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Abstract. Navigation is one of the most fundamental tasks to be ac-
complished by many types of mobile and cognitive systems. Most ap-
proaches in this area are based on building or using existing allocentric,
static maps in order to guide the navigation process. In this paper we
propose a simple egocentric, qualitative approach to navigation based
on ordering information. An advantage of our approach is that it pro-
duces qualitative spatial information which is required to describe and
recognize complex and abstract, i.e., translation-invariant behavior. In
contrast to other techniques for mobile robot tasks, that also rely on
landmarks it is also proposed to reason about their validity despite in-
sufficient and insecure sensory data. Here we present a formal approach
that avoids this problem by use of a simple internal spatial representa-
tion based on landmarks aligned in an extended panoramic representation
structure.

1 Introduction

Navigation is one of the most fundamental tasks to be accomplished by robots,
autonomous vehicles, and cognitive systems. Most successful approaches in the
area of robot navigation like potential fields (see [I0] and [7]) are based on
allocentric, static maps in order to guide the navigation process (e.g. [9]). This
approach has an intuitive appeal and gains much intuition from cognitive science:
the cognitive map (a good recent overview [16]). The main purpose is to build
up a precise, usually allocentric, quantitative representation of the surrounding
environment and to determine the robot’s position according to this allocentric,
quantitative map.

One difficulty results from the fact that the same spatial representation serves
as a basis for different tasks often with heterogeneous requirements. For exam-
ple, more abstract reasoning tasks like planning coordinated behavior, e.g., coun-
terattack and double pass, and plan recognition usually rely on more abstract,
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qualitative spatial representations. Generation of qualitative spatial descriptions
from quantitative data is usually a difficult task due to uncertain and incomplete
sensory data. In order to fit heterogeneous requirements, we should be able to
represent spatial qualitative description at different levels of granularity, i.e., in-
variant according to translation and/or rotation and based on different scalings.

Based on recent results from cognitive science (see, e.g., [30]), we present
a formal, egocentric, and qualitative approach to navigation which overcomes
some problems of quantitative, allocentric approaches. By the use of ordering
information, i.e., based on a description of how landmarks can shift and switch,
we generate an extended panoramic representation (EPR). We claim that our
representation in combination with path integration provides sufficient informa-
tion to guide navigation with reduced effort to the vision process. Furthermore
the EPR provides the foundation for qualitative spatial descriptions that may
be invariant to translation and/or rotation.

Since our approach abstracts from quantitative or metrical detail in order to
introduce a stable qualitative representation between the raw sensor data and
the final application, it can for example be used in addition to the well-elaborated
quantitative methods.

2 Motivation

Modeling complex behavior imposes strong requirements on the underlying rep-
resentations. The representation should provide several levels of abstraction for
activities as well as for objects. For both types of knowledge, different repre-
sentations were proposed and it was demonstrated that they can be used suc-
cessfully. Activities can, e.g., be described adequately with hierarchical task net-
works (HTN) which provide clear formal semantics as well as powerful, efficient
(planning-) inferences (see e.g. [4]). Objects can be described either in ontology-
based languages (e.g., OWL [2I]) or constraint-based languages (e.g., [§]). Both
types of representations allow for the representation of knowledge at different
levels of abstraction according to the domain and task specific requirements. In
physically grounded environments, the use of these techniques requires an ap-
propriate qualitative spatial description in order to relate the modeled behavior
to the real world.

2.1  Allocentric and Egocentric Representations

In an egocentric representation, spatial relations are usually directly related to
an agent by the use of an egocentric frame of reference in terms like, e.g., left,
right, in front, behind. As a consequence, when an agent moves through an
environment, all spatial relations need to be updated. In contrast, representations
based on an allocentric frame of reference remain stable but are much harder to
acquire. Additionally, the number of spatial relations which have to be taken into
account may be much larger because we have to consider the relations between
each object and all other objects in the environment, whereas the number of
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(a) Allocentric relations (b) Egocentric relations

Fig. 1. Allocentric vs. egocentric spatial relations

relations in egocentric representations can be significantly smaller (see Fig. III)EI
An interesting phenomenon, when looking into the didactic literature about, e.g.,
sports [I2] we often find that (tactical and strategic) knowledge is described in
both, egocentric and allocentric terms, whereas, e.g., the literature about driving
lessons strongly relies on purely egocentric views. At least one of the reasons
are that the latter representation seems to provide better support for acting
directly in physically grounded environments, since perception as well as the
use of actuators are directly based on egocentric representations. In addition,
egocentric representations provide better support for rotation and translation
invariant representations when used with a qualitative abstraction (see sections
and Ml for more details).

3 Related Work

3.1 Cognition: Dynamic, Egocentric Spatial Representations

The fact that even many animals (e.g., rodents) are able to find new paths lead-
ing to familiar objects seems to suggest that spatial relations are encoded in an
allocentric static “cognitive map”. This almost traditional thesis is supported by
many spatial abilities like map navigation and mental movement that humans
are able to perform (beginning with [26] and [T4]). Nevertheless, recent results
in cognitive science provide strong evidence for a different view ([30] among
many others). Instead of using an allocentric view-independent map, humans
and many animals build up a dynamic, view-dependent egocentric representa-
tion. Although the allocentric interpretation of the cognitive map seems to differ
radically from the egocentric representation theory, both theories can account
for many observations and differ mainly in two points: The allocentric, cognitive
map-interpretation assumes that the spatial representation is view-independent
and that therefore viewpoint changes do not have any influence on the per-
formance of, e.g., spatial retrieval processes. Many recent experiments provide
evidence for the opposite, they show that viewpoint changes can significantly

! For reasons of clarity not all allocentric relations are drawn in diagram
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reduce performance in terms of time and quality (e.g. pointing errors) (among
others, [28] and [29]). The second main difference is concerned with the dynamic
of the underlying representation. The egocentric interpretation assumes that all
egocentric relations have to be updated with each egocentric movement of a
cognitive system. The underlying assumption of a sophisticated series of exper-
iments done by Wang ([28] and [29]) was that spatial relations have to remain
stable in an allocentric, cognitive map independent from egocentric movements.
When errors arise, e.g., because of path integration, the error rate ( “configura-
tion error”) should be the same for all allocentric relations; otherwise they rely
on an egocentric representation. The results indicate clear evidence for egocen-
tric representations and have been confirmed in a series of differently designed
experimentsd, e.g., [3] and [5].

3.2 Robot Navigation

Navigation and localization is the most fundamental task for autonomous robots
and has gained much attention in the robotic research over the last decades.
While several earlier approaches addressed this problem qualitatively [9], e.g.,
topological maps ([11], [15], [1]), more recent approaches focus very successfully
on probabilistic methods. Famous examples are RHINO [23], MINERVA [22] and
more recently [25]. Currently, the most promising techniques for robust mobile
robot localization and navigation are either based on Monte-Carlo-Localization
(MCL) (see [1§] for RoboCup-application and the seminal paper [24]) or on var-
ious extentions of Kalman-filters (e.g., [I3]) using probabilistic representations
based on quantitative sensory data. MCL is based on a sample set of postures;
the robot’s position can be estimated by probabilities which allow to handle
not only the position tracking- and the global localization problem but also the
challenging kidnapped robot problem of moving a robot without telling it.

Furthermore, probabilistic methods based on quantitative data play a crucial
role in handling the mapping problem, i.e., the SLAM—problenE. Very much the
same is true for many robotic approaches to navigation, e.g., potential fields for
avoiding obstacles by following the flow of superposed partial fields in order to
guide the robot to a goal position (see [10] and [7] for a RoboCup-application)
based on quantitative data.

According to the spatial semantic hierarchy (SSH) [9], these approaches try
to address the problems related to robot navigation on the control level. Besides
the strong computational resource requirements, they usually do not address
the problem of generating a discrete, qualitative spatial representation which for

2 Nevertheless, these results do not allow the strict conclusion that humans do not
build up an allocentric cognitive map. On the contrary, e.g., Easton and Sholl 3]
have shown that under very specific conditions it is possible to build up allocentric
maps. Nevertheless, these results indicate, that under more natural conditions human
navigation relies on egocentric snapshots and a dynamic mapping between these.

3 This term is also directly connected to a set of algorithms addressing exactly this
problem (e.g., [2]).



138 T. Wagner and K. Hiibner

House e ——

Woods P \?
f’ “
.' ‘oB
By 1
Lake ] :‘
\‘ r
. /
Do L P
b, S )
Mall o
(a) Concrete Panorama (b) Abstract Panorama

Fig. 2. Panorama-views

instance is required at more abstract levels, e.g., for describing complex coordi-
nated tactical and strategic behavior both on individual- and on team level.

3.3 The Panorama Approach

The concept of panorama representation has been studied extensively in the
course of specialized sensors (e.g., omnivision, see, e.g., [31]). We present an
extended approach based on the panorama approach by Schlieder ([20] and [19]).

A complete, circular panorama can be described as a 360° view from a spe-
cific, observer-dependent point of view. Let P in Fig. 2(a) denote a person, then
the panorama can be defined as the strict ordering of all objects: house, woods,
mall, lake. This ordering, however, does not contain all ordering information as
described by the scenario. The mall is not only directly between the woods and
the lake, but more specifically between the opposite side of the house and the
lake (the tails of the arrows). In order to represent the spatial knowledge de-
scribed in a panorama scenario, [20] introduced a formal model of a panorama.

Definition 1 (Panorama). Let O= {0y,...,0,} be a set of points 6; € O
and @ = {¢1,...,0n} the arrangement of n-1 directed lines connecting 6; with
another point of @, then the clockwise oriented cyclical order of ® is called the
panorama of 0;.

As a compact shorthand notation we can describe the panorama in Fig. 2(b)
as the string < A, C, D, Bo, Ao, Co, Do, B >. Standard letters (e.g., A) describe
reference points, and letters with a following o (e.g., Ao) the opposite side (the
tail side). As the panorama is a cyclic structure the complete panorama has to
be described by n strings with n letters, with n being the number of reference
points on the panorama. In our example, the panorama has to be described by
eight strings. Furthermore, the panorama can be described as a set of simple
constraints dl(vp, lmy, lmg)ﬁ. Based on this representation, [I9] also developed
an efficient qualitative navigation algorithm.

The panorama representation has an additional, more important property:
it is invariant with respect to rotation and translation. But evidently, not ev-

4 Short for direct — left(viewpoint, landmark:, landmarks).



An Egocentric Qualitative Spatial Knowledge Representation 139

ery behavior can be described in such an abstract manner. In order to model
complex, coordinated behaviors, often more detailed ordinal information is in-
volved. Additionally, different metric information (e.g., distance) is required in
some situations. In the following section, we show how the panorama can be
extended in a way that more detailed ordinal and metric information can be
introduced.

4 An Extended Panorama Representation

Instead of building an allocentric map we provide an egocentric snapshot-based
approach to navigation. The most fundamental difference between both ap-
proaches is that an egocentric approach strongly relies on an efficient, continuous
update mechanism that updates all egocentric relations in accordance with the
players’ movement. In this section we show that this task can be accomplished by
strict use of a simple 1D-ordering information, namely an extended qualitative
panorama representation (EPR).

This update mechanism has to be defined with respect to some basic condi-
tions:

e Updating has to be efficient since egocentric spatial relations change with
every movement, i.e., the updating process itself and the underlying sensor
process.

e The resulting representation should provide the basis for qualitative spatial
descriptions at different levels of granularity.

e The resulting representation should provide different levels of abstraction,
i.e., rotation and/or translation invariance.

e The process of mapping egocentric views should rely on a minimum of allo-
centric, external information.

Due to the nature of ordering information, this task has to be divided into
two subtasks: (1) updating within a given frame of reference (short notation:
FoR), i.e., the soccer field and (2) updating of landmark representations from
an external point of view, e.g., the penalty area. In section [£.] we briefly discuss
the key properties of the first task in relation to ordering information from a
more theoretical point of view, whereas in section [ these aspects are investi-
gated in more detail. In section we describe the theoretical framework un-
derlying the mapping- and update-mechanism for egocentric views on external
landmarks.

4.1 Within a Frame of Reference

A crucial property of panoramic ordering information is that it does not change
as long as an agent stays within a given FoR, i.e., the corners of a soccer field, do
not change unless the player explicitly leaves the field (see Fig. 3(a)). So in order
to use ordering information for qualitative self-localization we have to introduce
an egocentric FoR. But even with an egocentric FoR the location within this
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Fig. 3. FoR and Triangle panorama

FoR can only be distinguished into a few different qualitative states (e.g., ego-
front between front-left and front-right corner of the field, see Fig. 3(a)). This
way of qualitative self-localization is too coarse for many domains as well as for
the different RoboCup-domains. In section [fl we demonstrate in more detail how
angular distances can be used to overcome this problerrﬁ.

A perhaps even more important property of spatial locations within a given
FoR is that they can be used as a common FoR for the position of different
landmarks in relation to each other (e.g., the position of the penalty area can
be described in within-relation to the soccer field). This property is especially
important for an egocentric snapshot-based approach to navigation since it pro-
vides the common frame that is required to relate different snapshots to each
other (for a more detailed discussion see [27]).

4.2 Updating Outside-Landmark Representations

In a re-orientation task we can resort the knowledge about the previous position
of a player. Therefore we concentrate on an incremental updating process, based
on the following two assumptions: (1) It is known that the configuration of
perceived landmarks A, B, ... € L either form a triangle- or a parallelogram
configuration (e.g. either by vision or by use of background knowledge). (2) The
position P;_; of an agent A in relation to L at time step t — 1 is known. The
EPR (LPr) of a triangle configuration can then be defined as follows (see also
Fig. 3(b)):

5 An additional approach is to introduce more landmarks that are easy to perceive or
to introduce additional allocentric FoR when available (e.g., north, south, etc.).



An Egocentric Qualitative Spatial Knowledge Representation 141

Definition 2 (Triangle Landmark Panorama). Let P4 denote the position
of an agent A and Cr(apc) the triangle configuration formed by the set of points
A, B,C in the plane. The line Lp, v p is the line of view from Pa to VP, with
VP being a fived point within Cpapcy. Furthermore, Loyn(p,/vp) be the or-
thogonal intersection of Lp,,vp. The panoramic ordering information can be
described by the orthogonal projection P(Pa,V P,Crapc)) of the points ABC

onto Lortn(pa/vp)-

Therefore, moving around a triangle configuration Cr(4pc) results in a se-
quence of panoramas which qualitatively describe the location of the observer
position. A 360° movement can be distinguished in six different qualitative states:

Observation 1. (Triangle Landmark Panorama Cycle)

The EPR resulting from the subsequent projection P(Pa,V P,Crapc)) by
counter-clockwise circular movement around VP can be described by the fol-
lowing ordered, circular sequence of panoramas:

(CAB), (ACB), (ABC), (BAC), (BCA), (CBA)

For each landmark panorama the landmark panorama directly left as well as
at the right differ in exact two positions that are lying next to each other (e.g.,
(ABC), (BAC) differ in the position exchange between A and B). These position
changes occur exactly when the view line Lp, /v p intersects the extension of one
of the three triangle lines: Lag, Lac, Lpc. Starting with a given line (e.g., Lap)
and moving either clock- or counter-clockwise, the ordering of line extensions to
be crossed is fixed for any triangle configuration (see Fig. 3(b)). This property
holds in general for triangle configurations but not, e.g., for quadrangle configu-
rations (except for some special cases as we will see below). Since (almost) each
triplet of landmarks can be interpreted as a triangle configuration, this form of
qualitative self-localization can be applied quite flexibly with respect to domain-
specific landmarks. The triangle landmark panorama, however, has (at least) two
weaknesses: The qualitative classification of an agent’s position into six areas is
quite coarse and, triangle configurations are somewhat artificial constructs that
are rarely found in natural environments when we consider solid ob jectsﬁ. A nat-
ural extension seems to be applying the same idea to quadrangles (see Fig. 4).
The most direct approach is to interpret a quadrangle as a set of two connected
triangles sharing two points by a common line so that each quadrangle would
be described by a set of two triangle panoramas. With this approach, the space
around a quadrangle would be separated into ten areas and therefore it would
be more expressive than the more simple triangle panorama. It can be shown
that eight of the resulting triangle landmark panoramas (one for each triangle of
the quadrangle) can be transformed into quadruple tuples that result when we
transform, e.g., a rectangle directly into a landmark panorama representation
(e.g., the given tuple ((BCA)(CDA)) can be transformed into (BCDA) without

5 The triangle configuration can be applied generally to any triplet of points that form
a triangle - also to solid objects. The connecting lines pictured in Fig. 3(b) and 4(a)
are used to explain the underlying concept of position exchange (transition).
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loss of information)ﬂ. The expressiveness of the other two landmark panoramas
is weaker: they have to be described as a disjunction of two quadruple tuples.
Since the expressiveness is weaker and the landmark panorama representation
of a quadruple tuple panorama representation is much more intuitive we focus
on the latter one (see Fig. 4(a)).

Definition 3 (Parallelogram Landmark Panorama). Let P4 denote the
position of an agent A and Cpapc) the parallelogram configuration formed by
the set of points A, B,C, D in the plane. The line Lp, vp is the line of vi-
sion from Pa to VP, with VP being a fized point within Cpapcp). Further-
more, Lopn(ps/vp)y be the orthogonal intersection of Lp,vp. The landmark
panoramic ordering information can then be described by the orthogonal projec-
tion P(Pa,V P,Cpapcp)) of the points ABCD onto Loyn(pa/vp)-

Moving around a parallelogram configuration Cpapcpy also results in a
sequence of landmark panoramas which describe the location of the observer
position qualitatively. A 360° movement can be split into twelve different states:

Observation 2. (Parallelogram Landmark Panorama Cycle)

The panoramic landmark representations resulting from the subsequent projec-
tion P(Pa,V P,Cpapcp)) by counter-clockwise circular movement around VP
can be described by the following ordered, circular sequence of panoramas:

" The detailed proof will take too much space. However, the basic proof idea is quite
straightforward: each panorama transition happens because of the intersection of the
landmarks’ line extensions with the line of vision of the moving agent, so the number
of disjoint lines (multiplied by 2, since each line is intersected twice) specifies the
number of transitions and therefore the number of distinguishable areas. The loss of
expressiveness of two of the triangle tuples can be explained in the same way: assume
that the quadrangle ABCD is defined by the two triangles ABC' and ADC' sharing
the diagonal AC. Position changes of the points B/D cannot be distinguished since
they happen in two different triangles, which are not in relation to each other. Al-
ternatively, we can show that the number of resulting ordering constraints is smaller
(for more details on the constraint representation see section B.3)).
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((BCAD),(BACD),(ABCD),(ABDC),(ADBC),(DABC),
(DACB),(DCAB),(CDAB),(CDBA),(CBDA), (BCDA))

The two presented landmark panoramas can be mapped flexibly onto land-
marks that can be found in natural environments like a penalty area. While solid
objects often form rectangle configurations, irregular landmarks can be used in
combination as a triangle configuration, since this approach is not strictly re-
stricted to point-like objects. An interesting extension is to build up more complex
representations by using landmark configurations as single points in larger land-
mark configurations. This allows us to build up nesting representations which sup-
port different levels of granularity according to the requirements of the domain.

5 Implementation

According to the described scenarios, the EPR is meant to be a qualitative fun-
dament for tasks that are important for mobile robot exploration. Due to the
oversimplification of the four-legged league RoboCup scenario (i.e., no penalty
area and no goal area to move around), the latter outside-case described in sec-
tion 2] does not find capital application here, but we claim that it will show
its features in more complex scenarios which offer a larger number of landmarks
to move around. Here, we will show some experimental extraction of EPR se-
quences to practically point up the idea presented in section [41l and the basic
idea of building panoramic ordering information from the image data.

For our first experiments, we use the RobotControl/SimRobot [1T] simulation
environment for the simulation of one four-legged robot. This tool is shared with
the GermanTeam, which is the German national robotic soccer team participat-
ing in the Sony four-legged league in the international RoboCup competitions.
The EPR concept presented is not proposed to be restricted to this special
domain, as discussed. The tool supports simulated image retrieval and motion
control routines that are easy to use and portable to physical robots, while it
is possible to encapsulate the EPR and adapted image feature extraction in
distinct solutions, letting other modules untouched.

5.1 Visual Feature Extraction

In order to expediently fill the EPR with information, the recognition of land-
marks is necessary. Usually, the robot’s viewing angle of 57.6° degrees is not
sufficient to get a reasonably meaningful EPR with the feature extraction of
goals and flags supported by the RobotControl tool (see [I8] for a description of
these features).

Even if the scene is regarded from one goal straight to the other, there are
just three landmarks that can be found. On the other hand, the standard con-
figuration of all landmarks as can be seen in Fig. [l is of an unfavorable kind
for the EPR. The landmarks build a convex structure that the robot can never
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Fig. 5. Simulation environment of the GermanTeam (left); the standard four-legged
league field configuration (right)

Fig. 6. Landmarks for the EPR. Center column: Landmarks extracted (for six rep-
resentation between given start position (left) and goal position (right): “L” for L-
junctions, “T” for T-junctions, “X” for X-junctions; horizontal lines (circles), vertical
lines (squares), goals (light triangles) and flags (dark triangles))

leave, thus the ideal EPR will never allow to reason about the environment by
permuted landmarks (see section ). Thus, we further introduced the symme-
try line operator proposed by Huebner [6] to extract 2D field lines as additional
features from the image data. The method is simple, robust, and works with-
out plenty of parametrization. Additionally, it offers the opportunity to test the
approach with natural landmarks (lines) instead of artifacts (colored beacons).
After processing the images, lines are distinguished from curves and represented
by their start and end point in the image (see Fig. [).

These lines can be put into the EPR by adopting these points or the cen-
ter point, for example. Anyway, a classification of edge types is more efficient
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with respect to the subsequent need of recovering landmarks. To support the
panorama with a broader range of landmark types which ideally are points on
the field, we classify each pair of lines extracted from an image into different
line pair types. In our experiment, we extracted L-junctions, T-junctions and
X-junctions (see Fig. [fl) representing the additional landmarks that are used for
the EPR.

5.2  Qualitative Representation

The simulated environment for the experiment corresponds to the standard four-
legged league field configuration with lines instead of the sideboards. One robot
is instructed to move a certain path presented by a given sequence of EPRs. Us-
ing the EPR representation and a qualititative conversion of the feature angles,
we can establish a qualitative EPR sequence of detected landmark configura-
tions for a path. Some samples of such sequences might look like the following,
corresponding to the EPR of Fig.

[(T_JUNC,VERY_FAR) ; (L_JUNC, SAME) ; (T_JUNC, SAME) ; (X_JUNC, SAME) ;]
[(T_JUNC,VERY_FAR) ; (X_JUNC,SAME) ; (FLAG,SAME) ; (T_JUNC,SAME) ;]
[(T_JUNC,FAR) ; (FLAG,SAME) ; (L_JUNC,CLOSE) ; (T_JUNC,MEDIUM) ;
(T_JUNC,MEDIUM) ; (L_JUNC,SAME) ; (L_JUNC,CLOSE) ;]

[(FLAG,FAR) ; (L_JUNC,SAME) ; (L_JUNC,CLOSE) ; (T_JUNC,MEDIUM) ;
(L_JUNC, SAME) ; (T_JUNC, CLOSE) ; (L_JUNC,MEDIUM) ; (T_JUNC, SAME) ;]
[(FLAG,FAR) ; (GDAL,FAR) ;]
[(FLAG,FAR) ; (GOAL,FAR) ; (L_JUNC,CLOSE) ;]

Each of these ordering sequences corresponds to a snapshot-like qualitative
description of the robot’s location during the path. E.g., in the first sequence,
there are four ordered and classified landmarks that are additionally described
by their qualitative angular distance to the previous landmark. Caused by the
panoramic representation, the first “T”-junction is very far (VERY_FAR) dis-
placed from the previous landmark (the “X”-junction in this case). Including
qualitative angular distances like VERY_FAR also allows to convert this angular
representation to a number of qualitative location descriptions (e.g., according
to the first sequence, “The X-junction is very far LEFT of the T-junction.” or
“The X-junction is same RIGHT of the T-junction.”).

As also can be seen in this example, the line landmarks appear and disappear
frequently in the robot’s view. This is caused by the landmark feature extraction
working on insufficient simulated image data. We are optimistic that real images
are more comfortable for the extraction of lines, because they are not supposed to
be fragmented like those in simulated images. Although this is error-prone in this
regard, we claim to deal with this problem using the EPR. The representation
can generally be useful for this re-orientation task, where the agent knows at
least to some extent where it has been. Based on this information, the circular
panorama landmark representation can tell us which hypotheses are plausible
according to previous information.
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The same panoramic representation is additionally used in our simulation
soccer team Virtual Werder. Although sensor problems are neglectable since
the world model is more comprehensive and detailed, it provides a simple and
intuitive interface for the generation of qualitative descriptions.

5.3 Experiments on Real Images

Finally, some experiments have been made to test the proposed feature extrac-
tion and EPR construction on real images (see Fig. using one Sony AIBO
ERS-7 model inside a common four-legged league scenario. Without plenty of
adaptation, the results are as good as those in the simulation examples. Problems
appearing by the line extraction technique (e.g. side walls as lines, lines found
over horizon, optional grouping of lines to handle occlusions) will be addressed
in future work to increase robustness and performance.

6 Conclusion and Future Work

Navigation, localization, planning, and reasoning for physically grounded robots
imposes strong but heterogeneous requirements on the underlying spatial rep-
resentation in terms of abstraction and precision. In contrast to many other
approaches to this topic which try to generate allocentric maps, we proposed a
new egocentric approach based on recent results from cognition. The qualitative
EPR is dynamic in a predictable way for outside landmarks as stated in the two
observations described above. This representation, however, provides also inter-
esting properties for navigation inside fixed landmarks (e.g., navigating within
a room).

Besides the re-orientation task mentioned in the last section, the landmark
panorama can help to focus perception in a qualitative self-allocation task. Dur-

8 The difference of size in the corresponding images is caused by the different image
sizes between the old AIBO model ERS-210 and the new ERS-7.
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ing the transition of one panorama landmark into another exactly one position
change is performed. Therefore, in this case the perception of further landmarks
is without any use for updating the qualitative position of the agent. Addition-
ally, the panorama landmark representation is not only useful for position updat-
ing but also for re-orientation without knowledge about the previous position.
The perception of a partial landmark panorama of a triangle configuration is
sufficient to provide us with two hypotheses about the current position. In order
to validate which hypothesis holds we just have to find out where another land-
mark appears in the panoramic structure. Additionally, a landmark panorama
provides a stable basis for qualitative, spatial descriptions (e.g. left of, right of),
since it is, obviously, sensitive to rotation but invariant to transition, it is also
interesting for several outstanding applications based on qualitative information.

Although a detailed analysis of the relation to the recent cognitive results is
out of the scope in this paper, we want to mention that the EPR shows several
properties which are observed in recent experiments: e.g., translation tasks seem
to be performed more easily and accurately than rotation tasks.

Several tasks remain to be done. We are currently extending our landmark-
based (re-)orientation vision module so that it is not only able to track EPRs
but also allows active snapshot-based navigation (first results are available).
Thereby we implement the concept of outside-landmarks that formally describes
how landmarks can shift and switch during movement (see section .2)). This
should also allow to detect the geometric structure of previously unseen objects.
After validating our extended panorama representation in the RoboCup-domain,
we consider to transfer this method of the EPR into an omnidirectional vision
module for mobile robot tasks.
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