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Abstract. We show how to apply learning methods to two robotics
problems, namely the optimization of the on-board controller of an om-
nidirectional robot, and the derivation of a model of the physical driving
behavior for use in a simulator.

We show that optimal control parameters for several PID controllers
can be learned adaptively by driving an omni directional robot on a field
while evaluating its behavior, using an reinforcement learning algorithm.
After training, the robots can follow the desired path faster and more
elegantly than with manually adjusted parameters.

Secondly, we show how to learn the physical behavior of a robot. Our
system learns to predict the position of the robots in the future accord-
ing to their reactions to sent commands. We use the learned behavior
in the simulation of the robots instead of adjusting the physical simula-
tion model whenever the mechanics of the robot changes. The updated
simulation reflects then the modified physics of the robot.

1 Learning in Robotics

When a new robot is being developed, it is necessary to tune the on-board
control software to its mechanical behavior. It is also necessary to adapt the high-
level strategy to the characteristics of the robot. Usually, an analytical model
of the robot’s mechanics is not available, so that analytical optimization or a
perfect physical simulation are not feasible. The alternative to manual tuning of
parameters and behaviors (expensive and error-prone trial and error) is applying
learning methods and simulation (cheap but effective trial and error). We would
like the robot to optimize its driving behavior after every mechanical change.
We would like the high-level control software to optimize the way the robot
moves on the field also, and this can be best done by performing simulations
which are then tested with the real robot. But first the simulator must learn
how the real robot behaves, that is, it must synthesize a physical model out of
observations. In this paper we tackle both problems: the first part deals with the
“learning to drive” problem, whereas the second part deals with the “learning
to simulate” issue.
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1.1 Learning to Drive

When autonomous robots move, they compute a desired displacement on the
floor and transmit this information to their motors. Pulse width modulation
(PWM) is frequently used to control their rotational velocity. The motor con-
troller tries to bring the motor to speed — if the desired rotational velocity has
not yet been reached, the controller provides a higher PWM signal. PID (propor-
tional, integral, diferential) controllers are popular for this kind of applications
because they are simple, yet effective. A PID controller can register the absolute
difference between the desired and the real angular velocity of the motor (the
error) and tries to make them equal (i.e. bring down the error to zero). However,
PID control functions contain several parameters which can only be computed
analytically when an adequate analytical model of the hardware is available. In
practice, the parameters are set experimentally and are tuned by hand. This
procedure frequently produces suboptimal parameter combinations.

In this paper we show how to eliminate manual adjustments. The robot is
tracked using a global camera covering the field. The method does not require
an analytical model of the hardware. It is specially useful when the hardware is
modified on short notice (adding, for example, weight or by changing the size of
the wheels, or its traction). We use learning to find the best PID parameters.
An initial parameter combination is modified stochastically — better results
reinforce good combinations, bad performance imposes a penalty on the combi-
nation. Once started, the process requires no human intervention. Our technique
finds parameters so that the robot meets the desired driving behavior faster and
with less error. More precise driving translates in better general movement, ro-
bust positioning, and better predictability of the robot’s future position.

1.2 Learning to Simulate

Developing high-level behavior software for autonomous mobile robots (the “play-
book”) is a time consuming activity. Whenever the software is modified, a test
run is needed in order to verify whether the robot behaves in the expected way
or not. The ideal situation of zero hardware failures during tests is the excep-
tion rather than the rule. For this reason, many RoboCup teams have written
their own robot simulators, which are used to test new control modules in the
computer before attempting a field test. A simulator saves hours of work, espe-
cially when trivial errors are detected early, or when subtle errors require many
stop-and-go trials, as well as experimental reversibility.

The simulator of the robotic platform should simulate the behavior of the
hardware as accurately as possible. It is necessary to simulate the delay in the
communication and the robot’s inertia; heavy robots do not move immediately
when commanded to do so. The traction of the wheels, for example, can be
different at various speeds of the robot, and all such details have to be taken into
account. An additional problem is that when the robots are themselves being
developed and optimized, changes in the hardware imply a necessary change
in the physical model of the robot for the simulation. Even if the robots does
not change, the environment can change. A new carpet can provide better or
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worse traction and if the model is not modified, the simulation will fail to reflect
accurately the new situation. In practice, most simulation systems settle for a
simplistic “Newtonian” constant-friction mass model, which does not correspond
to the real robots being used.

Our approach to solve this modelling problem is to learn the reaction of the
robots to commands. We transmit driving commands to a mobile robot: The de-
sired direction, the desired velocity and desired rotation. We observe and record
the behavior of the robot when the commands are executed using a global video
camera, that is, we record the instantaneous robot’s orientation and position.
With this data we train predictors which give us the future position and orienta-
tion of the robots in the next frames, from our knowledge of the last several ones
[4]. The data includes also commands sent to the robots. The predictor is an
approximation to the physical model of the robot, which covers many different
situations, such as different speeds, different orientations during movement, and
start and stop conditions. This learned physical model can then be used in our
simulator providing the best possible approximation to the real thing, short of
an exact physical model which can hardly be derived for a moving target.

2 Related Work

We have been investigating learning the physical behavior of a robot for some
time [4]. Recently we started applying our methods to PID controllers, using
reinforcement learning.

The PID controller has been in use for many decades, due to its simplicity
and effectiveness [6]. The issue of finding a good method for adjusting the PID
parameters has been investigated by many authors. A usual heuristic for obtain-
ing initial values of the parameters is the Ziegler-Nichols method [18]. First an
initial value for the P term is found, from which new heuristic values for the
P, I, and D terms are derived. Most of the published methods have been tested
with computer simulations, in which an analytical model of the control system
is provided. When an analytical model is not available, stochastic optimization
through genetic programming [13] or using genetic algorithms is an option. Our
approach here is to use reinforcement learning, observing a real robot subjected
to real-world constraints. This approach is of interest for industry, where often
a PID controller has to tune itself adaptively and repetitively [17].

The 4-legged team of the University of Texas at Austin presented recently a
technique for learning motion parameters for Sony Aibo robots [12]. The Sony
robots are legged, not wheeled, and therefore some simplification is necessary due
to the many degrees of freedom. The Austin team limited the walking control
problem to achieving maximum forward speed. Using “policy gradient reinforce-
ment learning” they achieved the best known speed for a Sony Aibo robot. We
adapted the policy reinforcement learning method to omnidirectional robots by
defining a quality function which takes into account speed and accuracy of driv-
ing into account. Another problem is that we learn to drive in all directions
but not just forward. This makes the learning problem harder, because there
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can always be a compromise between accuracy and speed, but we succeeded in
deriving adequate driving parameters for our robots.

With respect to simulations, the usual approach is to build as perfect a model
of the robot and feed it to a simulation engine such as ODE (Open Dynamics
Engine). This is difficult to do, and the simulated robot probably will not behave
as the real robot, due to the many variables involved. In an influential paper, for
example, Brooks and Mataric identify four robotic domains in which learning can
be applied: learning parameters, learning about the world, learning behaviors,
and learning to coordinate [5]. We are not aware, at the moment, of any other
RoboCup team using learned physical behaviors of robots for simulations. We
think that our approach saves time and produces better overall results than an
ODE simulation.

3 The Control Problem

The small size league is the fastest physical robot league in the RoboCup com-
petition, all velocities considered relative to the field size. Our robots for this
league are controlled with a five stages loop: a) The video image from cameras
overlooking the field is grabbed by the main computer; b) The vision module
finds the robots and determines their orientation [15]; c) Behavior control com-
putes the new commands for the robots; d) The commands are sent by the main
computer using a wireless link; e) A Motorola HC-12 microcontroller on each
robot receives the commands and directs the movement of the robot using PID
controllers (see [7]). Feedback about the speed of the wheels is provided by the
motors’ impulse generators.

For driving the robots, we use three PID controllers: one for the forward
direction, one for the sideward direction and one for the angle of rotation (all
of them in the coordinate system of the robot). The required Euclidean and
angular velocity is transformed in the desired rotational speed of three or four
motors (we have three and four-wheeled robots). If the desired Euclidian and
angular velocity has not yet been achieved, the controllers provide corrections
which are then transformed into corrections for the motors.

3.1 Microcontroller

The control loop on the robot’s microcontroller consists of the following sequence
of tasks: The robot receives from the off-the-field computer the target values
for the robot’s velocity vector vx, vy and the rotational velocity ω, in its local
coordinate system; the HC-12 microcontroller, which is constantly collecting the
current motor speed values by reading the motors’ pulse generators, converts
them into Euclidian magnitudes (see Section 3.2); the PID-Controller compares
the current movement with the target movement and generates new control
values (Section 3.3); these are converted back to motor values, which are encoded
in PWM signals sent to the motors (Section 3.2).
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3.2 From Euclidian Space to Wheel Parameters Space and
Vice Versa

The conversion of the robot velocity vector (vx, vy, ω) to motor velocity values
wi of n motors is computed by:




w1
w2
...

wn


 =

1
r




x1 y1 b
x2 y2 b
...

...
...

xn yn b







vx

vy

ωn


 . (1)

The variable r is the diameter of the omnidirectional wheels, b is the distance
from the rotational center of the robot to the wheels, and Fi = (xi, yi) is the
force vector for wheel i. The special case of three wheels at an angle of 120o can
be calculated easily.1

For the opposite direction, from motor velocities to Euclidian velocities, the
calculation follows from Eq. (1) by building the pseudo-inverse of the transfor-
mation matrix. We map the values of n motors to the three dimensional motion
vector. If the number of wheels is greater than three, the transformation is
overdetermined, giving us the nice property of compensating the pulse counter
error of the wheels (by a kind of averaging).

3.3 PID Controller

As explained above, we have programmed three PID controllers, one for the
forward (vx), one for the sideward velocity (vy), and one for the desired angular
velocity (ω). Let us call ex(t) the difference between the required and the actual
velocity vx at time t. Our PID controller computes a correction term given by

∆vx(t) = Pex(t) + I(
�∑

k=0

ex(t − k)) +D(ex(t)− ex(t − 1)) (2)

There are several constants here: P , I, and D are the proportionality, integration,
and difference constants, respectively. The value of ∆vx(t) is incremented (with
respect to the leading sign) by an offset and then cut into the needed range. The
correction is proportional to the error (modulated by P ). If the accumulated error
is high, as given by the sum of past errors, the correction grows, modulated by the
integral constant I. If the error is changing too fast, as given by the difference of
the last two errors, the correction is also affected, modulated by the constant D.
A controller without I and D terms, tends to oscillate, around the desired value.
A controller with too high I value does not oscillate, but is slow in reaching the
desired value. A controller without D term can overshoot, making convergence
to the desired value last longer.

1 http://www-2.cs.cmu.edu/~reshko/PILOT/
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The error value used in the above formula is multiplied by a scaling constant
before plugging its value in the formula. This extra parameter must also be
learned. It depends on the geometry of the robot.

3.4 Learning the PID Parameters

We solve the parameter optimization problem using a policy gradient reinforce-
ment learning method as described in [12]. The main idea is based on the as-
sumption that the PID parameters can be varied independently, although they
are correlated. Thus, we can modify the parameter set randomly, calculate the
partial error derivative for each parameter, and correct the values. Note that, in
order to save time, we vary the whole parameter set in each step and not each
parameter separately.

The parameter set P consists of 6×3 = 18 elements (p1, . . . , p18). The number
of parameters is independent from the number of wheels, because we use one PID
controller for each degree of freedom and not for each wheel. The standard hand-
optimized parameters are used as the starting set. In each step, we generate a
whole new suite of n parameter sets

P1 = (p1 + π1
1 , . . . , p18 + π1

18)
P2 = (p1 + π2

1 , . . . , p18 + π2
18)

...
Pn = (p1 + πn

1 , . . . , p18 + πn
18).

(3)

Whereby the value πj
i is picked with uniform probability from the set {−εi, 0,+εi}

and εi is a small constant, one for each pi.
The evaluation of one parameter set consists of a simple test. The robot has

to speed up from rest into one particular direction, at an angle of 45o relative
to its orientation. It has to drive for some constant time, without rotations and
as far as possible from the starting point. Then the robot has to stop abruptly,
also without rotating and as fast as possible (see Fig. 1(b)). During this test
phase, the robot does not receive any feedback information from the off-the-field
computer.

Each test run is evaluated according to the evaluation function Q(Pj), which
is a weighted function of the following criteria: the deviation of the robot to the
predetermined direction, the accumulated rotation of the robot, the distance of
the run, and the distance needed for stopping. The only positive criterion is the
length of the run; all other are negative.

We evaluate the function Q(Pj) for all test parameter sets Pj , where
j = 1, . . . , n. The sets are collected according to the π constants for every pa-
rameter into three classes:

C+
i = {Pj |πj

i = +εi, j = 1, . . . , n},

C−
i = {Pj |πj

i = −εi, j = 1, . . . , n},

C0
i = {Pj |πj

i = 0, j = 1, . . . , n}
(4)
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Fig. 1. (a) The quality of the tested parameter sets. The graph shows only the evalu-
ated parameter sets which are varying up to εi from the learned parameter i. Therefore,
the values are noisy. (b) Example of a test run. The straight line shows the desired
direction and the dotted line shows the real trajectory of the robot on the field

For every class of sets, the average quality is computed:

A+
i =

∑
P∈C+

i
Q(P)x

‖C+
i ‖ , A−

i =

∑
P∈C−

i
Q(P)x

‖C−
i ‖ , A0

i =

∑
P∈C0

i
Q(P)x

‖C0
i ‖ (5)

This calculation provides us a gradient for each parameter, which shows us,
whether some specific variance π makes the results better or not. If this gradient
is unambiguous, we compute the new parameter value according to Eq. 6:
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Fig. 2. The four componets of the quality function. The total quality is a weighted
average of these four magnitudes
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Fig. 3. The learned parameters, started from the hand-optimized set. The parameters
are not independent

p′
i =




pi + ηi if A+
i > A0

i > A−
i orA+

i > A−
i > A0

i

pi − ηi if A−
i > A0

i > A+
i orA−

i > A+
i > A0

i

pi otherwise
(6)

Where the learning constant for each parameter is ηi. The old parameter set
is replaced by the new one, and the process is iterated until no further progress
is detected.

3.5 Results

We made two experiments: In the first, we learned only the P, I, and D values.
These values were initialized to 0. The evolution of the learning process is shown
in Fig. 1(a) and in Fig. 2. Fig. 1(a) shows the quality of the test runs during the
whole learning process and Fig. 1(b) a sample run of the robot. The total quality
of a test run can be broken down into the four quality magnitudes. These are
shown in Fig. 2. At the beginning, the robot does not move. After 10 iterations
of parameter evaluation and adaptation, the robot moves at an average of one
meter per second, with acceleration and braking. The average deviation from
the desired direction is 10 percent at the end point.

In a second experiment, the PID controller was initialized with the hand-
optimized values. The result is shown in Fig. 3. The parameters are not inde-
pendent, which leads to some oscillations at the beginning.
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In the experiment shown in Fig. 3 the rotation controller is also learned,
although the task of the robot is only to drive in one direction without rotating.
However, rotation control is important for straight movement, because an error
caused by wheel slippage at the beginning of the movement — in the acceleration
phase — can be compensated later.

The PID parameters learned with our experiments are used now for control
of our robots. They can be relearned, if the robot is modified, in a few minutes.

4 Learning the Behavior of the Robot

We reported in a previous paper how we predict the position of our small-size
robots in order to cope with the unavoidable system delay of the vision and control
system [4]. When tracking mobile robots, the image delivered by the video camera
is an image of the past. Before sending the new commands to the robot we have
to take into account when the robot will receive them, because it takes some time
to send and receive commands. This means that not even the current real position
of the robots is enough: we need to know the future position and future orienta-
tion of the robots. The temporal gap between the last frame we receive and the
time our robots will receive new commands is the system delay. It can be longer
or shorter, but is always present and must be handled when driving robots at high
speed (up to 2 m/s in the small size league). Our system delay is around 100 ms,
which corresponds to about 3 to 4 frames of a video camera running at 30 fps.

The task for our control system is therefore, from the knowledge of the last
six frames we have received, and from the knowledge of the control commands
we sent in each of those six frames, to predict the future orientation and position
of the robots, four frames ahead from the past.

The information available for this prediction is preprocessed: since the reac-
tion of the robot does not depend on its coordinates (for a homogeneous floor)
we encode the data in the robot’s local coordinate system. Obstacles and walls
must be handled seperately. We use six vectors for position, the difference vec-
tors between the last frame which has arrived and the other frames in the past,
given as (x, y) coordinates. The orientation data consist of the difference be-
tween the last registered and the six previous orientations. Each angle θ is en-
coded as a pair (sin θ, cos θ) to avoid discontinuity when the angle crosses from
2π to 0. The desired driving direction, velocity and rotation angle transmitted
as commands to the robot of the last six frames are given as one vector with
(vx, vy, ω)-coordinates. They are given in the robots coordinate system. We use
seven float values per frame, for six frames, so that we have 42 numbers to make
the prediction. We don’t use the current frame directly, but indirectly, because
we actually use the differences between each last frame and the current frame.
The current motor values do not influence the robot motion in the next four
frames (because of the delay), so they are irrelevant.

We use neural networks and linear regression models to pretict the future
positions and orientations of the robot, one or four frames in advance. For de-
tails see [8].
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4.1 The Simulator

Once we have trained a neural network to simulate the physical response of the
robot to past states and commands, we can plug-in this neural network in our
behavior simulation. We play with virtual robots: they have an initial position
and their movement after receiving commands is dictated by the prediction of
the behavior of the real robots in the next frame. We have here an interesting
interplay between the learned physical behavior and the commands. In each
frame we use the trained predictors to “move” the robots one more frame. This
information, however, is not provided to the behavior software. The behavior
software sends commands to the virtual robots assuming that they will receive
them with a delay (and the simulator enforces this delay). The behavior software
can only ask the neural network for a prediction of the position of the robot in
the fourth frame (as we do in real games). But the difference between what the
high-level behavior control “knows” (the past, with four frames delay) and how
the simulator moves the robot (a prediction, only one frame in advance) helps us
to reproduce the effect of delays. Our simulator reproduces playing conditions
as nearly as possible. Fig. 4 shows a comparison of the driving paths obtained
with different models and reality.

As can be seen in Fig. 4, the “Newtonian” model is too smooth. The real
driving behavior is more irregular, because when the robot drives it overshoots or
slips on the floor. Our simple “Newtonian” model could be extended by a more
realistic one, which includes for examle nonlinear friction terms. The learned
behavior (c) reflects more accurately this more problematic and realistic driving
behavior, so we don’t need any model. This is important for high-level control,
because the higher control structures must also learn to cope with unexpected
driving noise.
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Fig. 4. A comparison of driving paths: (a) real path driven by a real robot, (b) simu-
lation of the same path with a physical model and (c) simulation with the prediction
model. (d),(e),(f) show the same paths including the orientation of the robot, drawn
as small segments
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5 Conclusions and Future Work

Our results show that it is possible to apply learning methods in order to optimize
the driving behavior of a wheeled robot. They also show that learning can even
be used to model the physical reaction of the robot to external commands.

Optimizing the driving behavior means that we need to weight the options
available. It is possible to let robots move faster, but they will collide more
frequently due to lack of precision. If they drive more precisely, they will tend to
slow down. Ideally, in future work, we would like to derive intelligent controllers,
specialized in different problems. The high-level behavior could decide which one
to apply, the more aggressive or the more precise. Another piece of future work
would be trying to optimize high-level behaviors using reinforcement learning,
so that they compensate disadvantages of the robot on-board control.

We have seen in Fig. 4, that the predicted robot motion (c) is more accurate
than the real one (a), because the prediction (any prediction) smooths the ob-
served real movements. The driving noise could be also analyzed and its inclusion
in the simulator would make the model even more realistic.

This paper is part of our ongoing work on making robots easier to adapt to
an unknown and variable environment. We report elsewhere our results about
automatic color and distortion calibration of our computer vision system [9].
The interplay of vision and control software will make posible in the future to
build a robot, put it immediately on the field, and observe how it gradually
learns to drive.
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