Asserting Bytecode Safety

Martin Wildmoser and Tobias Nipkow

Technische Universitdt Miinchen, Institut fiir Informatik
{wildmosm, nipkow}@in.tum.de

Abstract. We instantiate an Isabelle/HOL framework for proof carry-
ing code to Jinja bytecode, a downsized variant of Java bytecode featur-
ing objects, inheritance, method calls and exceptions. Bytecode anno-
tated in a first order expression language can be certified not to produce
arithmetic overflows. For this purpose we use a generic verification con-
dition generator, which we have proven correct and relatively complete.

1 Proof Carrying Code

In mobile code applications, e.g. applets, grid computing, dynamic drivers, or
ubiquitous computing, safety is a primary concern. Proof carrying code (PCC)
aims at certifying that low level code adheres to some safety policy, such as type
safety [6], bounded array accesses [13], or limited memory consumption [4]. When
such properties are checked statically sandbox mechanisms and error recovery
become obsolete. In classical PCC a verification condition generator (VCG) re-
duces annotated machine code to proof obligations that guarantee safety. Proofs,
usually obtained automatically with a theorem prover, are then shipped to the
code consumer, who checks them. The whole setup is sound if the VCG and
the proof checker can be trusted. In Foundational Proof Carrying Code [3] the
VCG is eliminated by proving safety directly on the machine semantics, typically
assisted by a source level type system. Our approach is to formalize and verify
PCC in a theorem prover. In [19] we present an Isabelle/HOL [15] framework
for PCC. The essential part is a generic, executable and verified VCG. This
turns out to be feasible as only a small part of a VCG needs to be trusted.
Many parts can be outsourced in form of parameters that can be customized
to the programming language, safety policy and safety logic at hand. In this
paper we instantiate a PCC system for Jinja bytecode and a safety policy that
prohibits arithmetic overflow. We verified that this instantiation meets all the
requirements our framework demands for the VCG to be correct and relatively
complete. Verifying programs at the bytecode level has clear advantages. First,
one does not have to trust a compiler. Second, the source code, which is often
kept secret, is not required. Third, many safety policies are influenced by the
machine design. For example verifying sharp runtime bounds even requires going
down to the processor level and considering pipeline and caching activities. In
case of bytecode, we need a safety logic that can adequately model JVM states.
Over the years various logics for object oriented programs have been proposed.

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 326-341] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Asserting Bytecode Safety 327

For instance [2] defines a Hoare Logic based on a combination of a type system
and first order logic with equality. In [16] a shallow embedding of Isabelle/HOL
is used to define a Hoare logic for Java. A very prominent annotation language
for Java is JML [10] or the downsized version of it used in ESC Java [7]. How-
ever, all of the logics have been designed for Java, not its bytecode. This paper
introduces a first order expression language with JVM specific constructs. This
language is expressive enough for weakest preconditions of Jinja instructions
and a safety policy against arithmetic overflow. Although this is undecidable,
many programs produce proof obligations that are easy enough to be handled
by Isabelle/HOL’s decision procedures, such as Cooper’s algorithm [14].

2 Jinja Bytecode

Jinja bytecode is a downsized version of Java bytecode. Although it only has 16
instructions, it covers most object oriented features: object creation, inheritance,
dynamic method calls and exceptions.

datatype instr =

Load nat load from register
Store nat store into register
2
| Push val push a constant
| New cname create object on heap

| Getfield vname cname fetch field from object
| Putfield vname cname set field in object

| Checkcast cname check if object is of class cname

| Invoke mname nat invoke instance method with nat parameters

| Return return from method

| Pop remove top element

| TAdd integer addition

| Goto int goto relative address

| CmpEq equality comparison

| IfFalse int branch if top of stack false

| IfIntLeq int take integers a and b from stack, branch if a<b
| Throw throw exception

Jinja programs are interpreted by the Jinja virtual machine, which closely mod-
els the Java VM. States consist of a flag indicating whether an exception is raised
(if yes, a reference to the exception object), a heap and a method frame stack.

types jum-state = addr option x heap X frame list

The heap is a partial map from addresses (natural numbers) to objects. We use
the polymorphic type ‘a option = None | Some ’a to model partiality in Isa-
belle/HOL, a logic of total functions. Using the one can extract the content,e.g.
the (Some a) = a.

types heap = addr = obj option
obj = cname X fields

328 M. Wildmoser and T. Nipkow

fields = (vname X cname) = val option
cname = vname = mname = string

Jinja has values for booleans, e.g. Bool True, integers, e.g. Intg 5, references, e.g.
Addr 3, null pointers, e.g. Null or dummy elements, e.g. Unit. For some values,
we use partially defined extractor functions.

datatype val = Bool bool | Intg int | Addr addr | Null | Unit
the-Intg (Intg i) = 14, the-Bool (Bool b) = b, the-Addr (Addr a) = a

Each value has a type associated with it:
datatype ty = Boolean | Integer | Class cname | NT | Void

Whenever a method is called a new frame is allocated on the method frame
stack. This frame contains registers, an operand stack and the program counter.
In the registers the Jinja VM stores the this reference, the method’s arguments
and its local variables. The operand stack is used to evaluate expressions. Both
are modelled as lists, e.g. | = [Null, Unit], for which Isabelle/HOL provides many
operators. For example, there is concatenation, e.g. [Q[Intg 2] = [Null, Unit,Intg
2], indexed lookup I ! 1 = Unit, head,i.e. hd | = Null and tail, t/ | = [Unit].

types frame = opstack X registers X pos
opstack = wal list
registers = wval list
pos = cname X mname X nat

Instructions are identified with positions. For example (C,M,pc) points to in-
struction number pc in method M of class C. Each method is a tuple of the form
(mxs,mzr,is,et), where mzs indicates the maximum operand stack height, mar
the number of used registers, is the method body and et the exception table.

types juom-method = nat X nat X wnstr list x ex-table
The exception table is a list of tuples (f, t, C, h, d):
types ex-table = (nat X nat x cname X nat X nat) list

Whenever an intruction within the ¢ry block bounded by [f, ¢) throws an excep-
tion of type C' the handler starting at h is executed. The parameter d, which is
always 0 in our case, specifies the size of the stack the handler expects. This is
used in [9] to handle exceptions within expression evaluation, but is not required
for real Java programs. Jinja programs are lists of class declarations. Each class
declaration (C,S,fs,ms) consists of the name of the class, the name of its direct
superclass, a list of field declarations, which are pairs of field names and types,
and a list of method declarations. Method declarations consist of the method’s
name, its argument types, its result type and its body.

types jum-prog = (cname x cname x fdecl list x mdecl list) list
fdecl = vname X ty
mdecl = mname X ty list X ty X jvm-method

Our PCC system requires programs I with annotations. These are added by
finite maps from positions to logical expressions. Finite maps are lists of pairs,

Asserting Bytecode Safety 329

e.g. fm =1[(1,1),(3,5),(3,6)], and have operations for lookup, e.g. fm|0 = None
or fm]3 = Some 5, domain, e.g. dom fm = [1,3,3] and range, e.g. ran fm =
[1,5,5]. Note that a pair (z,y) is overwritten by a pair (z,y’) to the left of it.

types jbc-prog = jum-prog x (pos > expr)

To specify and verify safety properties we need to reason about Jinja VM states.
A central issue of this paper is to suggest a formula language for this purpose.
For some constructs of this language we require an extended version of the Jinja
VM, one which memorizes additional information in a so called environment
e, in order to define their semantics. In addition our PCC framework requires
positions to be given as the first component of a state.

types jbc-state = pos X jum-state X env

The environment e contains a virtual stack of call states c¢s e and a binding [v e
for so called logical variables.

record env =cs:: heap list
lv:: var = wval

Whenever a new frame is allocated on the method call stack, we record the
current heap and register values in a call stack, which acts like a history variable
in Hoare Logics. Whenever a frame is popped, we also pop an entry from the
call stack. The bytecode semantics consists of two rules: One specifies normal,
the other one exceptional execution.

nrml:

[P=fstII;p=(C,M,pc);i= instrs-of P C M ! pc;
o = (None,h,(stk,loc,p)#frs); check P o;

exec-instr i P h stk loc C M pc frs = (None,h' fr'#frs");
o' = (None,h'.fr' # frs’); p’ = snd (snd fr');

e’ = e(cs:=if AM n. i = Invoke M n then h#(cs e)
else if i = Return then tl (cs e) else cs e

[= ((po.e)(p'o’e”) € effS II

expt:

[P=fstI;p=(C,M,pc); i = instrs-of P C M ! pc;
o = (None,h,(stk,loc,p)#frs); check P o;

exec-instr i P h stk loc C M pc frs = (Some za,-,-);
find-handler P za h ((stk,loc,p)#frs) = o’

o' = (None,h,([Addr zal,loc’,p’)#frs’);

e’ = e(cs:=drop (length frs — length frs’) (cs €)))

[= ((poe),(p'0’e)) € effS II

In both rules we use instrs-of to retrieve the instruction list of the current
method. The actual execution for single instructions is delegated to exec-instr,
whose full definition can be found in [9]. Here we only give one example:

exec-instr IAdd P h stk loc Cy Mg pc frs =
(let i = the-Intg (hd stk); i1 = the-Intg (hd (tl stk))
in (None, h, (Intg (i1+1i2)#(tl (tl stk)), loc, Co, Mo, pc+1)#frs))

330 M. Wildmoser and T. Nipkow

The function ezec-instr returns triples, whose first component indicates whether
an exception occurs. If yes (second rule), we use the function find-handler) to do
exception handling similar to the Java VM: it looks up the exception table in the
current method, and sets the program counter to the first handler that protects
pc and that matches the exception class. If there is no such handler, the topmost
call frame is popped, and the search continues recursively in the invoking frame.
If no exception handler is found, the exception flag remains set and the machine
halts. If this procedure does find an exception handler (f, t, C, h, 0::'e) it sets
the pc to h and empties the operand stack except for reference to the exception
object. Additional safety checks in the semantics, i.e. check P o, ensure that
arguments of proper type and number are used. This simplifies the verification
of the soundness and completness requirements our PCC framework demands.
As proven in [9] the bytecode verifier only accepts programs for which these
checks hold. Hence, it is sound to work with this defensive version of the Jinja
VM. We require Jinja Bytecode programs to have a main method. For simplicity
we assume that this method is named main, has no arguments, and belongs to
a class called Start. This means we start a program at position (Start,main,0).
The initial operand stack is empty and the registers are initialized with arbitrary
values. The initial heap (start-heap (fst IT)) contains three entries for system
exceptions NullPointer, ClassCast and OutOfMemory. The initial environment
contains an empty call stack. The binding of logical variables is unrestricted.

initS II = { (p,0,e). p = (Start,main,0) A cs e = ||
A o = (None,start-heap (fst II),[([],Null # replicate mzr arbitrary,p)]) }

3 Assertion Logic

Many aspects of Java are identical in the bytecode, but an important concept of
the Java VM cannot be found at the source level: The method frame stack. This
stack is used to store local data of methods in evaluation. Almost all bytecode
instructions affect it. If we want to simulate these effects at a syntactic level, we
need a language that can describe this stack. Fig. 1 shows the assertion language
we use for this purpose. It is a variant of first order arithmetic with special
constructs for adequate modeling of JVM states. All these constructs are used
to express our safety policy (no arithmetic overflow) and weakest preconditions
for Jinja VM instructions. For simplicity this language is untyped. We do not
even distinguish between formulas and expressions. Earlier instantiations [18]
showed that this leads to duplication of functions and lemmas for both types.
The uniform representation avoids this and still allows categorization with type
checking functions. Next, we explain the semantics of all language constructs.
Fach expression can be evaluated for a given jbc-state and yields some Jinja
value.

eval:: jbc-state = expr = wal

The expressions come in two categories. From Rg nat to Catch expr we have
JVM specific constructs. These are needed to access various parts of Jinja states

Asserting Bytecode Safety 331

datatype expr =

Rg nat register
| St nat operand stack cell
| Cn val constant value
| NewA nat address for nth new object
| Gf vname cname expr get field value
| Ty expr ty type check
| FrNr height of method frame stack
| Pos pos position check
| Call expr evaluation in call state
| Catch cname expr evaluation in catch state
| expr 4 expr | expr — expr | expr », expr arithmetic
| if expr then expr else expr conditional
| expr = expr | expr & expr | expr < expr relational
| = expr negation
| expr = expr implication
| A expr list conjunction
| Lv nat logical variable
| X, nat expr quantification (logical vars)

Fig. 1. Jinja bytecode assertion language

in annotations. The remaining constructs are purely logical and are required to
construct verification conditions.

3.1 JVM Specific Constructs

Since we want to use the annotation language to abstract Jinja states, we need
various constructs to access different parts of such states. Most instructions
only manipulate the topmost method frame. Instead of making the whole frame
stack accessible in the language, which would complicate the evaluation range,
we decided to use constructs for individual parts only. With Rg k£ and St k we
access the kth register or element on the operand stack.

evalE II (p,o,e) (Rg k) = (let (x,h,fs)=0; (st,rg,p)=hd fs in rg'k)
evalE II (p,o,e) (St k) = (let (z,h,fs)=c; (st,rg,p)=hd fs in st'k)

Constants Cn v evaluate to their values v, i.e. evalE II s (Cn v) = v. For better
readability we abbreviate constants like Cn (Intg 5) or Cn (Bool True) with
or True.

The NewA n expression returns the reference that is allocated in the heap
for the nth object. In many cases this operator can be avoided as [5] shows. In
our wpF operation, we will also replace field accesses of newly created objects by
their default values. Eliminating all instances of NewA could be achieved at the
level of formulas. However, this involves complex transformations of formulas
and should be delegated to a post-processing function. In the definition we use
the auxiliary function new-Addr h, which yields either Some a if a is the reference
that is allocated next, or None if the heap is full.

332 M. Wildmoser and T. Nipkow

evalE II (p,o,e) (NewA n) = (let (z,h,frs)=0c in evalNewA h n)
evalNewA h 0 = (case new-Addr h of None = Null | Some a = Addr a)
evalNewA h (Suc n) = evalNewA (h(the (new-Addr h):= Some arbitrary)) n

To evaluate Gf F C ex, which corresponds to (C)ex.F in Java, we first check
whether ez evaluates to an address value. If so, we fetch the value of the corre-
sponding object field, otherwise we return Unit.

evalE I s (Gf F C ex) = (case (evalE II s ex)
of Addr a=(let (p,0,e)=s;(z,h,frs)=0c;(D,fs)=the (h a)
in the (fs (F,C))))

| - = Unit)

The evaluation of FrNr, Pos p and Ty ex tp is straightforward, hence we skip the
formal definitions. The FrNr expression yields the length of the method frame
stack and Pos p evaluates to True only if the current program position is p. To
check the exact type of some expression we use Ty ex tp. Note that this check
does not take the class hierarchy into account. Subtyping can be expressed by a
disjunction of Ty ex stp expressions. With Call and Catch we evaluate formulas
in previous states. The Call ex expression evaluates ex in the call state of the
current method. This helps to specify postconditions of methods modularly.
For example, annotating a Return instruction with Rg 1 = Call (Rg 1) +
means that the returning method has incremented register 1. This techniqge is
related to primed variables in VDM [8], except that we can set entire expressions
into a different temporal context, just like temporal logic operators do. This is
important, as some method postconditions need old values of object fields or
other parts of the heap. Another reason is that we use this operator to restore the
call context when we compute the verification condition of a method return. For
example, if register 1 had value Intg 5 before the method call, the programmer
might annotate the call position with Rg I = 4 and the return position with Rg
1 = 6. Our VCG would then produce the following proof obligation, where we
have to show that the postcondtion together with the call annotation (evaluated
in the call state!) imply the annotation at the return position: (Rg I = Call (Ryg
1)+ 2 A Call (Rg 1= 3)) = Rg 1= 6. Details about this construction
can be found in [19]. We use the auxiliary function call to restore the call state
of the current method. The program counter, registers and operand stack at call
time are taken from the method frame beneath. The heap can be restored from
the recordings in the environment. In case of a main method state (no caller),
Call ex evaluates to arbitrary.

evalE IT s (Call ex) = (let (p,o,e)=s; (z,h,frs)=0c in
(if length frs < 1 then arbitrary else evalE II (call s) ex))
call (p ([405,70) 7s),€) = (p',(None,hd (cs e),(s,,pVtfrs),ees=t(cs €)))

Exceptions impose a similar problem than method returns. However, since the
number of frames chopped off the frame stack by exception handling is hard to
determine statically, we need a special operator for this purpose. Just like Call
ex the construct Catch X ex evaluates ex in a previous state. In this case we

Asserting Bytecode Safety 333

restore the state under which we have last been in the try block that has a
catching handler for exception X. The auxiliary function catch chops off frames
until a catching handler is found. Simultaneously it restores the corresponding
heap from the environment. Note that the resulting state is not the state under
which the handler is entered, because the heap remains the same in this case.

evalE II s (Catch X ex) = (let (p,0,e)=s; (z,h,frs)=0c in
if length frs < 1 then arbitrary else evalE II (catch (fst I1,X,s,ex)))

catch (P, X,(p,(z,h,fr#(st,rg,p)#/frs),e)) =

(let (C,M,pc)=p in (case (match-ex-table P X pc (ex-table-of P C M))

of None = catch (P,X,(p,(None,hd (cs e),(st,rg,p)#frs),e(cs:=tl(cs e)))
| Some pc’ = (p,(None,hd (cs €),(st,rg,p)#/frs),e(cs:=tl (cs €)])))

3.2 Logical Constructs

The arithmetic, relational, conditional and logical expressions are evaluated re-
cursively. First, we evaluate the argument expressions, then we apply the cor-
responding arithmetic, relational or conditional operator on the results. If any
argument value has not the expected type the result becomes arbitrary. A logi-
cal expression ez is true if it evaluates to Bool True, otherwise it is false. From
Winskel [20] we take the idea of distinguishing program and logical variables.
The first (registers, stack ...) depend on the jum-state and may be modified by
instructions. The latter are evaluated in a separate binding lv e, which we made
part of the environment e in jbc-state, and are unaffected by instructions. In the
substitutions we use later on to express the effect of instructions, we will neither
transform nor introduce logical variables. Hence, no renaming of bound variables
is required.

evalE IT (p,o.e) (Lvk) = (lve) k

Quantification only binds logical variables. The formula Y/, v. ex holds, if ex
holds no matter what value v’ the logical variable Lv v is bound to.

evalE 11 (p,o,e) (Y, vex) =
Bool (Y v'. the-Bool (evalE II (p,o,e(lv:=((lv €)(v:=0"))]) ex))

3.3 Validity and Provability

To use this expresssion language as a logic, we need judgements for validity
and provability. Models of formulas are program states under which a formula
evaluates to Bool True.

II,s = ex = the-Bool (evalE II s ex)

Provabiliy F is usually defined by giving a set of axioms and inference rules.
However, we can also define provability semantically and use the inference system
of HOL for proofs. We regard a formula as provable if we can prove in HOL that
it holds for all states in the safety closure safeP II of a program II. This set
of states is defined relative to some safety policy safeF, which we are going to
instantiate in the next section.

334 M. Wildmoser and T. Nipkow

I+ ex =V se safeP II. I1,s = ex

The safety closure is defined inductively: All initial states are in safeP II. If a
state (p,o,e) is in safeP II, satisfies the safety formula and annotation at p (if
there is any), then every successor state (p’,0’,e’), i.e. ((p,0,e),(p,0’,e”)) € (effS
IT), that satisfies the safety formula and annotation at p’is also in safeP II.

4 Safety Policy

The assertion language serves three purposes: First, it provides a means to spec-
ify machine states and thus to annotate programs. Second, we use it to express
verification conditions. Third, we use it to specify the safety policy. Our PCC
framework expects the safety policy to be given as a function safeF:: jbc-prog =
pos = expr, which defines a safety formula for each position p in a given pro-
gram I1. This formula expresses conditions that must hold whenever we reach p
at runtime. In our case we instantiate a safety policy that prohibits arithmetic
overflow. The result of TAdd must not exceed MAXINT, which stands for Java’s
highest 32 bit integer 2147/83647.

safelF' IT p = (if emd II p = Some IAdd then St 0 4 St 1 < MAXINT
else True)

A safety policy can also be lifted to programs. A program is safe if and only
if every reachable state satisfies its safety formula.

isSafe I1 = (Vpo oo eo p m e. (po,00,€0) € (initS IT) A
((p0700a60)7(pa076)) € (eﬁS H)* I H?(pao-7e) ': Sa’fEF I p)

5 Verification Conditions

Our generic VCG analyses an annotated control flow graph and produces a for-
mula in the assertion language. Details are in [19], here we only sketch the idea.
Assume position p in program I is annotated with A and has successor p’,
annotated with A’. A branch condition B specifies when p’is accessible from p.
The verification condition for I would contain the following proof obligation,
ensuring a safe transition from p to p’.

(safeF I p N\, A N\ B) = wpF II p p’' (safeF II p" N\ A’

We have to show that the safety formula at p, the annotation A and the branch
condition B imply the weakest precondition for the safety formula and annota-
tion at p’. The entire verification condition consists of various parts of this form.
Not all positions must be annotated. It suffices if there is at least one annotation
in each loop. For non-annotated positions the VCG constructs proof obligations
by pulling back annotations of further successors using the weakest precondition
function wpF and the successor function succsF. Relying on requirements for the
parameter functions, we show in the PCC framework that the VCG is correct

Asserting Bytecode Safety 335

and complete. The correctness theorem says that if we can prove the verification
condition of a wellformed program, then this program is safe at runtime.

theorem vcg-correct: wf II A Il - veg [T — isSafe I1

Wellformedness means that there are enough annotations in the program. Com-
pleteness means that each wellformed and safe program with valid annotations
yields a provable verification condition.

theorem vcg-complete: wf IT A correctAn I N isSafe Il — II + veg 1T

Annotations are valid if they hold whenever the corresponding position is reached
at runtime. For our instantiation to Jinja bytecode, we have proven both theo-
rems by showing all the requirements on the parameter functions. The hardest
part is to show that control flow function and the weakest precondition operator
work correctly and precisely enough.

5.1 Jinja Bytecode Control Flow

To determine the control flow our VCG requires the function succsF, which given
a program position yields a list of all direct successors paired with branch condi-
tions. These specify the situations when a successor is accessible. In the definition
we use separate functions for normal and exceptional successors. The auxiliary
function addPos augments the branch conditions with a position formula Pos p.
This connects verification conditions with the program structure and allows to
weave in other properties (system invariants) in a post-processing step.

succsF IT p = (case emd II p of None = ||
| Some ¢ = addPos p (succsNrm II p ¢ @ succsExpt II p c))
addPos p ss = map (A (p',B). (p', /\ [B,Pos p))) ss

The function succsNrm yields the successors for normal execution. For example
IfIntLeq has two successors depending on whether the topmost stack entry St 0
is less than or equal to St 1, the element beneath it.

sucesNrm 11 (C,M,pc) (IfIntleq t) = [((C,M,pc+t),St 0 < St 1),
((C,M,pc+1), = (St 0 < St 1))]

For instructions that might throw exceptions, succsNrm produces a branch con-
dition that excludes this exception. We write incA (C,M,pc) to increment posi-
tions, e.g. (C,M,pc+1). The auxiliary function zept-cond generates a condition
that ensures a particular exception.

sucesNrm II p (Getfield F C ex) = [(incA p,—(zept-cond II NullPointer p))]
emd IT p = Some (Getfield F C) — zpct-cond IT X p = St 0 = Null

For Putfield, New and Checkcast the normal successors are determined anal-
ogously, only the type of exception differs. Method calls are more complicated,
because overwriting opens multiple possibilities. It is hard to determine

336 M. Wildmoser and T. Nipkow

statically the real type of the object whose method we are calling. However, we
can ask the programmer or compiler to insert proper type annotations. Then we
can select the corresponding method entry positions and construct sharp branch
conditions.

succsNrm IT p (Invoke M n) = succsInvoke (IT,M ,n,p)

First, succsInvoke analyses the annotation at p to find out the types of the
object reference on top of the stack. It expects this information to be given
in form of a disjunction of Ty ex tp expressions. Then, it constructs exclusive
branch conditions for each type.

sucesInvoke (II,M ,n,p) = (case anF II p of None = ||

| Some A = concat (map (X tp. (case tp
of Class X = [((X,M,0),=(zcpt-cond II NullPointer p) A Ty (St n) (Class X))]
| -= 1)) (extractTy (A,St n))))

For Return instructions we scan the code for all positions from which the current
method could have been called. The name and class of the current method can
be obtained from the position, say (C,M,pc), of the Return instruction. Then
we scan the code for all positions p’ with Invoke M n, which have Ty (St n)
C in its annotation. For each of those call positions p’ we construct a branch
condition with the annotation, safety formula and position information of p’.

succsNrm Il p Return =
map (A p'. (incA p’,Call (And [assert II p’,Pos p'))) (callers II p)
assert II p = N [safeF II p]Q(case anF II p of None =[] | Some A = [A])

For the remaining instructions succsNrm can be defined analogously to the
shown examples. When instructions throw exceptions control flows to an appro-
priate handler. The function succsEzpt checks which exceptions each instruction
may throw and invokes succsXpt to find potential handlers. Example:

succsExpt IT p (Getfield F C) = succsXpt (IT,NullPointer,[p])

Handlers are searched by recursively climbing up the call tree and inspecting
the exception tables of each call method. In succsXpt we keep a list of visited
positions. When this list becomes too long or empty, succsXpt terminates by
making all program positions potential successors. This means programs with
uncaught exceptions usually yield unprovable verification conditions. However,
adding a global exception handler to the main method always helps to avoid this
problem. When succsXpt finds a handler it constructs a branch condition that
specifies under which situation this handler is selected. When an exception is
caught in the same method as it is thrown (pss = []), we get branch condition
True, otherwise we restore the call context using Catch on the annotation and
safety formula of the call point.

sucesXpt (I1,X,ps) = (if length (domC IT) < length ps V ps=][]|

then map (Ap. (p,True)) (domC II)

else (let p=fst ps; (C,M,pc)=p; et=ex-table-of P C M; A=assert II p
in (case match-ex-table P X pc et

Asserting Bytecode Safety 337

of None = concat (map (\p’. succsXpt (II,X,p'#ps)) (callers IT p))
Some h = [((C,M,h), \ (if pss=[] then [] else [Catch X A])Q@[zcpt-cond 1T X
(last ps)])]

5.2 Weakest Preconditions

The purpose of the wpF operator is to express the semantics of the underlying
programming language at the level of formulas. We have proven that our wpF
operator satisfies the following lemma, which implies the requirements we need
for correctness and completeness of our VCG.

lemma wf IT A (p,m,e)€ safeP II A ((p, m, e), (p’, m'e’) € effS IT
— evalE IT (p,m,e) (wpF Il pp' Q) = evalE IT (p’, m’e’) Q

Roughly speaking this lemma says that wpF IT p p’ @Q transforms a postcondi-
tion @ such that it evaluates to the same value as () does in the successor state.
This can be done by substituting all expressions of a formula @ that change
its value due to the effect of an instruction by another expressions that yields
the same value in the predecessor state. The substitution function substE::(expr
> expr) = expr = expr maintains an expression map em. It traverses a given
formula (not descending into temporal constructs) and simultaneously replaces
all instances of expressions that appear on the left hand side of a maplet in em
by the corresponding right hand side. Example:

substE [(St 0,Rg 0)] (St 0 = Call (St 0)) = Rg 0 =, Call (St 0)

Usually substitution only replaces variables. However, Jinja Bytecode instruc-
tions may also change the heap. Hence, we sometimes have to substitute entire
expressions. In the definition of wpF we analyse the postcondition and extract
subexpressions of particular patterns. These are then used to build maplets for
the substitution map.

wpF IT p p" Q = (let pm=map (\q. (Pos q,q=p’)) (getPosEx Q)
in (case cmd II p of None = FF | Some ins = (case handlesEx (fst II) p’
of None = wpFNrm IT p p’ Q pm ins | Some cn = wpFEzpt II p p’ Q pm ins)))

When evaluating wpF II p p’ Q we assume that the program counter changes
from p to p’. This means we can eliminate position expressions Pos ¢ in (), which
we extract with getPosEx Q. If p’ is the start address of some handler for an
exception cn, we assume that the transition from p to p’is due to an exception
and delegate work to wpFFEzpt. Otherwise we use wpFNrm, which transforms
@ according to normal execution. For example in case of an IAdd instruction
wpF Nrm replaces instances of St 0 with St 0 4 St 1, which has the same value as
St 0 has in the successor state. Since IAdd reduces the stack, all other instances
of St k, whose indexes are extracted by stklds, get shifted.

wpFNrm IT p p’ pm TAdd = substE (pm@
(map (Mk. (St k,if k=0 then St 0 4 St 1 else St (k+1))) (stklds Q))) @

In case of Getfield F' C' we only have to transform St 0.

338 M. Wildmoser and T. Nipkow

wpFNrm IT p p’ pm (Getfield F C) = substE (pm@Q[(St 0,Gf F C (St 0))]) Q

Like other instructions that affect the heap, Putfield is more tricky to handle.
Apart from shifting the stack, which gets reduced by two elements, we have to
scan () for all expressions that depend on the heap. These are all expressions of
the form Gf F C ex, which we extract in subterm order with getGfEz. For each
instance, we first transform ez using the maplets we have found so far. Then we
build an expression that checks whether ez’ equals the reference of the changed
object (in St 1). If yes, we replace Gf F C ex with the new object field value,
stored in St 0. Otherwise, we take the transformed version Gf F' C ex’.

wpFNrm IT p p’ Q pm (Putfield F C) = (
let em=pm@(map (Ak. (St k,St (k+2))) (stklds Q));
gfe'=foldl (Amp ex. let z=substE mp ex
in (Gf F C ex,IF ©=.St 1 THEN St 0 ELSE Gf F' C z)4#mp)
em (getGfEz F C Q)
in substE gfe’ Q)

Another tricky instruction is Invoke M n. Since the successor state has one frame
more, we replace FrrNr with FrNr 4+ 1. Since the call state of the successor state
is the current state we replace instances of Call ex with ez. In case of Catch X
er we check wether the current method has an appropriate handler. If so, we
can eliminate the Catch. Otherwise, we replace it with an expression that checks
wether the current state only has one frame. In this case evaluation of Catch X
er equals ex, hence we eliminate Catch again. Otherwise, we leave it. Finally,
we handle the argument passing. The first n elements of the stack are written
into the registers 1 to n+1 in reversed order. We create maplets that substitute
each register with the corresponding stack position of the predecessor state. The
stack is emptied, which amounts to replacing all references St k with arbitrary.

wpFNrm IT p p’ Q pm (Invoke M n) = substE (pm@(FrNr,FrNr + Cn (Intg 1))#
(map (Ak. (Rg k,if k < n then St (n—k) else arbitrary)) (rglds Q))@
(map (Ak. (St k,arbitrary)) (stklds Q))Q
(map (A\z. (Call z,z)) (getCallEz Q))Q
(concat (map (A(c,z).(if catchesEx (fst II) ¢ p then [(Catch ¢ z,x)]
else [(Catch ¢ z,IF FrNr = 1 THEN x
ELSE Catch ¢ z)])) (getCatchEzx Q))) Q

In case of Return the successor state has one frame less. Hence, the evaluation
of Call and Catch expressions needs to be adjusted again. Adding an additional
Call to such expressions amounts to the same as chopping off the topmost frame
of the current state. We skip the formal defintion for Return and the remaining
instructions, as the same techniques apply as before. It turns out that the in-
structions that affect the heap or the structure of the frame stack are significantly
more difficult to handle. Exception handling works similar for all instructions,
but Throw, which needs to be treated special because we do not know from
the code which exception is thrown. Similarly to Invoke M n we require that
potential classes are annotated in form of Ty ex tp expressions.

Asserting Bytecode Safety 339

wpFExpt IT p p’ Q pm cn = (let mp=pmQ@(map (\k. (St k,if 1<k then arbitrary
else (if (ecmd II p = Some Throw)
then (IF St 0 = Null THEN addr-of-sys-zcpt NullPointer, ELSE St 0)
else «addr-of-sys-zept cn))) (stklds Q))Q
(let (C,M,pc):p; (C/,M/7pcl):pl; (P,An)=IT
in (if match-ex-table P cn pc (ex-table-of P C M) = Some pc’ then [] else
let rgm=map (Ak. (Rg k,Catch cn (Rg k))) (rglds Q);
om=map (Xex. (Call ex,Catch cn (Call ex))) (getCallEz Q);
cm=map (A(c,z). (Catch ¢ x, Catch cn (Catch c z))) (getCatchEzx Q)
in (FrNr,Catch cn FrNr)#rgm@Qom@cm))
in substE mp Q)

6 Example Program

This section presents a small example program, which we have proven safe.

Method sum in class A adds the num-
bers from 0 to field value n. To ver-
ify this program we need annotations.
(Object,|(n, Integer)],[int n; The precqndition says field n has not
(sum,[|,Integer,(2,2, int sum() { changed since call time and ranges be-
Push (Intg 0) — "pre’’, {int k = 0; | tween 0 and 65535, the highest input

Cl ::juvm-method cdecl
Cl = (A4, class A {

Store k, for which the sum does not overflow.
Push (Intg 0), int r = 0; pre = N [Rg 0 = Call (St 0),
Store T, Gfn A Rg 0= Call (Gfn A St0),
Load k, = Gfn A Rg 0 < 65535,
Load this — "inv"’, 0 < GfnA Rg 0]
Getfield n A, = e
IfIntLeq 10, while (k < n) | The invariant contains type restrictions
Load F, { and the Gaussian summation formula.
Push (Intg 1), It also says that n does not change and
1Add, that k£ ranges between Intg 0 and the
Store k, k=k+ 10 value of n.
Load r,
Load F, inv = N [Ty Rg k Integer,
IAdd, Ty Rg r Integer,
Store T, r=r+k| 2% Rgr= Rgkx (Rgk+ 1),
Goto —12 } Gfn A Rg 0= Call (Gfn A St0),
Load 7, Gfn A Rg 0 K 65535,
Return — "‘post’’, return r; } 0 < an A Rg 0,
L)) Reh< Gin A Rgo.

0 < Rg k]

Fig. 2. Example Program The postcondition contains type infor-

mation again, and a formula that relates the result value to the input value n,
which still has the same value as at call time.

post = A [St 0 = Rgr, Ty Rg r Integer, Gf n A Rg 0 = Call (Gf n A St 0),
2 o, Rgr = Call (Gfn A St 0) x (Call (Gfn A St0)) + 1]

340 M. Wildmoser and T. Nipkow

Proving the verification condition of this program is automatic using a tactic
for bounded arithmetics. The type annotations are used to trigger simplification
rules that translate the arithmetic expressions of type expr turning up in the
verification conditions to arithmetic expressions in Isabelle/HOL. For the latter
powerful decision procedures, such as Presburger Arithmetics are available. We
have tested Jinja programs that call this method up to the size of 10.000 in-
structions. Up to this size the decision procedures and the simplifier scale pretty
well. Details can be found online [1].

7 Generating Annotations

The annotations in the example program have been added manually. They have
been designed to make the verification go through automatically with a general
setup of simplification rules and decision procedures. In practice a fully auto-
matic approach would be desirable. In many cases program analysis can help to
find proper annotations. For example the type information of the annotations
above could be directly transferred from the bytecode verifier’s analysis. To find
out upper and lower bounds of expressions, we can employ interval analysis
for Java bytecode [17]. More complex invariants could be gained by advanced
analysis techniques, such as polyhedra or affine relations [12]. For annotations
involving analysis of pointer structures TVLA [11] can help. Since the generation
of annotations need not be trusted, a wide range of options are available at this
point.

8 Conclusion

To our knowledge the literature on Java does not propose a logic to annotate and
verify bytecode. In this paper we tried to fill this gap for a safety policy against
arithmetic overflow and a bytecode subset that covers the essential object ori-
ented features. This and various other instantiations of our PCC framework [1]
show that a PCC system with formally verified trusted components is feasible.
The infrastructure an interactive theorem prover like Isabelle/HOL provides is
very useful. In particular the ability to generate proofs with decision procedures
or interactively with the full power of HOL available, turns out to be a good
strategy in a field where Rice’s theorem shatters the dream of complete automa-
tion.

References

1. VeryPCC project website in Munich, http://isabelle.in.tum.de/verypec/, 2003.

2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Verification:
Theory and Practice, volume 2772 of Lect. Notes in Comp. Sci., pages 11-41.
Springer-Verlag, 2004.

3. A. W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium
on Logic in Computer Science (LICS ’01), pages 247-258, June 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20

Asserting Bytecode Safety 341

D. Aspinall, L. Beringer, M. Hoffman, and H.-W. Loidl. A resource-aware pro-
gram logic for a jvm-like language. In S. Gilmore, editor, Trends in Functional
Programming. Edinburgh, 2003.

F. D. Boer and C. Pierik. A syntax-directed hoare logic for object-oriented pro-
gramming concepts. In Proceedings of Formal Methods for Open Object-based Dis-
tributed Systems (FMOODS), LNCS. Springer, 2003.

J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound tal for back-end
optimization. In Programming Languages Design and Implementation (PLDI).
ACM Sigplan, 2003.

D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. Extended static
checking. Technical report, Compaq Systems Research Center, 1998.

C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall, 2nd
edition, 1990.

G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual
machine and compiler. Research report, National ICT Australia, Sydney, 2004.
G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. Jml
reference manual (draft). Technical report, 2004.

T. Lev-Ami, T. Reps, M. Sagiv, and T. Wilhelm. Putting static analysis to work
for verification: A case study in issta 2000. Technical report, 2000.

M. Mueller-Olm and H. Seidl. Program analysis through linear algebra. In 31st
Annual ACM Symposium on Principles of Programming Languages (POPL), pages
330-341, 2004.

G. C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
1998.

T. Nipkow and A. Chaieb. Generic proof synthesis for presburger arithmetic —
draft. Technical report, Technische Universitaet Muenchen, 2004.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci. Springer, 2002.

D. v. Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universitat Miinchen, 2001.

M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode analysis for proof carrying
code. Proceedings of the 1st Workshop on Bytecode (Bytecode05), 2005. submitted
for publication.

M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus
deep embedding. In Proc. 17th Int. Conf. on Theorem Proving in Higher Order
Logics (TPHOLs 2004). Springer Verlag, 2004. 16 pages.

M. Wildmoser, T. Nipkow, G. Klein, and S. Nanz. Prototyping proof carrying
code. In Proc. 8rd IFIP Int. Conf. Theoretical Computer Science (TCS 2004),
2004.

G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

	Proof Carrying Code
	Jinja Bytecode
	Assertion Logic
	JVM Specific Constructs
	Logical Constructs
	Validity and Provability

	Safety Policy
	Verification Conditions
	Jinja Bytecode Control Flow
	Weakest Preconditions

	Example Program
	Generating Annotations
	Conclusion
	References

