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Abstract. In this paper we propose an approach for tracking a moving target
using Rao-Blackwellised particle filters. Such filters represent posteriors over the
target location by a mixture of Kalman filters, where each filter is conditioned on
the discrete states of a particle filter. The discrete states represent the non-linear
parts of the state estimation problem. In the context of target tracking, these are
the non-linear motion of the observing platform and the different motion models
for the target. Using this representation, we show how to reason about physical
interactions between the observing platform and the tracked object, as well as
between the tracked object and the environment. The approach is implemented on
afour-legged AIBO robot and tested in the context of ball tracking in the RoboCup
domain.

1 Introduction

As mobile robots become more reliable in navigation tasks, the ability to interact with
their environment becomes more and more important. Estimating and predicting the
locations of objects in the robot’s vicinity is the basis for interacting with them. For
example, grasping an object requires accurate knowledge of the object’s location relative
to the robot; detecting and predicting the locations of people helps arobot to better interact
with them. The problem of tracking moving objects has received considerable attention
in the mobile robotics and the target tracking community [1, 2| 9l[11}/5[16]]. The difficulty
of the tracking problem depends on a number of factors, ranging from how accurately
the robot can estimate its own motion, to the predictability of the object’s motion, to the
accuracy of the sensors being used.

This paper focuses on the problem of tracking and predicting the location of a ball with
a four-legged AIBO robot in the RoboCup domain, which aims at playing soccer with
teams of mobile robots. This domain poses highly challenging target tracking problems
due to the dynamics of the soccer game, coupled with the interaction between the robots
and the ball. We are faced with a difficult combination of issues:

— Highly non-linear motion of the observer: Due to slippage and the nature of legged
motion, information about the robot’s own motion is extremely noisy, blurring the
distinction between motion of the ball and the robot’s ego-motion. The rotation
of these legged robots, in particular, introduces non-linearities in the ball tracking
problem.
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— Physical interaction between target and environment: The ball frequently bounces
off the borders of the field or gets kicked by other robots. Such interaction results
in highly non-linear motion of the ball.

— Physical interaction between observer and target: The observing robot grabs and
kicks the ball. In such situations, the motion of the ball is tightly connected to the
motion or action of the robot. This interaction is best modeled by a unified ball
tracking framework rather than handled as a special case, as is done typically.

— Inaccurate sensing and limited processing power: The AIBO robot is equipped
with a 176 x 144 CMOS camera placed in the robot’s “snout”. The low resolution
provides inaccurate distance measurements for the ball. Furthermore, the robot’s
limited processing power (400MHz MIPS) poses computational constraints on the
tracking problem and requires an efficient solution.

In this paper, we introduce an approach that addresses all these challenges in a unified
Bayesian framework. The technique uses Rao-Blackwellised particle filters (RBPF) [3]
to jointly estimate the robot location, the ball location, its velocity, and its interaction
with the environment. Our technique combines the efficiency of Kalman filters with the
representational power of particle filters. The key idea of this approach is to sample
the non-linear parts of the state estimation problem (robot motion and ball-environment
interaction). Conditioning on these samples allows us to apply efficient Kalman filtering
to track the ball. Experiments both in simulation and on the AIBO platforms show that
this approach is efficient and yields highly robust estimates of the ball’s location and
motion.

This paper is organized as follows. After discussing related work in the next section,
we will introduce the basics of Rao-Blackwellised particle filters and their application to
ball tracking in the RoboCup domain. Experimental results are presented in Section [4]
followed by conclusions.

2 Related Work

Tracking moving targets has received considerable attention in the robotics and target
tracking communities. Kalman filters and variants thereof have been shown to be well
suited for this task even when the target motion and the observations violate the linearity
assumptions underlying these filters [2]. Kalman filters estimate posteriors over the
state by their first and second moments only, which makes them extremely efficient and
therefore a commonly used ball tracking algorithm in RoboCup [10]. In the context
of maneuvering targets, multiple model Kalman filters have been shown to be superior
to the vanilla, single model filter. Approaches such as the Interacting Multiple Model
(IMM) and the Generalized Pseudo Bayesian (GPB) filter represents the target locations
using a bank of Kalman filters, each conditioned on different potential motion models for
the target. An exponential explosion of the number of Gaussian hypotheses is avoided
by merging the Gaussian estimates after each update of the filters [2]. While these
approaches are efficient, the model merging step assumes that the state conditioned on
each discrete motion model is unimodal. However, our target tracking problem depends
heavily on the uncertainty of the observer position in addition to the motion model.
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These two factors can interact to produce multimodal distributions conditioned on each
model, and an example will be provided in section[3.1]

Particle filters provide a viable alternative to Kalman filter based approaches [4].
These filters represent posteriors by samples, which allows them to optimally estimate
non-linear, non-Gaussian processes. Recently, particle filters have been applied success-
fully to people tracking using a mobile robot equipped with a laser range-finder [[1.T}9].
While the sample-based representation gives particle filters their robustness, it comes
at the cost of increased computational complexity, making them inefficient for complex
estimation problems.

As we will describe in Section B.2] Rao-Blackwellised particle filters (RBPF) [3]]
combine the representational benefits of particle filters with the efficiency and accuracy
of Kalman filters. This technique has been shown to outperform approaches such as
the IMM filter on various target tracking problems [5,/6]. Compared to our method,
existing applications of RBPFs consider less complex dynamic systems where only one
part of the state space is non-linear. Our approach, in contrast, estimates a system where
several components are highly non-linear (observer motion, target motion). Furthermore,
our technique goes beyond existing methods by incorporating information about the
environment into the estimation process. The use of map information for improved
target tracking has also been proposed by [9]. However, their tracking application is less
demanding and relies on a vanilla particle filter to estimate the joint state space of the
observer and the target. Our RBPFs are far more efficient since our approach rely on
Kalman filters to estimate the target location.

3 Rao-Blackwellised Particle Filters for Multi Model Tracking
with Physical Interaction

In this section, we will first describe the different interactions between the ball and the
environment. Then we will show how RBPFs can be used to estimate posteriors over
the robot and ball locations. Finally, we will present an approximation to this idea that
is efficient enough to run onboard the AIBO robots at a rate of 20 frames per second.

3.1  Ball-Environment Interactions
Fig.[I(a) describes the different interactions between the ball and the environment:

— None: The ball is either not moving or in an unobstructed, straight motion. In this
state, a linear Kalman filter can be used to track its location and velocity.

— Grabbed: The ball is between the robot’s legs or grabbed by them. The ball’s
position is thus tightly coupled with the location of the robot. This state is entered
when the ball is in the correct position relative to the robot. It typically exits into the
Kicked state.

— Kicked: The robot just kicked the ball. This interaction is only possible if the ball
was grabbed. The direction and velocity of the following ball motion depend on the
type of kick. There is also a small chance that the kick failed and the ball remains
in the Grabbed state.
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Fig. 1. (a) Finite state machine describing the transitions between different ball motion models.
All transitions are probabilistic, the probabilities are enclosed in parentheses. (b) Graphical model
for tracking a moving ball. The nodes in this graph represent the different parts of the dynamic
system process at consecutive points in time, and the edges represent dependencies between the

individual parts of the state space. Filled circles indicate observed nodes, where z}, are landmark
and z¥ ball observations

— Bounced: The ball bounced off one of the field borders or one of the robots on the
field. In this case, the motion vector of the ball is assumed to be reflected by the
object with a considerable amount of orientation noise and velocity reduction.

— Deflected: The ball’s trajectory has suddenly changed, most likely kicked by
another robot. In this state, the velocity and motion direction of the ball are unknown
and have to be initialized by integrating a few observations.

The transition probabilities between states are parenthesized in the figure. From the
None state, we assume that there is a 0.1 probability the ball will be deflected at each
update. When the ball is somewhere close in front of the robot, the ball will enter the
Grabbed state with probability defined by a two-dimensional linear probability func-
tion. When the ball collides with the borders or other robots, it will always reflect and
move into the Bounced state. This transition is certain because each ball estimate is
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Fig. 2. Effect of robot position on ball-environment interation. The two figures represent two
different estimates of the robot’s position, differing by less than 20 degrees and 20cm. They result
in very different predicted ball positions after collision with the border, with (a) in front of the
robot and (b) behind

conditioned on a sampled robot position, which can be assumed to be the true robot posi-
tion. This will be elaborated further in the next section. Finally, the None state transition
back to itself by default, hence it takes up the residual probability after computing the
previously mentioned transitions. For the states Kicked and Grabbed, the transitions
are associated with whether these actions succeed or not. Kicking the ball has a 0.9
success rate and Grabbing 0.8. Finally, the Bounced and Deflected states are used
to initiate changes in the Kalman filters. Once the changes are made, they transition
immediately to the normal updates in the None state.

While most of these interactions depend on the location of the ball relative to the robot,
the ball’s interactions with the environment (e.g. the field borders) strongly depend on the
ball location on the field, i.e. in global coordinates. In order to estimate global coordinates
from relative observations, we need to associate relative ball positions with the robot’s
location and orientation on the field. Hence, the problem of tracking a ball requires
the joint estimation of the ball location, the robot location, and the ball-environment
interaction. Figure[2]shows an example of their interdependence. The robot is tracking a
ball travelling towards the border. It is uncertain about its own location, and Figures Rl a)
and (b) are both possible locations. In the figures, the robot has the same estimates of
the relative position and velocity of the ball. However, their slight difference in positions
leads to very different predicted ball positions after collision with the border, with (a)
in front and (b) behind the robot. If we ignore the uncertainty in robot position, this
interaction cannot be modeled correctly. In the next section we will see how RBPF can
be used to perform this joint estimation.

3.2 Rao-Blackwellised Posterior Estimation

Let (my, by, 1) denote the state of the system at time k. Here, m), = {None, Grabbed,
Kicked, Bounced, Deflected} are the different types of interaction between the
robot and the environment. by, = (xyp, ys, Zp, ys») denotes the ball location and velocity
in global coordinates and ry = (z, ¥y, 8,) is the robot location and orientation on the
field. Furthermore, z; are observations of the ball and landmarks, provided in relative
bearing and distance.
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A graphical model description of the ball tracking problem is given in Fig.[I{b). The
graphical model describes how the joint posterior over (b, my, ) can be computed
efficiently using independencies between parts of the state space. The nodes describe
different random variables and the arrows indicate dependencies between these variables.
The model shows that, just like in standard robot localization, the robot location r; only
depends on the previous location 7;_; and the robot motion control u_1. Landmark
observations z,lc only depend on the current robot location 7. The location and velocity
of the ball, by, typically depend on the previous ball state bx_; and the current ball
motion model my. The arc from my to by, describes, for example, the change in ball
prediction if the ball was kicked or bounced off a field border. If m; = Grabbed, then
the ball location depends on the current robot location ry, as indicated by the arrow from
Tk to by Relative ball observations Z,Z only depend on the current ball and robot position.
Transitions of the ball motion model m, are probabilistic versions of those described
in Fig.[1(a).

Now that the dependencies between different parts of the state space are defined,
we can address the problem of filtering, which aims at computing the posterior over
(b, my, i) conditioned on all observations made so far. A full derivation of the RBPF
algorithm is beyond the scope of this paper; see [3[] for a thorough discussion of the
basic RBPF and its properties. RBPFs represent posteriors by sets of weighted samples,
or particles:

Sk = {s,(j),w,(f) |1<i<N}.

In our case, each particle sg) = (bg) , m%, rgf) ), where b,(f) are the mean and covariance
of the ball location and velocity and mﬁc and rﬁc are the histories of ball motion models

and robot locations, respectively. The key idea of RBPFs is to condition the ball estimate

b,(:) on a particle’s history of ball motion models mgzgf and robot locations 7’%1 - This

conditioning turns the ball location and velocity into a linear system that can be estimated
efficiently using a Kalman filter.

To see how RBPFs recursively update posterior estimates, we factorize the posterior
as follows:

P(bks Mak, "1k | 210k Urik—1) = P(b|MA:k, T1:k, 210k, Ulik—1)

'p(ml:k|7“1:k7 Z1:k» ul:k:—l) p(rl:k|21:k, ul:k—l)(l)

The task is to generate samples distributed according to () based on samples drawn from

the posterior at time k — 1, represented by the previous sample set Si_1. We generate the
different components of each particle s,(f) stepwise by simulating (Tl) from right to left.
In the first step, a sample 51(21 = <b,(21, m%fl, 7"@%0 is drawn from Sj,_;. Through
conditioning on this sample, we first expand the robot trajectory to rﬁw then the ball
motion models to mg% conditioned on rﬁv, followed by an update of b,(:) conditioned
on both the robot trajectory and the motion model history. Let us (sit)art with expanding
k

the robot trajectory, which requires to draw a new robot position ;. according to

r~ p(rkls 21 uak1)- ()
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to the rightmost term in (I). The distribution for r,(c ") can be transformed as follows:
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p(rkls(li;C 1 21tk Ul:—1) 3)
Tic\Sk 1 Zh> Uk—1) 4)
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Here, @) follows from the (Markov) property that r is independent of older information
given the previous state. (B) follows by Bayes rule, and (@) from the independencies
represented in the graphical model given in Fig.[I(b). To generate particles according
to (Z) we apply the standard particle filter update routine [4]]. More specifically, we first

pick a sample s,(:ll from Si_1, then we predict the next robot location 7’,(:) using the

particle’s r,(ﬁ 1 along with the most recent control information w1 and the robot motion
model p(ry, |r,(£1, ug_1) (rightmost term in (@)). This gives the extended trajectory rﬁc

The importance weight of this trajectory is given by the likelihood of the most recent

measurement: w,i) x p(zk|r( 2 m,(~C 1 bé)l,uk 1). If 2zj; is a landmark detection, then

this likelihood is given by p(zk|rk ), which corresponds exactly to the particle filter
update for robot localization. If, however, 2y, is a ball detection z,[;, then total probability
gives us

p( Zk |Tk 7m](ci)17b§;)1auk 1) (8)

= ZP Zk|rk 7mk 17 k 17uk lka:) (Mk|rk 7me)17b](j117uk71) (9)
_ (i) 40 MM 50 10
- Zp Zk|'l" k— 17uk—17 k’) ( k|Tk 7mk; 1 Yk— 13“]6 1) ( )

where M, ranges over all possible ball motion models. The second term in (I0) can
be computed from the transition model, but p(zj, |7‘,(j), b,(jll, ug—1, My,) is the likelihood
obtained from a Kalman update, which we need to perform for each M}, (see below). In
the next section, we will describe how we avoid this complex operation.

At the end of these steps, the robot trajectory TYL of the particle is distributed ac-
cording to the rightmost term in (Il). We can now use this trajectory to generate the ball
motion model part m( ) of the particle using the second to last term in (I). Since we

already have m@c_l, we only need to sample

my) ~ p(mk|m§’L 1o b 2 1) (11)

x p(zk|mg, rk , bf€ 1> Uk—1) (mk|mk 1 rk (@) bfc 2 1> Uk—1)- (12)

(12)) follows from (L)) by reasoning very similar to the one used to derive (7). The right-
most term in (T2) describes the probability of the ball motion mode at time & given the
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previous mode, robot location, ball location and velocity, and the most recent control. As
described above, this mode transition is crucial to model the ball’s interaction with the
environment. To generate motion model samples using (I2)), we predict the mode tran-

sition using reasoning about the different ball-environment interactions (see Fig. [[la)).

The importance Welght of the sample sé) has then to be multiplied by the observation

likelihood p(zk|m,C ,Tk ,b,c 1> Uk—1), which is given by the innovation of a Kalman

update conditioned on m,(C ), r,i , b,g 2 1> and up_q.

To finalize the computation of the posterior (), we need to determine the leftmost
term of the factorization. As mentioned above, since we sampled the non-linear parts

(2) (Z)

ry.. and m, . of the state space, the posterior

b\ ~ p(belm{®, ) 21 urs) (13)

can be computed analytically using a regular Kalman filter. The Kalman filter prediction

uses the motion model m( R along with the most recent control uy_;. The correction
step is then based on the robot location 7 along with the most recent observation zy.

The Kalman correction step is not performed if z;, is a landmark detection.

To summarize, we generate particles at time k by first drawing a particle s( ) =

<b§j) 1 mgac 1 ri L 1) from the previous sample set. In the first step, we expand thlS

particle’s robot trajectory by generating a new robot location using (Z), which gives

us r% L Conditioning on ri 36 allows us to expand the history of ball motion models

()

by predicting the next motion model using (I2)). Finally, r;’; and mg 36 render the ball

location and velocity a linear system and we can estimate b,(e) using regular Kalman
filter updating. The importance weight of the new particle s = (b, m{") 1} is set
proportional to

w]E:) OCP(Zk|Tk 7m](€)17b](:)17uk 1) (Zk|mk77n](:)ab§jllvuk71)' (14)

3.3 Efficient Implementation

We implemented the RBPF algorithm described above and it worked very well on data
collected by an AIBO robot. By computing the joint estimate over the robot location
and the ball, the approach can handle highly non-linear robot motion, predict when
the ball bounces into field borders, and eliminates inconsistent estimates (e.g., when
the ball is outside the field). Unfortunately, the approach requires on the order of 300-
500 particles, which is computationally too demanding for the AIBO robots, especially
since each particle has a Kalman filter attached to it. The main reason for this high
number of samples is that for each robot location, we need to estimate multiple ball
motion models. Furthermore, in RBPF the ball and robot estimates are coupled, with
the weights of each sample depending on the contributions from the ball and the robot
position. One consequence is that ball estimates can influence the robot’s localization,
since a sample can be removed by resampling if its ball estimate is not very accurate.
This influence can be useful in some situations, such as invalidating a sample when the
ball estimate is out-of-bounds, since we can infer that its robot position must also be
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Fig. 3. (a) Robot-centric view of predicted ball samples. The robot kicked the ball to its right using
its head, indicated by the small rectangle. If field borders are not considered, the ball samples travel
in the kicked direction (ball motion is illustrated by the length and orientation of the small lines).
(b) Particles representing robot’s estimate of its position at the beginning of the kick command.
(c) The robot has kicked the ball towards the border. The ball samples are attached to the robot
particles shown in (b) in order to estimate the relative locations of borders. The sampled borders
are shown as dashed lines. (d) Most ball samples transition into the Bounced state. Due to the
uncertainty in relative border location, ball samples bounce off the border at different times, with
different directions and velocities. The ball sample distribution predicts the true ball location
much better than without considering the borders (compare to (a)). Note that ball samples can also
bounce off the robot

erroneous. However, this artifact is undesirable in general; while the global position of
the ball is conditioned on the robot position, the ball does not really provide significant
information for localization. This problem is further accentuated by the fact that while
ball estimates need to be updated about 20 times per second, the robot location on the
field needs to be updated about only once per second. The frequent ball updates result in
importance weights that outweigh the contribution of (rather rare) landmark detections.
This results in the deletion of many robot location hypotheses even if the robot was not
seeing any landmarks.

Our efficient approximation to the full Rao-Blackwellised approach described in the
previous section is based on the observation that ball detections do not provide significant
information about the robot’s location on the field. The key idea is we partitioned the
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state space into robot and ball positions, which are updated separately. We recombine
them into Rao-blackwellised particles when needed. The set of samples Sy, is now the
pair (Ry, By), where Ry, is the set of robot position samples, and By, is the set of ball
samples, each sample consists of the ball’s position and the model it is conditioned on.

At the beginning of each update, instead of sampling 3( ) (b;ﬁl, m@fl, r@fQ
©)

from Sj_1, we sample robot positions r,; _; from Rj_; and ball model-position pairs

b,(;) 1 mgac , from Bj_;. With the decoupled state space, we can use M samples to

estimate the robot’s position and N samples to estimate the ball’s location. Usually, the
distribution of ball motion model is less complex than the robot position, so N < M. As

before, we extend the robot trajectory to r,(ci), but this time we can drop the dependency

of the robot position on the ball since 7“,(;) is not coupled with a ball position. Thus we
have the following approximation of equation ()
(4)

r ~ plrels? ) 21 uaik 1) (15)

~ p(relr) Lz uag1). (16)

Thus the estimation of the robot position becomes regular particle filter-based localiza-
tion [4], with ball observations having no influence on 7. The distribution of r,(f ) is
simply

p(rk\rgl)c_pzhk,uhkq) o p(Z1:k|7’1c,U1:k71)p(m|?‘gl)€_pUl:kq) a7

(

which has the exact form of a robot localization update. We obtain r,’ ) by sampling from

the robot motion model p(ry |r§J 11_1, u1.5—1) using the most recent control information
u—1, as usual. This gives us an updated robot sample set Ry.
We now turn our attention to the ball estimates. Since they are no longer coupled

with robot positions, they are estimated in a pseudo-global coordinate system. Each

") has an associated observer position pg L which is initialized to the origin

p1 = (0,0,0). Ateachiteration, pi Dis computed from p&,f 1 by sampling from the robot

motion model and ux_1. When we compute the ball’s interaction with the environment,
we need the ball estimates in global coordinates. We obtain this by sampling a robot

ball sample b(

position r,(c from Ry, for each ball sample, and applying the offset b( 2 ) to r(J )
With this scheme, we approximate (I2)) as follows:

p<zk|mkar](:)7b](:zl7ukfl) ~ zk‘mk7p](:)7b§gi)17ukfl> (18)

plmilm i 60 k) & plmglmf? i 60 uen) (19)

In (I8) we compute the likelihood of the ball observation based on p,(j) rather than the
joint robot position r,(f) This approximation is fairly faithful to the original RBPF since
(@ ) is generated from u1.;_1, similar to TYL In (1I9) we
predict the motion model of the ball bgf) using the global position obtained from the

the trajectory represented by p;,

sampled robot position r,(cj ) instead of the paired r,(:> in RBPE. While the variance of this
approximation is higher, the expected distribution resulting from interacting with the
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environment is the same as RBPF’s. Note that we can set 7 = 7 to avoid extra sampling
without loss of generality. In this case, 7‘,(:) is interpreted as the ¢-th sample in Ry, not
the coupled robot position in RBPF.

Finally, the posterior for the ball positions can be computed by a Kalman filter update
using pi” i dofr" i
g p,,’ instead of 7, in (I3)

b ~ plbe|mihs o1 21k 1) (20)
The complete approximation algorithm is shown in Table[Tl At each iteration, a different
relative offset is generated for each ball by sampling from the robot motion model
using uy. Then the ball samples are translated back to global coordinates by attaching
their relative ball estimates to the most recent particles of the robot localization. These
particles are selected by sampling N robot positions from the M in the set. Thus, the
ball and its motion model are estimated exactly as described before, with sampling from
the highly non-linear robot motion and the ball motion models. Furthermore, since ball
estimates are in global coordinates, the ball-environment interaction can be predicted as
before. The only difference is that information about the ball does not contribute to the
estimated robot location. However, our approximation drastically reduces the number
of robot and ball samples needed for good onboard results (we use 50 robot and 20 ball
particles, respectively). The key idea of this algorithm is summarized in Fig.[3 As can
be seen in Fig. Blc) and (d), each ball particle <b,(;), mg)> uses a different location for
the border extracted from the robot location particles r,(f) shown in (b). These borders
determine whether the ball motion model transitions into the Bounced state.

3.4  Tracking and Finding the Ball

Since our approach estimates the ball location using multiple Kalman filters, it is not
straightforward to determine the direction the robot should point its camera in order to
track the ball. Typically, if the robot sees the ball, the ball estimates are tightly focused
on one spot and the robot can track it by simply pointing the camera at the mean of the
ball samples with the most likely mode. However, if the robot doesn’t see the ball for a
period of time, the distribution of ball samples can get highly uncertain and multi-modal.
This can happen, for instance, after the ball is kicked out-of-sight by the robot or by other
robots.

To efficiently find the ball in such situations, we use a grid-based representation to
describe where the robot should be looking. The grid has two dimensions, the pan and
the tilt of the camera. Each ball sample is mapped to these camera parameters using
inverse kinematics, and is put into the corresponding grid cells. Each cell is weighted by
the sum of the importance weights of the ball samples inside the cell. To find the ball,
the robot moves its head to the camera position specified by the highest weighted cell. In
order to represent all possible ball locations, the pan range of the grid covers 360°. Cells
with pan orientation exceeding the robot’s physical pan range indicate that the robot has
to rotate its body first.

An important aspect of our approach is that it enables the robot to make use of
negative information when looking for the ball: Ball samples that are not detected even
though they are in the visible range of the camera get low importance weights (visibility
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Table 1. The efficient implementation of the Rao-blackwellised particle filter algorithm for ball
tracking

1. Inputs:
Sk—1 = (Rk—1, Br—1) representing belief Bel(sy—_1), where
Ry—1 = {(r,(gj17 w,@l) lj=1,..., N} represents robot positions,
By1 = {(b;ﬁl, m,(;zl, p,(;zl,w,gl) |i=1,..., M} represents ball positions
control measurement uy—1,
observation zx

2. Rip:=0,Br:=0 // Initialize
3. forj:=1,...,N do // Generate N robot samples
4. Sample an index [ from the discrete distribution given by
the weights in Rr—1 // Resampling
5. Sample r,(cj) from p(rg | k-1, uk—1) conditioned on r,(le and up_1
6. w,(y = p(zk|r](€j)) // Compute likelihood
7. Ry, := R, U {(r,(cﬂ, w,i”)} // Insert sample into sample set
8. enddo
9. Normalize the weights in Ry,
10. fori:=1,...,M do // Update M ball samples
11. Sample an index [ from the discrete distribution given by
the weights wi—1 in Br—1
12. Sample mg) from p(mk|m,(€lll, r,(f), bgil, Uk—1)
13. Sample p,(:) from p(rg | r—1, uk—1) conditioned on p,(clll and ug_1
14. bgf) := Kalman update using b;fll, m,(f), 2z and ug—1
15. w,(f) = p(zk|mu, p,(j), b,(fll, Uk—1) // Compute importance weight
16. By := By U {(b?7 m?, p? , w,@)} // Insert sample into sample set
17. end do

18. Normalize the weights in By,

19. return Sy, = (Ry, B)

considers occlusions by other robots). In the next update step of the Rao-Blackwellised
particle filter, these ball samples are very unlikely to be drawn from the weighted sample
set, thereby focusing the search to other areas. As a result, the robot scans the whole area
of potential ball locations, pointing the camera at the most promising areas first. When
none of the ball particles are detected, the ball is declared lost.
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4 Experiments

We evaluated the effectiveness of our tracking system in both simulated and real-world
environments. We first illustrate the basic properties of our algorithm by comparing it
with the traditional Kalman Filter. Then we evaluate how well the approach works on
the real robot.

4.1 Simulation Experiments

In the RoboCup domain, robots often cannot directly observe the ball, due to several
reasons such as looking at landmarks for localization, or the ball is occluded by another
robot. The goalkeeper robot in particular has to accurately predict the trajectory of the ball
in order to block it. Hence, accurate prediction over multiple camera frames is of utmost
importance. To systematically evaluate the prediction quality of our multiple model
approach, we simulated a robot placed at a fixed location on the soccer field, while the
ball is kicked randomly at different times. The simulator generates noisy observations
of the ball. The observation noise is proportional to the distance from the robot and
constant in the orientation, similar in magnitude to the information available to the real
robot. Prediction quality is measured using the RMS error at the predicted locations.

In this experiment, we measure the prediction quality for a given amount of time
in the future, which we call the prediction time. Map information is not used, and the
ball is estimated with 20 particles (used to sample ball motion models at each iteration).
The observation noise of the Kalman filters was set according to the simulated noise.
To determine the appropriate prediction noise, we generated straight ball trajectories
and used the prediction noise value that minimized the RMS error for these runs. This
prediction noise was used by our multiple model approach when the motion model was
none. The results for prediction times up to 2 seconds are shown in Fig.[4(a). In addition
to our RBPF approach (thick, solid line), we compare it with Kalman filters with different
prediction noise models. The thin, solid line shows the RMS error when using a single
Kalman filter with prediction noise of the straight line model (denoted K F'*). However,
since the ball is not always in a straight line motion, the quality of the filter estimates
can be improved by inflating the prediction noise. We tried several noise inflation values
and the dotted line in Fig. @{a) gives the results for the best such value (denoted K F).
Not surprisingly, our multiple model approach greatly improves the prediction quality.

The reason for this improved prediction performance is illustrated in Fig. Bl Our
approach, shown in Fig. Bla), is able to accurately track the ball location even after a
kick, which is due to the fact that the particle filter accurately “guesses” the kick at the
correct location. The Kalman filter with the straight line motion model quickly diverges,
as shown by the dotted line in Fig. BIb). The inflated prediction noise model (thick, solid
line) keeps track of the ball, but the trajectory obviously overfits the observation noise.
Further intuition can be gained from Fig. Bl¢c). It compares the orientation error of the
estimated ball velocity using our approach versus the inflated Kalman filter K F* (K F’
shows a much worse performance; for clarity it is omitted from the graph). Clearly,
our approach recovers from large errors due to kicks much faster, and it converges to a
significantly lower error even during straight line motion.
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Fig. 4. (a) RMS error of the ball’s position for different prediction times. (b) Percentage of time
the robot loses track of the ball after a kick for different numbers of particles with and without
map information
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Fig. 5. Tracking of a ball trajectory with multiple kicks, the observer is located on the left. In
(a) and (b), the observations are indicated by stars and the true target trajectory is shown as a
thin line. (a) shows the estimated trajectory of our RBPF multiple-model approach. (b) shows the
estimates using an extended Kalman filter for two different prediction noise settings. The dotted
line represents the estimates when using prediction noise that assumes a linear ball trajectory, and
the thick, solid line is estimated using inflated prediction noise. (c) Orientation errors over a time
period including four kicks. Solid line represents RBPF, dashed line a Kalman filter with inflated
prediction noise

4.2  Real-World Experiments

In this section we describe an experiment carried out on the real robot. It demonstrates that
the use of map information brings significant improvements to the tracking performance.
In the experiment, an Aibo robot and a ball are placed on the soccer field at random
locations. The task of the robot is to track the ball and kick it as soon as it reaches it. The
kick is a sideway head kick as shown in Fig. Blc). The robot is not able to see the ball
until it recovers from the kick motion. During the experiment, the robot stays localized
by scanning the markers on the field periodically.

The solid line in Fig.@{b) shows the rate of successfully tracking the ball after a kick.
As can be seen, increasing the number of samples also increases the performance of the
approach. The poor performance for small sample sizes indicates that the distribution
of the ball is multi-modal, rendering the tracking task difficult for approaches such
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as the IMM [2]. Fig. Bib) also demonstrates the importance of map information for
tracking. The dashed line gives the results when not conditioning the ball tracking on
the robot locations. Obviously, not considering the ball-environment interaction results
in lower performance. On a final note, using our approach with 20 samples significantly
reduces the time to find the ball, when compared to the commonly used random ball
search strategy. When using the default search sequence, the robot takes on average 2.7
seconds to find the ball, whereas the robot can locate the ball in 1.5 seconds on average
when using our approach described in Section [3.4].

5 Conclusion and Future Work

In this paper we introduced a novel approach to tracking moving targets. The approach
uses Rao-Blackwellised particle filters to sample the potential interactions between the
observer and the target and between the target and the environment. By additionally
sampling non-linear motion of the observer, estimating the target and its motion can be
performed efficiently using Kalman filters. Thus, our method combines the representa-
tional complexity of particle filters with the efficiency and accuracy of Kalman filters.
The approach goes beyond other applications of RBPFs in that it samples multiple parts
of the state space and integrates environment information into the state transition model.

The technique was implemented and evaluated using the task of tracking a ball with a
legged AIBO robot in the RoboCup domain. This problem is extremely challenging since
the legged motion of the robot is highly non-linear and the ball frequently bounces off
obstacles in the environment. We demonstrate that our efficient implementation results
in far better performance than vanilla Kalman filters. Furthermore, we show that taking
the environment into account results in additional performance gains. We belief that
our approach has applications to tracking problems beyond the RoboCup domain. It
can be applied whenever the observer robot performs highly non-linear motion and the
environment provides information about the motion of the object being tracked.

In the future we will extend the algorithm to integrate ball information observed by
other robots, delivered via wireless communication. Such information can be transmitted
efficiently by clustering the ball samples according to the different discrete motion
states. The integration of transmitted ball estimates can then be done conditioned on the
different discrete ball states. Another important area of future research is the integration
of additional information provided by the vision system. Currently, we do not model the
location of other robots on the field and the ball transits into the def1ected model at
random points in time. Furthermore, we estimate the relative location of the field borders
using only the robot’s location estimates. However, if the robot detects the ball and an
object in the same camera image, then this image provides more accurate information
about the relative location between the ball and an object.

Finally, we conjecture that further performance gains can be achieved using an un-
scented Kalman filter [[12] to jointly track the position of the robot and the ball. Using the
Rao-Blackwellisation described in this paper, the discrete state of the ball would still be
sampled. However, each of these samples would be attached with an unscented filter over
both robot and ball locations (and velocity). By modeling more dimensions using efficient
Kalman filters we expect to be able to track the robot / ball system with far less samples.
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See http://www.cs.washington.edu/balltracking for further information

about our approach. [8}7]]
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