

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 34–45, 2005.
© Springer-Verlag Berlin Heidelberg 2005

UCHILSIM: A Dynamically and Visually Realistic
Simulator for the RoboCup Four Legged League

Juan Cristóbal Zagal and Javier Ruiz-del-Solar

Department of Electrical Engineering, Universidad de Chile,
Av. Tupper 2007, 6513027 Santiago, Chile
{jzagal, jruizd}@ing.uchile.cl

http://www.robocup.cl

Abstract. UCHILSIM is a robotic simulator specially developed for the
RoboCup four-legged league. It reproduces with high accuracy the dynamics of
AIBO motions and its interactions with the objects in the game field. Their
graphic representations within the game field also possess a high level of detail.
The main design goal of the simulator is to become a platform for learning
complex robotic behaviors which can be directly transferred to a real robot
environment. UCHILSIM is able to adapt its parameters automatically, by
comparing robot controller behaviors in reality and in simulations. So far, the
effectiveness of UCHILSIM has been tested in some robot learning experiments
which we briefly discuss hereinafter. We believe that the use of a highly
realistic simulator might speed up the progress in the four legged league by
allowing more people to participate in our challenge.

1 Introduction

A fully autonomous robot should be able to adapt itself to the changes in its
operational environment, either by modifying its behaviors or by generating new
ones. Learning and evolution are two ways of adaptation of living systems that are
being widely explored in evolutionary robotics [5]. The basic idea is to allow robots
to develop their behaviors by freely interacting with their environment. A fitness
measure determines the degree in which some specific task has been accomplished
during behavior execution. This measure is usually determined by the designer. One
of the main factors to consider within this approach is the amount of experience that
the robot is able to acquire from the environment.

The process of learning through experience is a time consuming task that requires,
for real robots, testing a large amount of behaviors by means of real interactions. An
alternative consists on simulating the interaction between the robot and the
environment. Unfortunately, since simulation is usually not accurate, the acquired
behaviors are not directly transferable to reality; this problem is usually referred to as
the reality gap. There is a large list of experiments in the literature where simulators
are used for generating simple robotic behaviors [5][6]. However, there are few
examples of the generation of complex robotic behaviors in a simulation with
successful transfers to reality.

 UCHILSIM: A Dynamically and Visually Realistic Simulator 35

Simulation can be achieved at different levels, for example: one can simulate the
high-level processes of robot behaviors by simplifying the sensor and actuator
responses. A more complete representation is obtained when considering the low-
level interactions among sensors, actuators and environment. Nevertheless, this
usually entails complex models of dynamics and sensor related physical processes.
We believe that a fundamental requirement for generating low-level behaviors from
simulations is to consider a complete representation which includes low-level
physical interactions. Thus, high-level behaviors can be obtained from lower-level
behaviors in a subsumption fashion.

Nowadays, generating representative simulators of the dynamics of the interactions
of robots might not be an impossible task. Once achieved it allows for the easy
generation of a variety of complex behaviors which otherwise would take a very
extensive design period. However, we believe that generating a realistic simulator is
not just a matter of modeling and design. In order to be fully realistic, the simulator
must be adapted through real robot behavior execution as proposed in [12].

The RoboCup four-legged league offers a great challenge and opportunity for
exploring low-level behavior acquisition. In this context we have decided to
investigate how the use of a very realistic simulator might help the development of
new behaviors. Although this league simulation warrants a good degree of attention,
we identify a lack of accurate dynamic simulators. Aiming at solving this gap we
present UCHILSIM, an accurate simulator in both the dynamic as well as the graphic
aspects. The main design goal of the simulator is to become a platform for learning
complex robotic behaviors by testing in a virtual environment the same controllers
that operate in the real robot environment. UCHILSIM is able to learn its own
parameters automatically, by comparing the robot controller behavior fitness values in
reality and in simulations. We believe that the extensive use of this kind of tool might
accelerate the generation of complex robotic behaviors within the RoboCup domain.

The remainder of this paper is ordered as follows. In section 2 some related work is
presented. The UCHILSIM simulator is described in section 3. In section 4 some real
learning experiments with AIBO robots using UCHILSIM are shown. Finally, in
section 5 the conclusions and projections of this work are presented.

2 Related Work

So far three simulators have been reported for the RoboCup four-legged league, these
are the ASURA team simulator [3], the ARAIBO team simulator [1], and the German
Team Robot Simulator [7]. All these simulators consider a graphic representation of
AIBO robots and soccer environment, but only the German Team Simulator considers
as well the dynamics of objects at an elementary level of representation. Table 1
summarizes the main characteristics of these simulators. We consider that none of
them represent with great accuracy both the graphic and the dynamic aspects of the
environment. In this context there is a lot of work to be done in order to generate a
simulator that accurately mimics the interaction of a robot in a real environment. We
believe that it is possible to generate accurate simulators at a level in which it is
feasible to learn complex behaviors with the successful transfer of these behaviors to
reality.

36 J.C. Zagal and J. Ruiz-del-Solar

Table 1. Main characteristics of simulators that have been reported for the RoboCup four
legged league

Name of Simulator Presence of
Dynamics

Level of
Graphics

Functionalities

ASURA Simulator No dynamics. Good graphic
representations

Allows capturing
AIBO image.

ARAIBO Simulator No dynamics. AIBO camera
characteristics
well treated.

Allows capturing
AIBO image.

German Team
Simulator

Present at an
elementary level.

Elemental
graphic
representations.

Large set of
functionalities, e.g.

interfacing with
monitor, calibration

tools, etc.

3 UCHILSIM

UCHILSIM is a robotic simulator designed for the RoboCup four-legged league. It is
built on top of two processing engines: one in charge of reproducing the dynamics of
articulated rigid bodies and the other in charge of generating accurate graphic
representations of the objects and the soccer setting. The simulator also includes a
variety of interfacing functions which allow the core system to be connected with all
the UChile1 controlling modules and sub-systems, as well as to some learning
mechanisms. The simulator includes a complete graphic user interface. Figure 1
shows a screenshot of the use of UCHILSIM.

The main design goal of UCHILSIM is to allow robots to acquire behaviors learnt
in a representative virtual environment. The long-term goal of the simulator is to
allow the generation of complex behaviors for RoboCup team players by efficiently
combining the acquisition of knowledge in reality as well as simulations [12].

Most of the rigid body dynamics in UCHILSIM are modeled and computed using
the Open Dynamics Engine (ODE) library [9], which is an industrial quality library
for simulating articulated rigid body dynamics in virtual environments. ODE is fast,
flexible and robust; it allows the definition of a variety of advanced joints and contact
points under friction. ODE solves equations of motion by means of a Lagrange
multiplier velocity model. It uses a Coulomb contact and friction model which is
solved by means of a Dantzig LCP solver method. In UCHILSIM special attention
has been provided for the modeling of servo motors and ball.

The graphic representation of the objects in UCHILSIM is obtained by using the
Open Graphic Library (OpenGL) [10]. The CAD model of the AIBO robots was
generated starting from standard data provided by Sony [11]. The changes made to
this model were the incorporation of player’s red and blue jackets, the renewal of the
robot colors, and the modifications in the original model in order to achieve greater
accuracy.

The following is a description of the UCHILSIM main components, such as the
basic architecture of the system, the dynamic and graphic engines, the user interface,
the learning capabilities of the system and the object loader.

 UCHILSIM: A Dynamically and Visually Realistic Simulator 37

Fig. 1. Illustration of the UCHILSIM software and its user interface. It is possible to observe
the display of various viewing options

3.1 Basic Architecture

Figure 2 illustrates the basic architecture of UCHILSIM. It is possible to observe how
the core functions of the simulator are interfaced with a variety of applications. In the
core of the simulator the dynamic engine closely cooperates with the graphic engine
to generate a representation of each object. By means of a learning interface, a set of

Fig. 2. Illustration of the UCHILSIM architecture. It is possible to observe how the overall
system is organized as a set of interfaces around a core subsystem which contains the dynamic
and graphic engines

UCHILSIM Core

User Interface
Windows based

UChile1 API
UChile1 based

Open-r API
(in progress)

Dynamic Engine
ODE based

Graphic Engine
OpenGL based

Learning
Interface

VRML
Object
Loader

38 J.C. Zagal and J. Ruiz-del-Solar

parameters is interchanged with a learning algorithm which runs independently of the
simulator. These parameters are as a rule for either: defining the simulator variables
or the robot controller variables which are being adapted during the learning process.
The user interface allows changing several variables of the simulation, such as the
way objects are being rendered as well as the external manipulation of objects within
the game field. An application interface allows running the overall UChile1 package
[8] on the simulation. We are currently working on an Open-r application interface
which will allow the compilation of any open-r code under our simulator. We believe
that such kind of tool will be quite relevant for the development of the league since it
will allow, for example, to realistically simulate a game against any team in the
league. Another recently incorporated component is the VRML Object Loader which
allows to quickly incorporate new robot models into the simulated environment by
following a fast and reliable procedure.

3.2 Dynamic Engine

In UCHILSIM all the AIBO body elements and the soccer field objects are modeled
as articulated rigid bodies such as: parallelepipeds and spheres, which are connected
to each other using different types of joints. A joint is a dynamic constraint enforced
between two bodies, in order that they can only hold certain positions and orientations
in relation to each other. We use universal joint models for defining the relationship
among the AIBO torso and its thighs, i.e. rotation is constrained to just two degrees of
freedom. Simple hinge joints are used for defining the relation among thighs and taps,
i.e. constraining rotation to only one degree of freedom. Fixed joint models are used
for defining the relation among the taps and hoofs; in this case one direction of
deformation is allowed, and as a result the model accurately represents the rotation of
the hoofs. In addition small spheres are attached to the base of each leg by means of
fixed joints intended to mimic the effect of the leg tops.

The mass distribution of each rigid body is specified in the form of inertia tensors.
For this implementation we assume a uniform distribution of mass for each rigid body.
Mass estimation was carried out for each rigid body using a weight measuring device.

Collision detection is performed either with a simple model of spheres and
parallelepipeds or by using a simplified version of the graphic grid which is attached
to each rigid body. The latter approach is slightly time consuming although more
accurate. We have obtained good results in all our experiments by using just the
parallelepiped-sphere model. Figure 3 illustrate a diagram of the geometries which are
alternatively attached to each rigid body for performing collision detection, it also
shows the placement of the servomotors which are included in our model. They apply
torque over joints according to the output of a PID controller which receives angular
references given by the actuation module of the UChile1 software package [8].

On each simulation step the equation dynamics are integrated and a new state is
computed for each rigid body (velocities, accelerations, angular speeds, etc). Then
collision detection is carried out, and the resulting forces are applied to the
corresponding bodies transmitting the effect of collisions along the entire body. Thus,
the friction parameters deserve to be given special attention since they are used for
computing the reaction forces between the robot limbs and the carpet. These
parameters are under automatic adaptation on each performed experiment.

 UCHILSIM: A Dynamically and Visually Realistic Simulator 39

Fig. 3. Collision detection models which are alternatively used in UCHILSIM. The figure on
the left corresponds to the graphic grid model used for collision detection. The figure on the
right corresponds to the model generated with a set of parallelepipeds and spheres. By using
this model we are able to perform accurate dynamic experiments while keeping the simulation
at real time speed. The figure also shows the position of the servomotors which are included in
the robot model

3.3 Graphic Engine

The dynamic engine computes the corresponding positions and rotation matrixes of
each body in the simulation space at the end of each simulation step. Then, for each
rigid body, the corresponding graphic object is rendered. This is carried out by
efficiently calling the corresponding graphic data. The graphic engine is also in
charge of producing the image acquired from the AIBO’s cameras. This is quite
relevant for producing experiments with vision based systems. Using this system we
will specifically intend to produce an extension of the work presented in [14]. We
haven’t concentrated our efforts on producing extremely realistic images yet, but we
estimate that this process will be simple. We will incorporate some of the
transformations which were proposed in [1] such as: the camera distortion and CMOS
filters. Using a CAD modeler software we gave the AIBO models blue and red
jackets, which were originally provided by Sony, we also constructed the
corresponding soccer scenario. The process of importing the graphic data into C++
code was quite time consuming before using the object loader. Currently the graphic
data is directly obtained from the object loader module.

3.4 User Interface

The user interface of the simulator currently provides the following set of functions:

1. Loading of arbitrary AIBO models in modified VRML format.
2. Placement, at any moment, of different objects within the simulation, such as:

robots, balls and other objects.

40 J.C. Zagal and J. Ruiz-del-Solar

3. Arbitrary movement of objects while in motion, this is particularly useful while
interactively generating games with the robots.

4. On line Modification of several parameters of the UChile1 controller.
5. Modification of several rendering options and viewing conditions, such as: wire

frame representation, bounding box representation, point representation of
objects, etc.

6. Management of the images captured by the AIBO’s camera. These images can
be exported into files or automatically transmitted to some learning software.

7. Loading and saving of a variety of configurations which define the game
conditions.

8. Efficient management of several windows on the screen.

3.5 Learning Interface

UCHILSIM is powered with a fast and efficient method for updating its parameters
during running time. It is designed to communicate with other programs by means of
a TCP/IP network. We have considered this, given that the simulator needs to adapt
itself in order to perform experiments with the Back to Reality approach that will be
discussed ahead.

 3.6 UChile1 and Open-r API

The entire UChile1 software package, which allows a team of fully autonomous
AIBO robots to play soccer, can be compiled for UCHILSIM. We had to carry out
several modifications on our code in order to make this possible. However, the
simulator is a great tool given that, besides its learning capabilities, it is very useful
for debugging any piece of code of our system. We are currently working towards
generating an Open-r API for the simulator; the idea is to be capable of compiling any
Open-r code for UCHILSIM. We believe that there are several applications for such
kind of tool, for example, it might speed up the progress of the league by allowing
people around the world to develop and test software without the need of having a
real AIBO. Thus, incoming research groups might collaborate with the league by
testing their code in a simulated environment. For those who already have a real
AIBO it might be interesting to test their systems during long evaluation periods,
letting teams play against each other during days. This will allow the accurate
analysis of the differences among teams and of course the possibility of learning from
these experiences.

3.7 Object Loader

The VRML language allows defining objects into a tree like structure of nodes, each
one containing graphic as well as structural information of body elements, such as:
mass, articulation points, etc. Although graphic data of AIBO models available to the
public does not currently contain dynamic information, we have modified them by
incorporating mass and motor data into the VRML files. On earlier versions of our
simulator the robot models were hard wired into the simulator and the process of
incorporating new models was quite time consuming. On the other hand updating a

 UCHILSIM: A Dynamically and Visually Realistic Simulator 41

Simulated Environment

Robot Controller

L1

Robot Controller

Real Environment

L2

L3

F
I
T
N
E
S
S

F
I
T
N
E
S
S

SIMULATION

REALITY

VRML file is considerably less time consuming. Using this technique we have added
the ERS-220 and the new ERS-7 AIBO robot models into our simulator.

4 Using UCHILSIM for Learning Behaviors with Back to Reality

UCHILSIM is a platform intended for learning complex low level behaviors. The
capabilities of UCHILSIM will be illustrated on hands of two different real
experiments. We will first briefly describe Back to Reality. The Back to Reality
paradigm combines into a single framework: learning from reality and learning from
simulations. The main idea is that the robot and its simulator co-evolve in an
integrated fashion as it can be seen in the block diagram presented on figure 4. The
robot learns by alternating real experiences and virtual (in simulator) ones. The
evolution of the simulator continuously narrows the differences among simulation and
reality (reality–gap). The simulator learns from the implementation of the robots
behavior in the real environment, and by comparing the performance of the robot in
reality and in the simulator.

The internal parameters of the simulator are adapted using performance variation
measures. When the robot learns in reality, the robot controller is structurally coupled
to the environment, whereas when it learns in simulation the robot controller is
structurally coupled to its simulator. Thus, the simulation parameters are continuously
tuned narrowing the reality-gap along the behavior adaptation process.

The Back to Reality approach consists of the online execution of three sequential
learning processes: L1 is the learning of the robot controller in the simulated
environment. L2 is the learning of the robot controller in the real environment. L3 is

Fig. 4. Back to Reality building blocks

42 J.C. Zagal and J. Ruiz-del-Solar

the learning of the simulator parameters. In this process the gap among simulation and
reality is narrowed by minimizing, after each run of L3, the difference between the
obtained fitness in reality and in simulation

During L1 and L2 the robot controller adaptation depends on the behavior B’
observed in the simulated environment, and on the behavior B observed in the real
environment, respectively. During L3 the simulated environment is the result of the
previous simulated environment and the real environment, as well as the real behavior
and the simulated behavior. For implementing L1 and L2 any kind of learning
algorithm can be used. Although we think that considering the evaluation time
limitations of the experiments in reality, a reinforced learning algorithm is more
suitable for implementing L2. Taking into account the flexibility of simulations, we
think a good alternative for implementing L1 are genetic algorithms. Regarding L3,
we should consider the fact that the simulator has a large amount of parameters that
probably are not explicitly related with aspects of the desired behavior. If this is the
case, then L3 could be implemented using genetic algorithms. Otherwise, reinforced
learning could be an alternative. All these issues are addressed in [12].

4.1 Learning to Walk

Since we have a team competing in RoboCup we are particularly motivated on
improving the gait speed of our team. One can notice that there is a strong correlation
between the speed of a robot-player and the success of a robot soccer team. We
considerably improved the gaits of our system by learning with UCHILSIM and the
Back to Reality approach. As a behavior fitness measure we used the robot speed
measured in centimeters per second during evaluation trials of 20 seconds. The first
stage of our experiment consisted on using genetic search for widely exploring a gait
controller solution space. In this stage we use UCHILSIM as environment and a hand
tuned solution as a starting point (although our approach is well suited for a scratch
starting point). The second stage consisted on evaluating in the real environment a set
of successful behaviors, and measuring their corresponding fitness. These fitness
measures are then used for optimizing the simulator parameters. The idea is that the
simulator (UCHILSIM) be continuously updated. A genetic algorithm searches
through the space of simulator parameters and minimizes the difference between
fitness values obtained in simulation and their values obtained in reality. The third
stage, which is simultaneously executed, consists on learning in reality using policy-
gradient reinforcement learning. The idea is to take the solution that is obtained with
genetic search under UCHILSIM, and then to perform smooth transitions around the
solution by estimating the gradient, using the reinforcement method in the real
environment. The best solution resulting from reinforcement learning is then
transferred back to UCHILSIM where genetic search is again carried out. Then, the
final stage consists on testing in reality the resulting solution by going back to reality.
This process can be repeated indefinitely.

4.1.1 Robot Controller Parameters
The following set of 20 parameters define the AIBO’s gait in our experiments (for a
detailed explanation see [12]): the locus shape (3 parameters: length, shape factor and

 UCHILSIM: A Dynamically and Visually Realistic Simulator 43

lift factor.); the front locus shape modifier (3 parameters: lift height, air height and
descending height); the rear locus shape modifier (3 parameters: lift height, air height
and descending height); the front locus operation point (3 parameters: x, y and z); the
rear locus operation point (3 parameters: x, y and z); locus skew multiplier in the x-y
plane (for turning); the speed of the feet while in the ground; the fraction of time each
foot spends on the air; the time spent on the lift stage (its equal to the descending
time); the number of points in the air stage of which the inverse kinematics is
calculated.

4.1.2 UCHILSIM Parameters
The robot simulator is defined by a set of 12 parameters, which determine the
simulator and robot dynamics. These parameters include the ODE values used for
solving the dynamic equations and the PID constants used for modeling the leg
servos. There are 4 parameters for the mass distribution in the robot: head mass, neck
mass, body mass and leg mass; 4 parameters of the dynamic model: friction constant,
gravity constant, force dependent slip in friction direction 1 and force dependent slip
in friction direction 2; and finally 4 parameters for the joint leg model: proportional,
integral and differential constants of the PID controller and maximum joint torque.

4.1.3 Experiments Description
The procedure consists on learning the 20 robot controller parameters in the simulator
and in reality, as well as learning the 12 simulator parameters. Genetic algorithms
were used for the evolution of the simulator parameters and for the evolution of the
robot controller parameters in UCHILSIM. Specifically, a conventional genetic
algorithm employing fitness-proportionate selection with linear scaling, no-elitism
scheme, two-points crossover with Pc=0.7 and mutation with Pm=0.005 per bit was
employed. Given the set of parameters obtained from the simulator, we continued
their adaptation in reality using the Policy Gradient Reinforcement Learning method
[4]. The experimental conditions are fully described in [12].

First, walking experiments were carried out in UCHILSIM. The fitness evolution
of these individuals is shown on figure 5. From these experiments we extracted a set
of the 10 best individuals; they averaged a speed of 18 cm/s. The best individual of
this group performed 20 cm/s in reality. The fitness value of each one of these
individuals was compared with the resulting fitness that they exhibit in simulation.
And the norm of the resulting fitness differences was used as a fitness function to be
minimized by genetic search trough the space of simulator parameters. We obtained a
minimum fitness of 2 cm/s as discrepancies occurred between the simulation and
reality exhibited by these individuals. The best individual was then taken as a starting
point for a policy gradient learning process performed in reality. With this method we
achieved a speed of 23.5 cm/s. The resulting best individual obtained with
reinforcement learning was then taken back to the now evolved adapted simulator
where a genetic search took place starting with the population generated with
permutations of this best individual. Finally some of the best individuals resulting
from the genetic adaptation were tested on reality. Among these trials we found an
individual that averaged a speed of 24.7 cm/s in reality. It should be noticed that
improvements where done on our own controlling system, and that therefore, the
resulting speed is not directly comparable to those obtained by others. Besides the gait

44 J.C. Zagal and J. Ruiz-del-Solar

locus used by a controller the efficiency on the computations also matter, the low
level refinements on motor control, the inverse kinematics models being used, etc.

Fig. 5. Left: evolution of fitness for individuals tested with the UCHILSIM simulator in the
first stage. Before adapting the simulator the individuals receive larger fitness in simulation
than in reality. Right: Adaptation of the simulator, it is possible to observe how the minimization
of the average differences of fitness obtained in reality versus simulations takes place

4.2 Learning to Kick the Ball

Since this experiment is presented in [13] we will not offer many details here,
however we can say that UCHILSIM was used for learning to kick the ball with
AIBO robots using the Back to Reality approach, and that the resulting ball-kick
behaviors were quite interesting, performing similarly as the best ball-kicks currently
being used in the league. The behaviors which were obtained in the simulator were
directly transferable into reality at the end of the adaptation process. Another
important aspect to observe is that these behaviors were obtained from scratch.

5 Conclusions and Projections

UCHILSIM is a robotic simulator specially developed for the RoboCup four legged
league. It reproduces the dynamics of AIBO motions and its interactions with objects
in the game field with a great level of realism. The simulator also has a great amount
of detail in the graphic representation of game field objects. The main design goal of
the simulator is to become a platform for learning complex robotic behaviors by
allowing testing of the same controllers that should operate in the real robot
environment within a virtual environment. So far the effectiveness of UCHILSIM has
been tested in two robotic behavior learning experiments which we have briefly
described.

Currently each simulation step takes about 8ms with one AIBO robot being
simulated on a Pentium IV 2.5 GHz processor and 512Mb of RAM. Using this

 UCHILSIM: A Dynamically and Visually Realistic Simulator 45

computing power we are able to simulate up to two robots at a realistic level. Several
computers can be used for running simulations with more than two robots, however
we have not implemented this option yet. We are currently working on improving our
system; we expect to increase the current frame fate.

The following are some short term projections of UCHILSIM: (1) Consolidate the
Open-r Universal UCHILSIM API. (2) Perform experiments where our localization
methods will be tested using simulation and reality. (3) Perform experiments on the
visual calibration of the simulator virtual cameras with basis on the Back to Reality
approach. And (4) perform experiments combining real robots with virtual ones in a
single soccer game.

A sample version of UCHILSIM is available at http://www.robocup.cl

References

1. Asanuma, K., Umeda, K., Ueda, R., Arai, T.: Development of a Simulator of Environment
and Measurement for Autonomous Mobile Robots Considering Camera Characteristics.
Proc. of Robot Soccer World Cup VII, Springer (2003).

2. Google Source Directory Resource of Robotics Simulation Tools http://directory.
google.com/Top/Computers/Robotics/Software/Simulation/ (2004).

3. Ishimura, T., Kato, T., Oda, K., Ohashi, T.: An Open Robot Simulator Environment. Proc.
of Robot Soccer World Cup VII, Proc. of Robot Soccer World Cup VII, Springer (2003).

4. Kohl, N. and Stone, P. (2004). Policy Gradient Reinforcement Learning for Fast
Quadrupedal Locomotion. Submitted to ICRA (2004).

5. Nolfi, S., Floreano, D.: Evolutionary Robotics – The Biology, Intelligence, and
Technology of Self-Organizing Machines, In: Intelligent Robotics and Automation Agents.
MIT Press (2000).

6. Nolfi, S.: Evolving non-trivial behavior on autonomous robots: Adaptation is more
powerful than decomposition and integration. In: Gomi, T. (eds.): Evolutionary Robotics:
From Intelligent Robots to Artificial Life, Ontario, Canada, AAI Books (1997).

7. Roefer, T.: German Team RoboCup 2003 Technical Report, Available at
http://www.germanteam.de (2003).

8. Ruiz-del-Solar, J., Zagal, J.C., Guerrero, P., Vallejos, P., Middleton, C., Olivares, X.:
UChile1 Team Description Paper, In: Proceedings of the 2003 RoboCup International
Symposium, Springer, (2003).

9. Smith, Open Dynamics Engine Library, ODE web site available at http://opende.
sourceforge.net (2003).

10. The Open Graphics Library. Available at http://www.opengl.org (2004).
11. The Open-r Software Development Kit. Available at http://www.openr.org (2003).
12. Zagal, J.C., Ruiz-del-Solar, J., Vallejos, P.: Back to Reality: Crossing the Reality Gap in

Evolutionary Robotics. Proceedings of the IAV 2004, 5th IFAC Symposium on Intelligent
Autonomous Vehicles, (in press), (2004).

13. Zagal, J.C., Ruiz-del-Solar, J.: Learning to Kick the Ball Using Back to Reality. Proceed-
ings of RoboCup 2004: Robot Soccer World Cup VIII, Springer (in this volume), (2004).

14. Zagal, J.C., Ruiz-del-Solar, J., Guerrero, P., Palma, R.: Evolving Visual Object
Recognition for Legged Robots, In: LNAI Proceedings of RoboCup 2003: Robot Soccer
World Cup VII, Springer, (2003).

	Introduction
	Related Work
	UCHILSIM
	Basic Architecture
	Dynamic Engine
	Graphic Engine
	User Interface
	Learning Interface
	UChile1 and Open-r API
	Object Loader

	Using UCHILSIM for Learning Behaviors with Back to Reality
	Learning to Walk
	Learning to Kick the Ball

	Conclusions and Projections
	References

