation points, etc. Although graphic data of AIBO models available to the 
public does not currently contain dynamic information, we have modified them by 
incorporating mass and motor data into the VRML files.  On earlier versions of our 
simulator the robot models were hard wired into the simulator and the process of 
incorporating new models was quite time consuming. On the other hand updating a 
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VRML file is considerably less time consuming.  Using this technique we have added 
the ERS-220 and the new ERS-7 AIBO robot models into our simulator. 

4   Using UCHILSIM for Learning Behaviors with Back to Reality 

UCHILSIM is a platform intended for learning complex low level behaviors. The 
capabilities of UCHILSIM will be illustrated on hands of two different real 
experiments.  We will first briefly describe Back to Reality. The Back to Reality 
paradigm combines into a single framework: learning from reality and learning from 
simulations. The main idea is that the robot and its simulator co-evolve in an 
integrated fashion as it can be seen in the block diagram presented on figure 4. The 
robot learns by alternating real experiences and virtual (in simulator) ones. The 
evolution of the simulator continuously narrows the differences among simulation and 
reality (reality–gap). The simulator learns from the implementation of the robots 
behavior in the real environment, and by comparing the performance of the robot in 
reality and in the simulator.  

The internal parameters of the simulator are adapted using performance variation 
measures. When the robot learns in reality, the robot controller is structurally coupled 
to the environment, whereas when it learns in simulation the robot controller is 
structurally coupled to its simulator. Thus, the simulation parameters are continuously 
tuned narrowing the reality-gap along the behavior adaptation process.  

The Back to Reality approach consists of the online execution of three sequential 
learning processes: L1 is the learning of the robot controller in the simulated 
environment. L2 is the  learning of the robot  controller in the real  environment. L3  is 

Fig. 4. Back to Reality building blocks 
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the learning of the simulator parameters. In this process the gap among simulation and 
reality is narrowed by minimizing, after each run of L3, the difference between the 
obtained fitness in reality and in simulation 

During L1 and L2 the robot controller adaptation depends on the behavior B’ 
observed in the simulated environment, and on the behavior B observed in the real 
environment, respectively. During L3 the simulated environment is the result of the 
previous simulated environment and the real environment, as well as the real behavior 
and the simulated behavior. For implementing L1 and L2 any kind of learning 
algorithm can be used. Although we think that considering the evaluation time 
limitations of the experiments in reality, a reinforced learning algorithm is more 
suitable for implementing L2. Taking into account the flexibility of simulations, we 
think a good alternative for implementing L1 are genetic algorithms. Regarding L3, 
we should consider the fact that the simulator has a large amount of parameters that 
probably are not explicitly related with aspects of the desired behavior. If this is the 
case, then L3 could be implemented using genetic algorithms. Otherwise, reinforced 
learning could be an alternative. All these issues are addressed in [12]. 

4.1   Learning to Walk 

Since we have a team competing in RoboCup we are particularly motivated on 
improving the gait speed of our team. One can notice that there is a strong correlation 
between the speed of a robot-player and the success of a robot soccer team. We 
considerably improved the gaits of our system by learning with UCHILSIM and the 
Back to Reality approach. As a behavior fitness measure we used the robot speed 
measured in centimeters per second during evaluation trials of 20 seconds. The first 
stage of our experiment consisted on using genetic search for widely exploring a gait 
controller solution space. In this stage we use UCHILSIM as environment and a hand 
tuned solution as a starting point (although our approach is well suited for a scratch 
starting point). The second stage consisted on evaluating in the real environment a set 
of successful behaviors, and measuring their corresponding fitness. These fitness 
measures are then used for optimizing the simulator parameters. The idea is that the 
simulator (UCHILSIM) be continuously updated. A genetic algorithm searches 
through the space of simulator parameters and minimizes the difference between 
fitness values obtained in simulation and their values obtained in reality. The third 
stage, which is simultaneously executed, consists on learning in reality using policy-
gradient reinforcement learning. The idea is to take the solution that is obtained with 
genetic search under UCHILSIM, and then to perform smooth transitions around the 
solution by estimating the gradient, using the reinforcement method in the real 
environment. The best solution resulting from reinforcement learning is then 
transferred back to UCHILSIM where genetic search is again carried out. Then, the 
final stage consists on testing in reality the resulting solution by going back to reality. 
This process can be repeated indefinitely. 

4.1.1   Robot Controller Parameters 
The following set of 20 parameters define the AIBO’s gait in our experiments (for a 
detailed explanation see [12]): the locus shape (3 parameters: length, shape factor and 
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lift factor.); the front locus shape modifier (3 parameters: lift height, air height and 
descending height); the rear locus shape modifier (3 parameters: lift height, air height 
and descending height); the front locus operation point (3 parameters: x, y and z); the 
rear locus operation point (3 parameters: x, y and z); locus skew multiplier in the x-y 
plane (for turning); the speed of the feet while in the ground; the fraction of time each 
foot spends on the air; the time spent on the lift stage (its equal to the descending 
time); the number of points in the air stage of which the inverse kinematics is 
calculated. 

4.1.2   UCHILSIM Parameters 
The robot simulator is defined by a set of 12 parameters, which determine the 
simulator and robot dynamics. These parameters include the ODE values used for 
solving the dynamic equations and the PID constants used for modeling the leg 
servos. There are 4 parameters for the mass distribution in the robot: head mass, neck 
mass, body mass and leg mass; 4 parameters of the dynamic model: friction constant, 
gravity constant, force dependent slip in friction direction 1 and force dependent slip 
in friction direction 2; and finally 4 parameters for the joint leg model: proportional, 
integral and differential constants of the PID controller and maximum joint torque. 

4.1.3   Experiments Description 
The procedure consists on learning the 20 robot controller parameters in the simulator 
and in reality, as well as learning the 12 simulator parameters. Genetic algorithms 
were used for the evolution of the simulator parameters and for the evolution of the 
robot controller parameters in UCHILSIM. Specifically, a conventional genetic 
algorithm employing fitness-proportionate selection with linear scaling, no-elitism 
scheme, two-points crossover with Pc=0.7 and mutation with Pm=0.005 per bit was 
employed. Given the set of parameters obtained from the simulator, we continued 
their adaptation in reality using the Policy Gradient Reinforcement Learning method 
[4]. The experimental conditions are fully described in [12]. 

First, walking experiments were carried out in UCHILSIM. The fitness evolution 
of these individuals is shown on figure 5. From these experiments we extracted a set 
of the 10 best individuals; they averaged a speed of 18 cm/s. The best individual of 
this group performed 20 cm/s in reality. The fitness value of each one of these 
individuals was compared with the resulting fitness that they exhibit in simulation. 
And the norm of the resulting fitness differences was used as a fitness function to be 
minimized by genetic search trough the space of simulator parameters. We obtained a 
minimum fitness of 2 cm/s as discrepancies occurred between the simulation and 
reality exhibited by these individuals. The best individual was then taken as a starting 
point for a policy gradient learning process performed in reality. With this method we 
achieved a speed of 23.5 cm/s. The resulting best individual obtained with 
reinforcement learning was then taken back to the now evolved adapted simulator 
where a genetic search took place starting with the population generated with 
permutations of this best individual. Finally some of the best individuals resulting 
from the genetic adaptation were tested on reality.  Among these trials we found an 
individual that averaged a speed of 24.7 cm/s in reality. It should be noticed that 
improvements where done on our own controlling system, and that therefore, the 
resulting speed is not directly comparable to those obtained by others. Besides the gait 
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locus used by a controller the efficiency on the computations also matter, the low 
level refinements on motor control, the inverse kinematics models being used, etc. 

 
 
 
 
 
 

 
 
 
 
 

 

 

Fig. 5. Left: evolution of fitness for individuals tested with the UCHILSIM simulator in the 
first stage. Before adapting the simulator the individuals receive larger fitness in simulation 
than in reality. Right: Adaptation of the simulator, it is possible to observe how the minimization 
of the average differences of fitness obtained in reality versus simulations takes place 

4.2   Learning to Kick the Ball 

Since this experiment is presented in [13] we will not offer many details here, 
however we can say that UCHILSIM was used for learning to kick the ball with 
AIBO robots using the Back to Reality approach, and that the resulting ball-kick 
behaviors were quite interesting, performing similarly as the best ball-kicks currently 
being used in the league.  The behaviors which were obtained in the simulator were 
directly transferable into reality at the end of the adaptation process. Another 
important aspect to observe is that these behaviors were obtained from scratch.  

5   Conclusions and Projections 

UCHILSIM is a robotic simulator specially developed for the RoboCup four legged 
league. It reproduces the dynamics of AIBO motions and its interactions with objects 
in the game field with a great level of realism. The simulator also has a great amount 
of detail in the graphic representation of game field objects. The main design goal of 
the simulator is to become a platform for learning complex robotic behaviors by 
allowing testing of the same controllers that should operate in the real robot 
environment within a virtual environment. So far the effectiveness of UCHILSIM has 
been tested in two robotic behavior learning experiments which we have briefly 
described.  

Currently each simulation step takes about 8ms with one AIBO robot being 
simulated on a Pentium IV 2.5 GHz processor and 512Mb of RAM. Using this 
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computing power we are able to simulate up to two robots at a realistic level. Several 
computers can be used for running simulations with more than two robots, however 
we have not implemented this option yet. We are currently working on improving our 
system; we expect to increase the current frame fate.   

The following are some short term projections of UCHILSIM: (1) Consolidate the 
Open-r Universal UCHILSIM API. (2) Perform experiments where our localization 
methods will be tested using simulation and reality. (3) Perform experiments on the 
visual calibration of the simulator virtual cameras with basis on the Back to Reality 
approach. And (4) perform experiments combining real robots with virtual ones in a 
single soccer game. 

A sample version of UCHILSIM is available at http://www.robocup.cl 
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