
A Design for a Security-Typed Language with
Certificate-Based Declassification

Stephen Tse and Steve Zdancewic

University of Pennsylvania

Abstract. This paper presents a calculus that supports information-
flow security policies and certificate-based declassification. The decen-
tralized label model and its downgrading mechanisms are concisely ex-
pressed in the polymorphic lambda calculus with subtyping (System F�).
We prove a conditioned version of the noninterference theorem such that
authorization for declassification is justified by digital certificates from
public-key infrastructures.

1 Introduction

Information-flow policies constrain the propagation of confidential data and pro-
vide an end-to-end guarantee of security. Security-typed languages have become
a promising approach for specifying and enforcing such policies with static type
systems [15]. However, designing a safe and secure information-flow type system
is still a challenging problem: programmers want to express fine-grained security
policies with advanced types, but reasoning about security guarantees in such
complex systems is non-trivial.

This paper presents a security-typed language with well-studied constructs
from the polymorphic lambda calculus with subtyping (System F�) [6]. Language
features such as labels and effects are isolated in a monadic style. This design
makes typing and evaluation rules easy to understand and the proofs of type-
safety and noninterference modular.

Another challenge of designing a security-typed language is to provide down-
grading mechanisms that intentionally break the security guarantees, if such
actions can be justified externally. Downgrading mechanisms, such as delegat-
ing to another principal or declassifying secret data, are important in practical
programming [21]. The decentralized label model by Myers and Liskov [10] ad-
dresses this problem and introduces the notions of principals and reader sets to
statically track the authority for downgrading.

One of our design decisions is to treat labels, principals and downgrading priv-
ileges uniformly as types so that the decentralized label model can be integrated
easily into our language. For example, subtyping naturally models principal del-
egation, while intersection and union types give rise to principal groups and
label refinements. A security language with these encodings allows expressive,
decentralized policies, yet the semantics remains easy to understand.

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 279–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

280 S. Tse and S. Zdancewic

Our previous work [18] connects the static security type system with run-time
security mechanisms such as public-key infrastructures. The language there uses
singleton types such that a principal can be represented as a public key, and the
authority of a principal granting a privilege is represented as a digital certificate.

We improve on our previous work by using monads and subtyping, allowing
us to prove a conditioned version of noninterference even in the presence of
declassification (which was neither stated nor proved before). In particular, we
formalize downgrading mechanisms such as delegation and declassification as
subtyping, and certificate verification as extending the subtyping relation. More
importantly, the conditioned noninterference now captures the intuition that
certificates externally justify the information leaks due to declassification.

The main contributions of our paper are:

1. the design of a safe and secure information-flow type system with bounded
quantification and effects in a monadic style;

2. the integration of the decentralized label model with type constructors and
the use of subtyping to model delegation, declassification, and endorsement;

3. a conditioned version of the noninterference theorem that justifies certificate-
based declassification.

The work here subsumes our previous work [18], adding existential types,
run-time labels and privileges, and a conditioned noninterference theorem for
the full language. We have also built a prototype interpreter called Apollo1.

For brevity, this paper shows only the interesting cases of rules and proof.
Our technical report [17] contains all rules and proofs of type-safety and non-
interference for the full language. The proof of type-safety is also mechanically
formalized and checked with Twelf (a logical framework).

The rest of the paper is organized as follows. Section 2 starts with a core
calculus with labels to study noninterference and extends it with effects. Sec-
tion 3 introduces the decentralized label model and shows how the core calcu-
lus supports the notion of principals, confidentiality and integrity. Furthermore,
downgrading mechanisms are studied as subtyping, and certificate-based declas-
sification is justified using constructs from public-key infrastructures. The paper
then discusses related work in Section 4 and concludes in Section 5.

2 Core Label Calculus

Let us start by introducing a core calculus with monadic labels and effects for
analyzing program dependency. This section proves two important security the-
orems, type-safety and noninterference, for our core calculus.

2.1 Monadic Labels

The first part of our label calculus is based on the dependency core calculus
(DCC) [1] and the polymorphic lambda calculus with subtyping (System F�) [6].

1 The interested reader is invited to visit http://www.cis.upenn.edu/~stse/apollo.

A Design for a Security-Typed Language 281

The motivation behind DCC is to use monadic labels as a unifying framework to
study many important program analyses such as binding time, information flow,
slicing, and function call tracking. DCC uses a lattice of monads and a special
typing rule for their associated bind operations to describe the dependency of
computations in a program.

Unlike DCC, which is based on the call-by-name simply-typed lambda calcu-
lus, our core calculus is based on the call-by-value F�. Our work should apply
also to call-by-name languages; we pick call-by-value semantics simply because
of their familiarity. The features of F� will become essential in later sections:
bounded quantification (∀α � t.t and ∃α � t.t) are used to connect static secu-
rity policies and run-time public-key infrastructures (Sect. 3.3), and subtyping
is used to model principal delegations and policy refinements (Sect. 3.1).

The following grammar defines the syntax for our basic types and terms:

t ::= <> | <t, t> | t + t | t→t | �k | ⊥k | α | ∀α � t.t | ∃α � t.t

m ::= <> | <m, m> | prj1 m | prj2 m | inj1 m | inj2 m | case m m m | x | λx :t.m | m m
| Λα � t.m | m [t] | pack (t, m) as t | open (α, x) = m in m

The types consists of unit, products, sums, functions, top, bottom, variables, uni-
versal and existential quantification, while the terms consists of unit, products,
projections, injections, cases, variables, functions, applications, type abstractions
and instantiations, and package packings and openings. We also encode Booleans
bool using unit and sums.

The types top �k and bottom ⊥k are annotated by a kind k: types T , labels
L, principals P, and privileges J . Principals and privileges will be explained
in Sect. 3 with the decentralized label model. One of our design choices is to
identify these syntactic classes (types t, labels �, principals p, and privileges j):

t ≡ � ≡ p ≡ j k ::= T | L | P | J

This design allows the reuse of type machinery, such as polymorphism and sub-
typing, uniformly for these concepts. We will see this benefit again for intersec-
tion and union types in Sect 3.1, and singleton types in Sect. 3.3.

We use the semantics of Kernel F� [6]. The evaluation judgment is denoted by
m −→ m, the typing judgments by ∆; Γ � m : t, and the subtyping judgment by
∆ � t � t, where ∆ is a type context and Γ is a term context. We follow Pottier’s
notation [13] for specifying the subtyping polarities � of type constructors: ⊕
for covariant, 	 for contravariant, and
 for invariant:

∆ ::= · | ∆, α � t Γ ::= · | Γ, x :t
� ::= <⊕, ⊕> | ⊕ + ⊕ | 	→⊕ | ∀α �
. ⊕ | ∃α �
.⊕

We omit rules for the standard F� constructs above and focus on the new
types and terms for labels: monadic types t{�} (indexed by labels �), and their
corresponding units m{�} and bind operator.

t ::= . . . | t{�} m ::= . . . | m{�} | bind x = m in m � ::= . . . | ⊕ { ⊕ }

Syntactically, these label constructs have the highest precedence, so that
m1 m2{�} means m1 (m2{�}). We write high and low labels as H = �L and L = ⊥L.

282 S. Tse and S. Zdancewic

The subtyping relation of labels ∆ � � � � forms a lattice and hence our language
has a lattice of monads t{�} and m{�}. Since labels and types are in the same
syntactic class, we use a kinding judgment ∆ � t :: k to rule out ill-formed types
such as bool→H or bool{bool}. We omit the straight-forward kind system here;
our technical report [17] contains the full details.

Now, let us see how the type system prevents low-level computation from
depending on high-level computation:

∆; Γ � m : t ∆ � � :: L
∆; Γ � m{�} : t{�}

∆; Γ � m1 : t1{�} ∆; Γ, x :t1 � m2 : t2 ∆ � � � t2

∆; Γ � bind x = m1 in m2 : t2

The label monad m{�} marks the computation m with the label �, restricting how
it interacts with the rest of the program. The term bind x = m1 in m2 exposes
the computation m1 protected inside the label type t{�} to the scope of m2.

Note that these typings are standard for monadic types, except that the
return type of bind here has type t2, rather than the expected type t2{�}.
Instead, by connecting the subtyping of labels (∆ � �1 � �2) with the subtyping
of types (∆ � t1 � t2), the following label protection judgment ∆ � � � t
ensures that the result of bind still protects the data:

∆ � � � <>

∆ � �2 � �1

∆ � �2 � t{�1}
∆ � �2 � t

∆ � �2 � t{�1}

The unit type protects all labels as there is only one term of such type. Sum
types, as information can be leaked by their tags, do not protect any label. The
full set of rules also includes cases for products, functions, and universal types.

Example 1. The term λx : bool{H}. bind y = x in if y then 0 else 1 is
not well-typed, because ∆ � H �� int. An integer leaks information just like a
Boolean or a sum. In contrast, λx :bool{H}. bind y = x in if y then 0{H} else
1{H} is well-typed, because ∆ � H � int{H}. �

Operationally, the label monad m{�} evaluates the term inside until it is a
value v{�}, while bind evaluates m1 to a value v{�} and substitutes v for x in m2.
We specify the dynamic semantics by the following syntactic classes of values
v and evaluation contexts E [20], and by small-step computation rules. We use
m{v/x} to denote the capture-free substitution of v for x in m.

v ::= . . . | v{�}
E ::= . . . | E{�} | bind x = E in m bind x = v{�} in m −→ m{v/x}

DCC also has fixpoints and pointed types. In the technical report, we add such
features to the full language and prove noninterference using a bisimulation-like
technique. For the lack of space, however, such development is left out here.

2.2 Security Theorems

Before we go on to enrich the language with features such as effects and the
decentralized label model, let us state and prove two important theorems that
guarantee the security of programs written in our language. These theorems still

A Design for a Security-Typed Language 283

hold for our full languages (modulo some condition to account for declassifi-
cation, to be explained in Sect. 3.3); however, we prove them here for the core
calculus first to demonstrate the proof techniques. By presenting and proving for
the full language incrementally, we hope to substantiate our claim that monadic
types make the design and proofs more modular.

The first theorem is the type-safety of the language, which we have proved
using the progress and preservation theorems. Type-safety states that a closed,
well-typed program will not get stuck or generate any error. A closed program
means that both the type and term contexts are empty, that is, ∆ = Γ = ·.

Theorem 2 (Progress and Preservation). If ·; · � m1 : t, then either m1 = v
or m1 −→ m2. And, if ∆; Γ � m1 : t and m1 −→ m2, then ∆; Γ � m2 : t.

Proof. By induction on the typing derivation [6, 1]. �

The second theorem is the noninterference property of the language [15],
which states that if a program is well-typed, a low-level observer cannot distin-
guish between different high-level computations. The theorem requires a model
of observers ζ for specifying what information leaks are possible. Our model here
is that, given an equivalence relation over values of the same type, a well-typed
observer cannot distinguish equivalent values, which are parameterized by the
security label of the observer.

For example, we should have these equivalences for Booleans:

true ∼ζ true : bool true �∼ζ false : bool true{H} ∼L false{H} : bool{H}

The first two say that no observer ζ cannot distinguish true from true, but
an observer can tell the difference between true and false. More interestingly,
the third says that if values are protected inside the high monad, then different
values become indistinguishable to the low-level observer L.

Based on the intuition above, we generalize the equivalence relation in the fol-
lowing ways: (1) extend the relation to be higher-order, to account for functions;
(2) parameterize the relation with arbitrary labels; (3) cover all types and values
in the relation; and, (4) lift the relation from values to terms by evaluation.

Formally, this logical equivalence relation is defined by the following rules. We
denote the equivalence relation for closed values at closed type t by v ∼ζ v : t,
and that for closed terms by m ≈ζ m : t:

m1 −→∗ v1 m2 −→∗ v2 v1 ∼ζ v2 : t
m1 ≈ζ m2 : t

∀(v3 ∼ζ v4 : t1). v1 v3 ≈ζ v2 v4 : t2

v1 ∼ζ v2 : t1 →t2

v1 ∼ζ v2 : t
v1{�} ∼ζ v2{�} : t{�}

∀(t2 � t1). v1 [t2] ≈ζ v2 [t2] : t{t2/α}
v1 ∼ζ v2 : ∀α � t1. t

� �� ζ

v1{�} ∼ζ v2{�} : t{�}
v1 ∼ζ v2 : t{t1/α}

pack (t1, v1) ∼ζ pack (t1, v2) : ∃α � t2.t

For reference in proofs later, we name these rules (from top to bottom, left
to right) R-Term, R-Lab1, R-Lab2, R-Fun, R-All, and R-Some (with type anno-
tations inside the pack terms elided). We slightly abuse the notation by using

284 S. Tse and S. Zdancewic

∀ both for the object-level quantification types ∀α � t.t and for the meta-level
quantification in logical relations. Note that we do not deal with parametricity
of polymorphic functions [19] nor the behavioral equivalence of existential pack-
ages [12]. That is, our model assumes that an observer can differentiate different
representations of polymorphic functions or different implementations of exis-
tential packages. This assumption simplifies the equivalence relations, and is the
key difference between noninterference and parametricity.

The last step is to model an arbitrary observer as an open term that con-
tains free type variables and term variables, and model observations as type
substitutions δ and term substitutions γ, which are defined as:

δ ::= · | δ, α �→ t γ ::= · | γ, x �→ v

A judgment δ |= ∆ says that a type substitution models a type context: for
all α ∈ dom(δ) = dom(∆), if δ(α) = t1 and α � t2 ∈ ∆, then t1 is closed, has
the same kind as t2, and ∆ � t1 � t2. Another judgment γ1 ∼ζ γ2 : δ(Γ) says
that two term substitutions are equivalent under a term context of closed types:
for all x ∈ dom(γ1) = dom(γ2) = dom(δ(Γ)), if γ1(x) = v1, γ2(x) = v2 and
x :t ∈ δ(Γ), then v1 ∼ζ v2 : t.

With the logical relations and the substitutions above, we can formally state
the main theorem of the core label calculus: related substitutions preserve the
logical equivalence. In other words, an arbitrary observer cannot distinguish
values higher in the lattice.

Theorem 3 (Noninterference for Terms). If ∆; Γ � m : t and δ |= ∆ and
γ1 ∼ζ γ2 : δ(Γ), then δγ1(m) ≈ζ δγ2(m) : δ(t).

Proof. By induction on the typing derivation. Case bind: We are given ∆; Γ �
bind x = m1 in m2 : t2. By inversion, we have ∆; Γ � m1 : t1{�} (*1) and
∆; Γ, x : t1 � m2 : t2 (*2) and ∆ � � � t2 (*3). By induction hypothesis with
(*1), we have

δγ1(m1) ≈ζ δγ2(m1) : δ(t1{�})
By inversion of R-Term, δγ1(m1) −→∗ v1 (*4) and δγ2(m1) −→∗ v2 (*5) and
v1 ∼ζ v2 : δ(t1{�}). Subcase δ(�) � ζ: By the inversion of R-Lab1, v1 =
v3{δ(�)} and v2 = v4{δ(�)} and v3 ∼ζ v4 : δ(t1) (*6). We then extend the
term substitutions as

γ′
1 = γ1, x �→ v3 γ′

2 = γ2, x �→ v4

such that, by (*6), γ′
1 ∼ζ γ′

2 : δ(Γ, x : t1) (*7). By induction hypothesis with
(*2,*7),

δγ′
1(m2) ≈ζ δγ′

2(m2) : δ(t2)

which means that δγ1(m2){v3/x} ≈ζ δγ2(m2){v4/x} : δ(t2) (*8). By (*4,*5),

δγ1(bind x = m1 in m2) δγ2(bind x = m1 in m2)
= bind x = δγ1(m1) in δγ1(m2) = bind x = δγ2(m1) in δγ2(m2)

−→∗ bind x = v3{δ(�)} in δγ1(m2) −→∗ bind x = v4{δ(�)} in δγ2(m2)
−→ δγ1(m2){v3/x} −→ δγ2(m2){v4/x}

Therefore, by R-Term and (*8), we conclude that δγ1(bind x = m1 in m2) ≈ζ

δγ2(bind x = m1 in m2) : δ(t2). Subcase δ(�) �� ζ: by Lemma 4 with (*3). �

A Design for a Security-Typed Language 285

Lemma 4 (Noninterference for Protected Terms). If ∆ � � � t, δ |= ∆
and δ(�) �� ζ, then m1 ≈ζ m2 : t. �

2.3 Monadic Effects

We now turn to study information flows in the presence of computational effects.
Practical programs interact with external systems and produce effects; observers
can then learn high-security values from those effects. To prevent information
leaks through such channel, we need to refine the type system with effect types.

We again use the monadic style of effect types [9, 5]. The benefit of monads
is that the new feature can be incrementally added to the language we have
shown so far. That is, all the typing and evaluation rules in Section 2.1 remain
unchanged. Traditional approaches, in contrast, require tracking of effects in all
typing rules, spreading the interaction of labels and effects everywhere. Monads
also help in structuring proofs in a modular way, which will be explained for
Theorem 7.

For lazy languages like Haskell, we can simply add the IO monad. For eager
languages like the one here, we need to introduce a new syntactic class e for
effectful expressions to distinguish from pure terms m introduced in Sect. 2.1:

t ::= . . . | t!ε � ::= . . . | ⊕ !	
e ::= return m | run x = m in e m ::= . . . | e!ε

Every top-level program is now an expression, instead of a term. We model
effects as outputs at a given label �, which are visible to an observer of level
ζ if � � ζ. An observer cannot tell the difference between effects of different
labels, but can count the number of visible effects happening in the program.
This treatment gives us a uniform way of modeling language features with effects
and could be extended to effects that carry additional values. Experience with
effectful languages suggests that this technique can be extended to memory
references with reads and writes [5].

Expressions are return m and run x = m in e, which explicitly specify the
order of execution. The term e!ε delays the effects ε in e and thus can be
considered pure, but has the monadic effect type t!ε (indexed by effect labels
ε). Here ε is a lower bound on the labels of observable effects happening in e,
similar to the concept of program counter label in the literature [15].

The typing judgment for expressions is ∆; Γ � e : t!ε, which says that under
the type context ∆ and term context Γ , the expression e has the monadic effect
type t!ε. The following are the typing rules for the new constructs:

∆; Γ � m : t
∆; Γ � return m : t!H

∆; Γ � m : t1!ε ∆; Γ, x :t1 � e : t2!ε

∆; Γ � run x = m in e : t2!ε

∆; Γ � e : t!ε ∆ � ε :: L
∆; Γ � e!ε : t!ε

∆ � � � t ∆ � � � ε

∆ � � � t!ε

The expression return m has no effect and hence its type is given the empty
effect H. We interpret the effect at H to be visible to no-one, while the effect
at L to be visible to everyone. The expression run x = m in e executes the

286 S. Tse and S. Zdancewic

encapsulated effect of m, and then continue with e. Both m and e have the same
effect type ε; otherwise, the subsumption rule of subtyping can be used.

The bottom left rule simply connects the typing judgments of terms and
expressions. The bottom right rule, on the other hand, is an additional label
protection judgment (defined in Sect. 2) for effect types. The rule says that
the underlying type must protect the label and the computation must generate
effects higher than the label. In other words, once the program has bound high-
security data, it may not produce low observable effects.

Example 5. The expression run z = (bind y = x in if y then c!H else c!L) in z,
where c ≡ return <> and x : bool{H}, is insecure. This is a typical example of
implicit information flow through program counter in the literature [15], where
a program leaks information about a high-security Boolean through side effects.

The evaluation judgment for expressions is e ε−→ e, where ε is the side effect
during such step. We use u to denote the values for expressions:

u ::= return v v ::= . . . | e!ε
E ::= . . . | return E | run x = E in e | run x = (return E)!ε in e

run x = (return v)!ε in e
ε−→ e{v/x}

Since the congruence rules for expressions have no computational effects, we can
still use evaluation contexts E to describe the evaluation order of expressions.
The term e!ε is a value because it is a closure that delays computation.

Example 6. The following expression of type bool!L evaluates as:

run x = (run y = (return prj2 <true, false>)!L in return y)!H in return x
−→ run x = (run y = (return false)!L in return y)!H in return x
L−→ run x = (return y){false/y}!H in return x
= run x = (return false)!H in return x
H−→ (return x){false/x}!H
= return false ��

To model that an observer can now distinguish programs due to compu-
tational effects, we need the following new equivalence judgments for effectful
expressions and values: e ≈ζ e : t!ε and u ∼ζ u : t!ε. The rules for expressions

make use of a new evaluation relation, e
ζ

=⇒n u, which is explained below.

e1 ≈ζ e2 : t!ε
e1!ε ∼ζ e2!ε : t!ε

(R-Eff)
v1 ∼ζ v2 : t

return v1 ∼ζ return v2 : t!ε
(R-Ret)

e1
ζ

=⇒n u1 e2
ζ

=⇒n u2 u1 ∼ζ u2 : t!ε
e1 ≈ζ e2 : t!ε

(R-Exp)

The rules on the top simply connect the term equivalence and the expression
equivalence. Expressions are equivalent, the bottom rule says, if they produce
the same number of effects visible to the observer and halt at equivalent values.

A Design for a Security-Typed Language 287

To formalize such equivalence, we first classify evaluation steps into those that
are visible and those that are invisible to the observer. Then, a visible evaluation
step can be prefixed and suffixed with any number of invisible evaluation steps.

�ζ−−−→ ≡
⋃

ε�ζ

ε−→ ��ζ−−−→ ≡
⋃

ε ��ζ

ε−→ ζ
=⇒ ≡ ��ζ−−−→∗ ◦ �ζ−−−→ ◦ ��ζ−−−→∗

The evaluation judgment we want is therefore the n-step closure
ζ

=⇒n of
ζ

=⇒ .
Note that

��ζ−−−→∗ ◦ �ζ−−−→ is the composition of the two relations, while
��ζ−−−→∗ is

the reflexive and transitive closure of
��ζ−−−→.

Having refined our observer model as above, we proceed to proving nonin-
terference for our core calculus with expressions. The main idea is to track the
number of visible effects produced during the evaluation.

Note that the following proof is complete yet short in length. Since the proof
is by induction on the typing derivation, monadic types allow an incremental
proof, because the original proof for Theorem 3 remains valid and requires only
a simple extension for e!ε. Here we can focus merely on the new typing rules for
return e and run x = m in e.

Theorem 7 (Noninterference for Expressions). If ∆; Γ � e : t!ε and
δ |= ∆ and γ1 ∼ζ γ2 : δ(Γ), then δγ1(e) ≈ζ δγ2(e) : δ(t)!δ(ε).

Proof. By mutual induction with Theorem 3 (extended with e!ε) on the typing
derivation. Case return: We are given ∆; Γ � return m : t!H. By inversion, we
have ∆; Γ � m : t. By Theorem 3, we have δγ1(m) ≈ζ δγ2(m) : δ(t). By inversion
of R-Term, δγ1(m) −→∗ v1 and δγ2(m) −→∗ v2 and v1 ∼ζ v2 : δ(t). Therefore,
by R-Ret, we conclude that δγ1(return m) ≈ζ δγ2(return m) : δ(t)!δ(ε).

Case run: We are given ∆; Γ � run x = m in e : t2!ε. By inversion, we have
∆; Γ � m : t1!ε (*1) and ∆; Γ, x :t1 � e : t2!ε (*2). By Theorem 3 with (*1),
we have

δγ1(m) ≈ζ δγ2(m) : δ(t1)!δ(ε)

By inversion of R-Term, δγ1(m) −→∗ v1 (*3) and δγ2(m) −→∗ v2 (*4) and
v1 ∼ζ v2 : δ(t1)!δ(ε). By inversion of R-Eff, v1 = e1!δ(ε) and v2 = e2!ε and

e1 ≈ζ e2 : δ(t1)!δ(ε). By inversion of R-Exp, e1
ζ

=⇒n u1 (*5) and e2
ζ

=⇒n u2
(*6) and u1 ∼ζ u2 : δ(t1) : δ(ε). By inversion of R-Ret, u1 = return v3!δ(ε)
and u2 = return v4!δ(ε). We then extend the term substitutions as

γ′
1 = γ1, x �→ v3 γ′

2 = γ2, x �→ v4

such that γ′
1 ∼ζ γ′

2 : δ(Γ, x :t1) (*7). By induction hypothesis with (*2,*7),

δγ′
1(e) ≈ζ δγ′

2(e) : δ(t2)!δ(ε)

which means that δγ1(e){v3/x} ≈ζ δγ2(e){v4/x} : δ(t2)!δ(ε) (*8). By
(*3,*4,*5,*6),

δγ1(run x = m in e) δγ2(run x = m in e)
= run x = δγ1(m) in δγ1(e) = run x = δγ2(m) in δγ2(e)

−→∗ run x = e1!δ(ε) in δγ1(e) −→∗ run x = e2!δ(ε) in δγ2(e)
ζ

=⇒n run x = (return v3)!δ(ε) in δγ1(e)
ζ

=⇒n run x = (return v4)!δ(ε) in δγ2(e)
ε−→ δγ1(e){v3/x} ε−→ δγ2(e){v4/x}

288 S. Tse and S. Zdancewic

That means
δγ1(run x = m in e)

ζ
=⇒n+i δγ1(e){v3/x}

δγ2(run x = m in e)
ζ

=⇒n+i δγ2(e){v4/x}
where i = 1 if ε � ζ, or i = 0 otherwise. By R-Exp and (*8), we conclude that
δγ1(run x = m in e) ≈ζ δγ2(run x = m in e) : δ(t2)!δ(ε). �

3 Decentralized Label Calculus

Having established the security property of our core calculus, we now investigate
how to make the policy sublanguage more expressive. The key challenge is to
extend the policy language in a modular way, reusing the type machinery from
the core as much as possible.

This section shows how the decentralized label model by Myers and Liskov [10]
can be integrated into our core label calculus. Decentralized labels allow different
principals to individually specify fine-grained security policies such as confiden-
tiality and integrity. Combined with singleton types, this extended calculus draws
a connection between compile-time dependency analyses and the run-time infras-
tructure. The benefit is twofold: (1) security policies can now be specified in term
of information not known until execution, such as run-time user identities or file
access permissions; (2) certificates can be used to regulate declassification and
to justify a conditioned version of the noninterference theorem.

3.1 Confidentiality and Integrity

Confidentiality policies specify which principals allow which other principals
to read some data, while integrity policies specify which principals trust some
data [7]. These policy constructors, or label constructors, provide a finer-grained
control of security specification than the label constants introduced in Sect. 2.1.

To model these policies, we treat principals p as abstract types and treat
principal delegation p1 � p2 as subtyping. That is, p1 is a subtype of p2 whenever
p1 delegates to p2 (or, p2 is acting for p1). We also introduce two new label
constructors, R (read) and T (trust), for confidentiality and integrity:

� ::= . . . | R p p | T p | � ∧ � | � ∨ � � ::= . . . | R ⊕ ⊕ | T 	 | ⊕ ∧ ⊕ | ⊕ ∨⊕

A label R p1 p2 specifies the policy that a data is owned by p1 and that p1 allows
p2 to read the data, while a label T p specifies that the data is trusted by p.

Moreover, we add intersection �∧� and union types �∨� [3] to precisely model
policy sets. Since labels � and principals p are in the same syntactic class, these
two constructors can also model principal groups as p ∧ p and p ∨ p.

Intersection and union types in this paper are used only for labels, principals,
and privileges, but not for ordinary types; hence, our language does not have
introduction or elimination terms for intersections and unions. This decision
helps keeping the static and the dynamic semantics of our language simple.

We need both intersection and union types because the two label constructors
have different subtyping polarities: R is covariant, while T is contravariant. Having
both intersections and unions gives a natural interpretation of principal sets:

A Design for a Security-Typed Language 289

R [p1, p2, . . . , pn] p = R (p1 ∧ p2 ∧ . . . ∧ pn) p
R p [p1, p2, . . . , pn] = R p (p1 ∧ p2 ∧ . . . ∧ pn)
T [p1, p2, . . . , pn] = T (p1 ∨ p2 ∨ . . . ∨ pn)

Example 8. The data true{R p1 [p2, p3]}{T [p1, p2]} has two security
policies. The first one is a confidentiality policy saying that the data is owned by
p1, and that p1 allows p2 and p3 to read the data. The second one is an integrity
policy saying that both p1 and p2 trust the data. �

A decentralized label looks like {p1 : p2, p3; p2 : p3 ! p1, p2} traditionally [10,
18], compared to our notation {R p1 [p2, p3]}{R p2 p3}{T [p1 p2]} here. Ours is
slightly more verbose but its semantics can be specified more easily in terms of
subtyping. In addition, new policy constructors can be added in a uniform way
by simply specifying their subtyping polarities.

3.2 Downgrading as Subtyping

The rest of the section discusses various downgrading mechanisms that inten-
tionally leak information [21]. These mechanisms include:

1. declassifying some data to a lower label,
2. a principal delegating to other principals,
3. a principal declassifying some data to other principals for reading, and
4. a principal endorsing the integrity of some data.

The decentralized label model is essential in the last three mechanisms be-
cause each concerns a particular principal. In Sect. 3.3 we will see how a public
key, which represents the concerned principal, can be used to verify a digital
certificate, which represents the authority for downgrading.

The innovation here is to model downgrading as subtyping. The motivation is
that downgrading can be made implicit through the subsumption rule of subtyp-
ing, if the concerned principal explicitly introduces the authority into the context.
This contrasts with the usual approach [10] that uses coercion constructs like
declassifyp m and endorsep m for declassification and endorsement. Both ap-
proaches ensure that the authority of the concerned principal is granted before
declassification. Our implicit approach, however, allows a simple formulation of
certificate-based declassification (to be shown in Sect. 3.3).

Foremost, we extend the type context ∆ to maintain authority, which is a
set of authorizations of the form p
 j (a principal p granting some privilege j):

∆ ::= . . . | ∆, p � j
j ::= . . . | del p | dcls p | endr � ::= . . . | del ⊕ | dcls ⊕ | ⊕ % 	 � ⊕
t ::= . . . | t % p � j m ::= . . . | grant p � j in m | pass x = m in m

The three predefined privileges are delegation (del p), declassification (dcls p),
and endorsement (endr), corresponding to downgrading for principal subtyping,
confidentiality and integrity, respectively. Now, the downgrading mechanisms
can be concisely expressed using these additional subtyping rules:

290 S. Tse and S. Zdancewic

∆ � p1 � del p2

∆ � p1 � p2

∆ � p1 � dcls p

∆ � R p1 p2 � R p1 [p2, p]

∆ � p � endr

∆ � T p1 � T [p1, p]

An authority type t % p
 j (a type t annotated with the authority of a
principal p granting some privilege j) tracks the effects of declassification on the
lattice so that later theorems can be stated in terms of the authority:

∆, p � j; Γ � m : t ∆ � p :: P ∆ � j :: J
∆; Γ � grant p � j in m : t % p � j

∆; Γ � m1 : t1 % p � j
∆, p � j; Γ, x :t1 � m2 : t2

∆; Γ � pass x = m1 in m2 : t2 % p � j

v ::= . . . | grant p � j in v E ::= . . . | grant p � j in E | pass x = E in e

pass x = (grant p � j in v) in m −→ grant p � j in m{v/x}

These rules are very close to the typing and evaluation rules for standard
monadic types, except that the type context ∆ is now extended with p
 j. The
value v in the term grant p
 j in v may capture the constraint p
 j, and hence,
to ensure type preservation, grant p
 j in v is regarded together as a value.

As a pleasant bonus of monadic analysis, checking the robustness condition
of downgrading reduces to adding one condition in the label protection rule
∆ � � � t in Sect. 2.1. In particular, robust declassification says that the
program context of a declassification operation should be trusted by the owner
of the data [21]. The following rule generalizes the robustness condition to any
downgrading mechanism. The intuition is that, for robust downgrading, when p2
authorizes some privilege j, the program context should have trust (T p1) higher
than p2’s trust (T p2). That is ∆ � T p2 � T p1, or equivalently, ∆ � p1 � p2.

∆ � T p1 � t ∆ � p1 � p2

∆ � T p1 � (t % p2 � j)

It is known that noninterference does not hold in the presence of downgrad-
ing [15]. Yet, it is intuitive that if the program does not use any downgrading,
the program should still be secure. In fact, a slightly stronger statement holds:
if no one transitively downgrades to the observer, the program is still secure.

The following modified theorem of noninterference formally captures such
intuition. We write ∆ = ∆α, ∆� to separate the bindings and the authority, and
we write t ⇒ t0 % ∆ to collect all required authority in the value positions of the
type. For example, p1, j, p1
 j, p2 � m : bool→(bool % p1
 j) has ∆α = p1, j, p2
and ∆� = p1
 j and bool→(bool % p1
 j) ⇒ (bool→bool) % p1
 j. These
straight-forward rules are defined in our technical report [17].

Theorem 9 (Conditioned Noninterference). Suppose ∆; Γ � m : t, where
∆ = ∆α, ∆� and t ⇒ t0 % ∆0, and δ |= ∆α and γ1 ∼ζ γ2 : δ(Γ). If ∆, ∆0 ��
p � ζ for all p ∈ dom(∆α) such that ∆ �� p � ζ, then δγ1(m) ≈ζ δγ2(m) : δ(t).

Proof. By induction on the typing derivation. Case λx :t1.m: We are given ∆; Γ �
λx : t1.m : t1 → t2. By inversion, we have ∆; Γ, x : t1 � m : t2 (*1). Since
downgrading in the input propagates to the output in a function, we have t2 ⇒

A Design for a Security-Typed Language 291

t3 % ∆0 (*2) for the same ∆0 as in t1 →t2 ⇒ t0 % ∆0. Assume v3 ∼ζ v4 : δ(t1).
We then extend the term substitutions as

γ′
1 = γ1, x �→ v3 γ′

2 = γ2, x �→ v4

such that γ′
1 ∼ζ γ′

2 : δ(Γ, x :t1) (*3). By induction hypothesis with (*1,*2,*3),

δγ′
1(m) ≈ζ δγ′

2(m) : δ(t2)

which, by R-Term, δγ1(m){v3/x} ≈ζ δγ2(m){v4/x} : δ(t2). By R-Term again,

δγ1(λx :t.m) v3 ≈ζ δγ2(λx :t.m) v4 : δ(t2)

Hence, by R-Fun, δγ1(λx :t.m) ≈ζ δγ2(λx :t.m) : δ(t1 →t2). �

The proof is surprisingly similar to that for standard noninterference, show-
ing that this conditioned version is only a slight generalization. In the next
subsection, however, we will show how combining this theorem with ideas from
public-key infrastructures justifies certificate-based declassification.

3.3 Public Keys and Certificates

Public-key infrastructures provide public keys and digital certificates for dis-
tributed access control. Our motivation here is to connect the type system with
the security infrastructure such that a certificate of authority, when verified with
a principal’s public key, can justify the information leaks due to downgrading.
Certificates are also important for auditing purpose.

In our previous work [18], we presented the language λRP for specifying se-
curity policies with run-time principals. The type system uses singleton types
to represent run-time principals and an abstract type to represent certificates.
Effectively, λRP models public keys and certificate verifications of public-key
infrastructures in a sound type system.

Allowing such run-time principals gives programmers more flexibility in spec-
ifying security policies. Together with universal and existential quantification,
programs can determine the run-time user identity of the system (getuid) and
write functions polymorphic in principals (getenv). Here the type �P represents
the top principal, and ′α is a singleton type to be explained below.

getuid : ()→∃α � �P . ′α
getenv : ∀α � �P . ′α→string{R α α}

Our language readily generalizes the idea of run-time types to run-time labels
and run-time privileges as well. For example, access permissions from the file
system (fstat) can be used as run-time labels to constrain the information flow
of data read from a file.

Let us recap our previous work on run-time principals [18]:

t ::= . . . | ’p | ’j | cert m ::= . . . | ’p | ’j | ’p � ’j | if (m ⇒ m � m) m m

The term ’p is the run-time representation of principal p and has the singleton
type ’p, carrying the most precise information about the term in the type system.
Similarly, ’j is the run-time representation of privilege j.

292 S. Tse and S. Zdancewic

The term ’p
 ’j represents the authority of principal p granting privilege
j. Such term has the abstract type cert that does not reveal any information
at all at the type level. The reason is that we do not trust the validity of the
certificate unless verified with the term if (m1 ⇒ m2
 m3) m4 m5. More formally:

∆; Γ � ’p : ’p ∆; Γ � ’j : ’j ∆; Γ � ’p � ’j : cert

∆; Γ � m1 : cert ∆; Γ � m2 : ’p ∆; Γ � m3 : ’j ∆, p � j; Γ � m4 : t ∆; Γ � m5 : t
∆; Γ � if (m1 ⇒ m2 � m3) m4 m5 : t % p � j

� ’p1 � ’j1 ⇒ ’p2 � ’j2

if (’p1 � ’j1 ⇒ ’p2 � ’j2) m1 m2 −→ grant p2 � j2 in m1

The judgment � ’p1
 ’j1 ⇒ ’p2
 ’j2 defines an external verification pro-
cedure of the authority with respect to the principal and the privilege. If the
procedure fails, the term if (’p1
 ’j1 ⇒ ’p2
 ’j2) m1 m2 steps to m2.

There exists a direct mapping from the language constructs (’p, ’p
 ’j,
and � ’p1
 ’j1 ⇒ ’p2
 ’j2) to the mechanisms of public-key infrastructures
(public keys and digital certificates). In fact, public-key infrastructures are just
one possible implementation that supports distributed access control [4]. Our
previous work [18] carries out the design and the proof in an abstract setting
and provides constructs for testing delegation and acquiring certificates.

We conclude the development of our language by presenting a modified the-
orem of noninterference. It states that any information leaked by a well-typed
program can be justified by certificates in the environment. In fact, the theorem
is simply the contrapositive of the conditioned noninterference in Sect. 3.2. Our
technical report [17] contains detailed proofs of the type-safety and the following
theorem for the full language.

Theorem 10 (Certified Noninterference). Suppose ∆; Γ � m : t, where
∆ = ∆α, ∆� and t ⇒ t0 % ∆0, and δ |= ∆α and γ1 ∼ζ γ2 : δ(Γ). If δγ1(m) �≈ζ

δγ2(m) : δ(t), then t = t0 % ∆0 and ∆, ∆0 � p � ζ for some p that satisfies
∆ �� p � ζ.

Proof. By Theorem 9, extended with singletons and certificates.

4 Related Work

The survey by Sabelfeld and Myers [15] on language-based information-flow se-
curity is an excellent introduction to the field. In particular, their paper cites a
long line of research [10, 13, 2] that studies the interactions of security policies
and language features in Java and ML. This paper instead focuses on a smaller
set of interesting features with a modular design and with the goal of justifying
declassification with certificates. Compared to our previous work [18], this paper
concisely expresses the decentralized label model in the polymorphic lambda cal-
culus with subtyping (F�). Various downgrading mechanisms are understood as

A Design for a Security-Typed Language 293

subtyping such that not only type-safety but also a conditioned version of non-
interference can be formulated and proved. We also extensively employ monadic
constructs [9, 1, 5] to keep the design and the proofs modular. As a future work,
one may check if these constructs satisfy some formal monad laws.

Chothia et al. also use public-key infrastructures to model typed crypto-
graphic operations for distributed access control [4]. Strecker [16] formalizes an
analysis of information flow for µ-Java and proves noninterference in Isabelle
by shallow embedding, while Naumann [11] similarly formalizes a core subset of
Java in PVS by deep embedding. Our ongoing work has the same goal of proving
noninterference in a machine-checkable way.

It is known that standard noninterference does not hold in the presence of
declassification [15]. Hence, it has been a challenging problem to formulate and
prove any variant of noninterference with declassification. Various ideas such
as selective declassification [13], delimited release [14], and relaxed noninterfer-
ence [8] are proposed to allow downgrading that can be externally justified.

5 Conclusion

We have presented the design of a safe and secure information-flow type system
with bounded quantification and effects in a monadic style. One of our design
decisions is to treat labels, principals and privileges uniformly, as they are all
abstract types necessary only for compile-time analyses. This treatment allows
reuse of type machinery such as polymorphism, subtyping, and singleton types,
keeping the calculus consistent yet general.

The integration of the decentralized label model with type constructors al-
lows programmers specify expressive policies, while the use of subtyping to model
delegation, declassification, and endorsement simplifies the semantics of down-
grading. More importantly, these simplifications lead to a conditioned version of
the noninterference theorem that justifies certificate-based downgrading.

Formalizing the full language semantics and security theorems is our long-
term goal of building a rigid foundation for security-typed languages. One excit-
ing future work is to use Twelf (a logical framework) to mechanically formalize
and check the various noninterference theorems presented in this paper. We are
also writing larger examples in our language interpreter to gain more experience
of monadic secure programming.

Acknowledgments

The authors thank Peng Li, Nitin Khandelwal, Eijiro Sumii, and the anonymous
reviewers for their comments on drafts of this paper. This research was supported
in part by NSF grant CCR-0311204 (Dynamic Security Policies) and NSF grant
CNS-0346939 (CAREER: Language-based Distributed System Security).

294 S. Tse and S. Zdancewic

References

1. Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A Core Calcu-
lus of Dependency. In ACM Symposium on Principles of Programming Languages,
1999.

2. Anindya Banerjee and David A. Naumann. Secure Information Flow and Pointer
Confinement in a Java-like Language. In Computer Security Foundations Work-
shop, 2002.

3. Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Intersec-
tion and Union Types: Syntax and Semantics. Information and Computation, 119,
1995.

4. Tom Chothia, Dominic Duggan, and Jan Vitek. Type-Based Distributed Access
Control. In Computer Security Foundations Workshop, 2003.

5. Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of info flow
security with mutable state. In Foundations of Computer Security, 2004.

6. Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum
typing and type-checking in Fsub. Mathematical Structures in Computer Science,
1992.

7. Peng Li, Yun Mao, and Steve Zdancewic. Information Integrity Policies. In Pro-
ceedings of the Workshop on Formal Aspects in Security and Trust (FAST), 2003.

8. Peng Li and Steve Zdancewic. Downgrading Policies and Relaxed Noninterference.
In ACM Symposium on Principles of Programming Languages, 2004.

9. Eugenio Moggi. Computational Lambda-Calculus and Monads. In IEEE Sympo-
sium on Logic in Computer Science, 1989.

10. Andrew C. Myers and Barbara Liskov. A Decentralized Model for Information
Flow Control. In ACM Symposium on Operating Systems Principles, 1997.

11. David A. Naumann. Machine-checked correctness of a secure information flow
analyzer. Technical Report CS-2004-10, Stevens Institute of Technology, 2004.

12. Andrew Pitts. Existential Types: Logical Relations and Operational Equivalence.
In International Colloquium on Automata, Languages and Programming, 1998.

13. Francois Pottier and Vincent Simonet. Information flow inference for ML. In ACM
Symposium on Principles of Programming Languages, 2002.

14. Andrei Sabelfeld and Andrew C. Myers. A Model for Delimited Release. In Inter-
national Symposium on Software Security, 2003.

15. Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-Flow Secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1), 2003.

16. Martin Strecker. Formal Analysis of an Information Flow Type System for Micro-
Java. Technical report, Technische Universitat Munchen, 2003.

17. Stephen Tse and Steve Zdancewic. Certificate-based Declassification. Technical
Report MS-CIS-04-16, University of Pennsylvania, 2004.

18. Stephen Tse and Steve Zdancewic. Run-time Principals in Information-flow Type
Systems. In IEEE Symposium on Security and Privacy, 2004.

19. Philip Wadler. Theorems for Free! In Functional Programming Languages and
Computer Architecture, 1989.

20. Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Sound-
ness. Information and Computation, 115(1), 1994.

21. Steve Zdancewic. Programming Languages for Information Security. PhD thesis,
Cornell University, 1997.

	Introduction
	Core Label Calculus
	Monadic Labels
	Security Theorems
	Monadic Effects

	Decentralized Label Calculus
	Confidentiality and Integrity
	Downgrading as Subtyping
	Public Keys and Certificates

	Related Work
	Conclusion
	References

