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Abstract. Conformance testing for finite state machines and regular
inference both aim at identifying the model structure underlying a black
box system on the basis of a limited set of observations. Whereas the
former technique checks for equivalence with a given conjecture model,
the latter techniques addresses the corresponding synthesis problem by
means of techniques adopted from automata learning. In this paper we
establish a common framework to investigate the similarities of these
techniques by showing how results in one area can be transferred to
results in the other and to explain the reasons for their differences.

1 Introduction

The two areas of conformance testing for finite state machines and regular infer-
ence both share the same problem of deducing an unknown finite state machine
from a limited set of observations. Whereas the former technique justifies a given
conjecture, the latter techniques aims at constructing conjectures by observation.
In this paper we establish a common framework to investigate the similarities of
these techniques by showing how results in one area can be transferred to results
in the other and to explain the reasons for their differences.

The area of testing reactive systems has witnessed significant advances in the
last decades. A model problem in this area is that of black-box protocol testing,
where one assumes given a finite-state machine specification of the intended
behavior of a protocol, and would like to derive a test suite which checks that an
implementation conforms to such a specification. There are several techniques for
generating test suites that guarantee that an implementation under test (IUT)
conforms to a specification, under certain hypotheses [Cho78, FvBK+91, SD88,
VCI90].

A more recent line of development concerns checking whether an IUT sat-
isfies certain correctness properties, in the absence of a model or specification.
Recent work has employed techniques of automata learning, or regular infer-
ence [GPY02, HHNS02, HNS03, PVY99].
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Both of the above approaches solve the problem of inferring a finite state
machine from observations of its behavior, with different modalities. In confor-
mance testing, the purpose is to check that it is equivalent to a given finite state
specification. In automata learning, the purpose is to infer an unknown finite
state machine. Both approaches must solve the problem of how to infer a finite
state machine from a limited set of observations. Thus, techniques for confor-
mance testing and automata learning must decide what is “enough information”
to deduce that an IUT is equivalent to a certain finite state machine. In confor-
mance testing, one goal is to minimize the cost (e.g., the number of observations
or their total length) of the observations that are needed to infer that the IUT is
equivalent to a specification. In automata learning, one goal has been to under-
stand when “enough information” is obtained to make a conjecture about the
structure of an IUT.

Let us make the preceding discussion a little more elaborate. In conformance
testing we are given an FSM M, playing the role of a specification, and we want
to verify that the IUT is equivalent to M. We construct a test suite with the
property that any FSM A which passes the test suite is equivalent to M. Of
course, this can not be achieved unless some additional assumptions about A are
introduced. A common such assumption is that A has at most as many states as
M. We will then say that the test suite is a conformance test suite for M under
these assumptions.

In Automata Learning, we are given a set of observations generated by a test
suite or a set of queries, and want to construct an FSM which is an “as good as
possible explanation” of the observations, hopefully being close to the structure
of the actual IUT. Since there are an infinite number of such FSMs, we should
also here add assumptions. Typical assumptions are of the form to give an upper
bound the number of states, or to ask for an automaton with a minimum number
of states; note that there may be several such automata.

The problem of constructing conformant finite automata was studied by many
people [Ang81, Ang87, BDG97, Gol67, Gol78, OG92] and others. Several of these
works present conditions on observations that allow a unique minimum automa-
ton to be constructed with modest effort (e.g., in polynomial time).

From the above discussion, it follows that in principle, we can relate confor-
mance testing and automata learning in the following way:

– If the observations form a conformance test suite for an FSM M, given
some assumptions, then under the same assumptions we can infer the FSM
M from these observations using automata learning techniques.

– If the FSM A is inferred from the observations under some assumptions, and
furthermore A is the only such automaton, then under the same assumptions
the observations form a conformance test suite for A.

The above statements are rather general, and “kind of obvious”. In this paper,
we shall compare results in these two areas, and make the link between these
two areas explicit. One goal is to relate existing techniques for conformance
testing and automata learning by showing that they use very similar concepts
of “enough information” in order to infer the structure of an IUT. We will also
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make a comparison of the difference in complexity between the two approaches
in different settings.

From a different point of view, one can understand our contribution as clar-
ifying the following question: What is the core information of an automaton in
terms of observations/traces needed to identify it uniquely? We do this in the
framework of conformance testing as well as in the framework of learning and
show that both domains (nearly) identify the same type of information.

For our comparison, we must bridge several differences in the models typically
used. In conformance testing, the most common model is the Mealy machine,
which generates output on each transition. In automata learning, the most com-
mon model is deterministic finite automata (DFA), which merely accept or reject
a given input string. We therefore define a unifying notion of finite state machine
which has an abstract notion of “output” in response to a received sequence of
input symbols. This notion can be instantiated to Mealy machines by letting the
output be the sequence of symbols generated in response to the input, to DFAs
outputting a verdict “accepted” or “not accepted”.

An important vehicle in the comparison is a general theorem, which shows
that under certain conditions on a set of observations, a small finite state machine
that satisfies these observations must have a certain structure.

Related Work. The relationship between machine learning and conformance test-
ing was observed by Lee and Yannakakis [LY96–p. 1118], who stated that An-
gluin’s algorithm can be used for fault detection. Note that [LY96] employ learn-
ing techniques for conformance testing while we study their similarities. [LY96]
also suggested as an interesting subject of study the relationship between con-
formance testing without reset (surveyed in [LY96]), and corresponding work on
machine learning by Rivest and Schapire [RS93].

Organization of this Paper. In the next section, we define our model of Finite
State Machines, aiming to unify Mealy machines, DFAs, and some other models.
In Section 3, we state a general theorem which shows how a set of observations
limits the set of machines that may be inferred from it. Section 4 describes some
existing techniques for deriving conformance test suites, and Section 5 describes
some existing techniques for learning automata from observations. Results for
these methods are shown to follow from the general theorem in Section 3. The
techniques of these two sections are thereafter related in Section 6.

2 Preliminaries

We will first define two variants of finite state machines: Mealy machines, com-
monly used in the conformance testing literature, and finite automata, commonly
used in automata learning literature. They differ in how they respond to input
sequences: Mealy machines produce an output symbol in response to each re-
ceived input symbol, whereas finite automata merely accept or reject a given
input string. We will define a unifying more general model of finite state ma-
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chines, that produce a more abstractly defined form of output, which can be
specialized to both Mealy machines and finite automata.

We assume a finite set Σ of input symbols, usually denoted by a, b, a1, a2, . . . .
Elements of Σ∗ are (input) strings or words. Given u, v ∈ Σ∗, u is said to be a
prefix of v if v = uw for some w ∈ Σ∗.

Mealy Machines. A Mealy machine over Σ is a tuple M = 〈O,Q, q0, δ, λ〉 where
O is a finite nonempty set of output symbols, Q is a finite nonempty set of states,
q0 ∈ Q is the initial state, δ : Q × Σ → Q is the state transition function, and
λ : Q × Σ → O is the output function.

An intuitive interpretation of a Mealy machine is as follows. At any point
in time, the machine is in one state q ∈ Q. It is possible to give inputs to the
machine, by applying an input symbol a. The machine responds by producing
an output symbol λ(q, a) and transforming itself to the new state δ(q, a). We
can depict Mealy machines as directed labeled graphs, where Q is the set of
vertices. For each state q ∈ Q and input symbol a ∈ Σ, there is an edge from q
to δ(q, a) labeled by “a/b”, where b is the output symbol λ(q, a). See Figure 1
for an example of a Mealy machine. Note that the letters a and b are used in
two ways. In the text they are metasymbols denoting arbitrary input and output
symbols, whereas in examples they denote specific input or output symbols.

q1q2

q3q4

a/0 b/0

b/1 a/0

a/0

b/1

a/1

b/0

Fig. 1. A Mealy machine with states Q = {q1, q2, q3, q4}, input symbols I = Σ =

{a, b}, and output symbols O = {0, 1}

Applying an input sequence u = a1a2 · · · ak ∈ Σ∗ starting in a state q1

takes the machine successively to a sequence of states q2, q3, . . . , qk+1, denoted
δ(qi, u), where qi+1 = δ(qi, ai) for i = 1, · · · , k, and produces a sequence of
output symbols b1b2 · · · bk ∈ O∗, where bi = λ(qi, ai) for i = 1, · · · , k. We extend
the transition and output functions from input symbols to sequences of input
symbols, by defining δ(q1, u) = qk+1 and λ(q1, u) = b1b2 · · · bk. A more precise
recursive definition is as follows:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)
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Finite Automata. A deterministic finite automaton (DFA) over Σ is a structure
A = (Q, δ, q0, F ) where Q is a non-empty finite set of states, q0 ∈ Q is the initial
state, δ : Q×Σ → Q is the transition function, and F ⊆ Q is the set of accepting
states.
Just as for Mealy machines, we extend the transition function from input symbols
to sequences of input symbols, by defining

δ(q, ε) = q
δ(q, ua) = δ(δ(q, u), a)

An input string u is accepted iff δ(q0, u) ∈ F . The language accepted by A,
denoted by L(A), is the set of accepted input strings.

Unifying Formalism. In order to unify the two above types of state machines,
we define a more abstract notion of output produced by a finite state machine.
Let an output domain be a semi-group D equipped with an associative binary
operation, which we denote by juxtaposition. The intended intuition is that an
FSM when inputing a sequence of inputs u outputs an element in D. If the FSM
outputs x after inputing u and thereafter outputs y in response to v, then the
entire output in response to uv is the element xy.

Definition 1. A finite state machine (FSM) over Σ is a structure (D, Q, δ, q0, λ)
where D is an output domain, Q is a non-empty finite set of states, q0 ∈ Q is
the initial state, δ : Q×Σ → Q is the transition function, and λ : Q×Σ∗ → D
is an output function, which satisfies the following homomorphism property:

– λ(q, uv) = λ(q, u)λ(δ(q, u), v) for any q ∈ Q and u, v ∈ Σ∗. ��

By the homomorphism property, it is enough to define the output function for
input sequences of length 0 and 1, i.e., to define λ(q, ε) and λ(q, a) for a ∈
Σ.

In this paper, we will consider only FSMs which are suffix-observable, meaning
that from only the output λ(q0, uv) produced by applying the input sequence uv,
we can uniquely extract the output generated by the suffix v, which we denote
by λ(q0, uv)|v, so that λ(q0, uv)|v = λ(δ(q0, u), v). For the Mealy machine and
DFA models, this assumption trivially holds.

To see how our definition of finite state machines generalizes Mealy machines
and finite automata, let us specialize it first to Mealy machines. Here, the output
domain is the set O∗ with the binary string concatenation operation. The output
function is the same as that defined for Mealy machines, lifted to strings.

To specialize to finite automata, let D be the set {+,−}, where intuitively +
denotes “accept” and − denotes “not accept”. The semi-group operation maps
a pair of arguments onto the second one, i.e., it can be defined by the following
table.

+ + = + + − = −
− + = + − − = −
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The output function of a DFA is defined by

λ(q, ε) =
{

+ if q ∈ F
− if q �∈ F

λ(q, u) = λ(δ(q, u), ε)

where the last equality follows from the particular definition of the semi-group
operation, which makes the left argument irrelevant.

Looking at the examples of Mealy machines and finite automata, we can
identify two special subclasses of FSM, characterized by the forms of their output
functions:

– FSMs that generate output only at transitions, where λ(q, ε) is a unit element
of D for any state q. Mealy machines are an example with ε as unit element.

– FSMs that generate output only at the last state, i.e., λ(q, u) = λ(δ(q, u), ε),
implying that we only need to specify λ(q, ε) for any state q. An example is
DFAs.

3 Characterizing FSMs by Observations

In this section, we provide general definitions and results concerning how FSMs
can be uniquely inferred from or characterized by observations or tests. Let D
from now on be a fixed particular output domain.

Let us consider the process of observing or testing a black-box IUT, whose
behavior can be represented as an FSM. This consists in applying a set of input
sequences to the IUT, whereby the corresponding outputs are observed and
recorded. The recorded observations can be represented as a partial observation
function O from Σ∗ to D, whose domain Dom(O) is the set of input sequences
that have been applied to the IUT.

In conformance testing, the observation function should represent a test suite
which is obtained from an FSM M = (D, Q, δ, q0, λ) which plays the role of a
specification, and a set I ⊆ Σ∗ of input sequences. Define M|I as the observation
function O with Dom(O) = I, such that O(u) is defined and equal to λ(q0, u)
whenever u ∈ I. We say that an FSM A = (D, Q, δ, q0, λ) is conformant with
an observation function O, denoted A |= O, if O(u) = λ(q0, u) whenever u ∈
Dom(O). We trivially have M |= M|I for any M and I.

Definition 2. O is a conformance test suite for M if any FSM A with at most
as many states as M, such that A |= O, is isomorphic to M.

In automata learning, we are given an observation function O, and want to con-
struct an FSM which is an “as good as possible explanation” of the observations,
hopefully being close to the actual IUT. An obvious criterion is that the FSM
should be conformant with O.1 Since there are an infinite number of such FSMs,

1 However, not all works on automata learning guarantee to generate conformant
FSMs.
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we should also here add assumptions. A natural choice is to ask for an automa-
ton with a minimum number of states. Note that there may be several such
automata.

Definition 3. Let O be an observation function. We say that the FSM A is
inferred from O if A |= O and any other A′ with A′ |= O has at least as many
states as A. We say that A is uniquely inferred from O if A is the only such
FSM.

We observe the following propositions,

– if O is a conformance test suite for M then M is uniquely inferred from O,
and

– if A is uniquely inferred from O then O is a conformance test suite for A.

By these propositions, both conformance testing and automata learning must
in some sense prescribe how to transform an observation function O into an au-
tomaton which is conformant with O. A natural approach is to define an equiv-
alence relation on the prefixes of Dom(O), and let each equivalence class be a
state of an automaton. If the equivalence is properly constructed, the transition
and output functions can be obtained from O. In general, however, the number of
possible equivalences is too large for this to be an efficient procedure. The prob-
lem of finding the minimal FSM (i.e., with the smallest number of states) which
is conformant with a given observation function is NP-complete [Gol78]. But
several works [Gol67, Gol78, Ang81, Ang87, OG92, BDG97] overcome this obsta-
cle by presenting conditions on the observations that allow a unique minimum
automaton to be constructed. The conditions exploit the property of suffix-
observability, by regarding each input sequence as the concatenation of a prefix
and a suffix (possibly in several ways).

So, let the set of observations be given by an observation structure, which is
a partial function T from a set Dom(T ) ⊆ Σ∗ of prefixes, which must include ε.
For each u ∈ Dom(T ), T (u) is a partial function from a set Dom(T (u)) ⊆ Σ∗ of
suffixes, which must include ε, to D. Intuitively, T (u)(v), for v �= ε, is the output
produced in response to the suffix v in a situation where the input sequence
uv is applied to the IUT. Note that this output can be uniquely extracted by
the assumption of suffix-observability. In contrast, we let T (u)(ε) be the entire
output produced by the IUT in response to the input sequence u. Note that
T (u)(ε) has a meaning which differs from that of T (u)(v) for v �= ε.

An observation structure T represents the observation function OT with

– Dom(OT ) = {uv : u ∈ Dom(T ) and v ∈ Dom(T (u))}, and
– OT (uv) = T (u)(ε) T (u)(v).

Conversely, an observation function O can, given a set U ⊆ Dom(O), be repre-
sented by the observation structure TO,U with

– Dom(TO,U ) = U and Dom(TO,U (u)) = {v : uv ∈ Dom(O)},
– TO,U (u)(ε) = O(u) for u ∈ U , and
– TO,U (u)(v) = O(uv)|v for v �= ε, u ∈ U , and v ∈ Dom(TO,U (u)),
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where O(uv)|v is the output produced in response to the suffix v, obtained from
the result O(uv) of applying uv to the IUT.

When constructing an automaton from observations, the prefixes in Dom(T )
are candidates for representing states of the automaton, whereas the suffixes in
the sets Dom(T (u)) are used to determine which prefixes should represent the
same state.

Let T (u) ≈ T (u′) denote that for any v ∈ (Dom(T (u)) ∩ Dom(T (u′)))
we have T (u)(v) = T (u′)(v). Let T (u) ⊆ T (u′) denote that Dom(T (u)) ⊆
Dom(T (u′)) and T (u) ≈ T (u′). Let T (u) = T (u′) denote that T (u) ⊆ T (u′)
and T (u′) ⊆ T (u).

Define an access string of T , to be an input sequence u ∈ Dom(T ) such
that ua ∈ Dom(T ) for each a ∈ Σ. We say that an equivalence ≡ on Dom(T )
is U -closed if each equivalence class contains a string in U . We say that an
equivalence ≡ on Dom(T ) is U -consistent if whenever u ≡ u′ for u, u′ ∈ U and
ua, u′a ∈ Dom(T ) for any a ∈ Σ, then ua ≡ u′a and T (ua)(ε)|a = T (u′a)(ε)|a.

Definition 4. Let T be an observation structure, let U be a set of access strings
of T containing ε. If ≡ is a U -closed and U -consistent equivalence relation on
Dom(T ), define the automaton 〈T , U〉/ ≡ as (D, Q, δ, q0, λ), where

– Q = Dom(T )/ ≡,
– δ([u], a) = [ua] for u ∈ U ,
– q0 = [ε],
– λ([u], a) = OT (u, a)|a for u ∈ U . ��

We are now ready to state a general theorem that gives constraints on any
FSM that is conformant with an observation function.

Theorem 1 (Characterization Theorem). Let T be an observation struc-
ture, and let U be a set of access strings of T . If the relation ≈ on Dom(T )
contains a unique maximal equivalence relation ≡, which is U -closed, then (let-
ting n be the number of equivalence classes of ≡)

1. any FSM which is conformant with OT has at least n states,
2. if A |= OT and A has at most n states, then ≡ is U -consistent, and

(a) A is isomorphic to 〈T , U〉/ ≡,
(b) T is a conformance test for A
(c) A is uniquely inferred from T .

Proof. If A = (D, Q′, δ′, q′0, λ
′) |= OT , then each of its states can correspond

to at most one equivalence class of ≡, i.e., u ≡ u′ if δ′(q′0, u) = δ′(q′0, u
′) for

u, u′ ∈ Dom(T ). If A has n states, this correspondence must be exact, and the
theorem follows. ��

Intuitively, Theorem 1 gives necessary constraints on an FSM that is confor-
mant with the observations represented by an observation structure T . If there
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is a unique maximal equivalence with n classes, then any conformant automaton
has at least n states. In general, there is no guarantee that a conformant FSM
with n states actually exists, but if it does, Theorem 1 states that it must be
isomorphic to 〈T , U〉/ ≡. Later, in Theorem 4 we shall give extra conditions on
T which guarantee the existence of a conformant n-state automaton.

The condition “contains a unique maximal equivalence relation” in Theorem 1
is not so constructive. More concrete sufficient conditions on T are given by the
following proposition.

Proposition 1. Let T be an observation structure, and let U be a set of access
strings of T . If

– T (u) �≈ T (u′) for u, u′ ∈ U with u �= u′, and
– for each u ∈ Dom(T ) there is a u′ ∈ U with T (u) ⊆ T (u′),

then ≈ is a unique maximal equivalence on Dom(T ), and is closed. ��

4 Conformance Testing

In this section, we consider some standard techniques for constructing confor-
mance test suites: the W-method by Vasilevski [Vas73] and Chow [Cho78], an
optimization by Fujiwara et al. [FvBK+91] called the partial W-method (or Wp-
method), and another optimization described by Lee and Yannakakis [LY96].

Definition 5. Let M = (D, Q, δ, q0, λ) be an FSM. A set U of input sequences
containing ε is called

– a state cover set if for each state q ∈ Q there is an input sequence u ∈ U
with δ(q0, u) = q, i.e., for each state of M, some sequence in U leads to it

– a transition cover set if whenever δ(q, a) = q′ for some q, q′ ∈ Q and a ∈ Σ,
there is an input sequence u with δ(q0, u) = q such that both u ∈ U and
ua ∈ U . ��

The literature has slight differences in how such sequences can be chosen. For
instance, Lee and Yannakakis [LY96] consider state and transition cover sets
that are generated by a spanning tree for M.

Say that a sequence w ∈ Σ∗ separates the states q and q′ if λ(q, w) �= λ(q, w′).

Definition 6. Let M = (D, Q, δ, q0, λ) be an FSM.

– A set W of sequences is a characterizing set for M (or separating set) if for
each pair q, q′ ∈ Q of states it contains a sequence w ∈ W which separates q
and q′.

– A collection {Wq}q∈Q of sets of sequences Wq, one for each q ∈ Q, is called
• a separating family [LY96] for M if for each pair q, q′ ∈ Q of states

there is a sequence w ∈ Wq ∩ Wq′ which separates q and q′,
• a family of identification sets for M if for each pair q, q′ ∈ Q of states,

the set Wq contains a sequence w ∈ Wq that separates q from q′, ��
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A separating family is also a family of identification sets, but not vice versa.
A family of identification sets can be transformed into a separating family by
adding the necessary sequences to the sets. A characterizing set can be thought
of as a separating family, where all sets are identical. A characterizing set (and
hence also a separating family) exists for every machine that is minimized.

In the following, fix an FSM M = (D, Q, δ, q0, λ). Let

– V be a transition cover set; we denote by vq,a the sequence leading to q such
that both vq,a ∈ V and vq,aa ∈ V ,

– U be a state cover set included in V ; we denote by uq the sequence leading
to q (i.e., uq = vq,a for some a),

– W be a characterizing set,
– {Zq}q∈Q be a separating family,
– {Wq}q∈Q be a family of identification sets.

Definition 7. A set I ⊆ Σ∗ is called

– A W-set if it is of form V W ,
– A Wp-set if it is of form

U

⎛
⎝ ⋃

q∈Q

Wq

⎞
⎠ ∪

⋃
q∈Q,a∈Σ

vq,aaWδ(q,a)

– A Z-set if it is of form⋃
q∈Q

vq,aZq ∪
⋃

q∈Q,a∈Σ

vq,aaZδ(q,a)

��

Theorem 2 (Conformance Test Suites). Let M = 〈Q, δ, q0, λ〉 be an FSM
and let I ⊆ Σ∗ be a W-set, a Wp-set, or a Z-set. Then the observation function
M|I is a conformance test suite for M.

Proof. We consider the case of Wp-set; the other cases are analogous. Let T be
the observation structure defined by Dom(T ) = U ∪ {vq,aa : q ∈ Q, a ∈ Σ},
where Dom(T (uq)) = ∪

q∈Q
Wq for uq ∈ U and Dom(T (vq,aa)) = Wδ(q,a) for

vq,a ∈ {vq,a : q ∈ Q, a ∈ Σ} \ U , such that OT = M|I . Since the observation
structure is derived from M, and by the properties of identification sets, it
follows that U is a set of access strings such that the conditions in Proposition 1
are satisfied. Hence the conclusions of Theorem 1 hold, from which the result
follows. ��

The W-method by Vasilevski [Vas73] and Chow [Cho78] uses W-sets. The
Wp-method by Fujiwara et al. [FvBK+91] optimizes by using (hopefully smaller)
identifications sets to reduce the size of the test suite; another optimization, using
separating families (here defined using what we call Z-sets) is described by Lee
and Yannakakis [LY96]. Since in the worst case, each identification set Wq has
the same cardinality as the characterizing set W , upper bounds on sizes of the
test suite generated by the three methods are the same: O(n2 |Σ|).
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5 Automata Learning

We here briefly review some techniques of Automata Learning. The techniques
reviewed here work by making queries about the output of an IUT in response
to a set of input sequences, and recording the results in what can be represented
as an observation structure T . When T has been developed so that it satisfies
certain properties, then an automaton is conjectured from T . This conjecture
is then compared by other means (idealized by a so-called “equivalence query”)
with the IUT. If the conjecture is equivalent to the IUT, the learning process
stops, otherwise the equivalence query returns an input sequence on which the
conjecture and the IUT disagree, and the learning process continues. It is desir-
able that each hypothesis has strictly more states than the previous one, in order
that the process monotonically converges to a correct conjecture in reasonable
time. This can be ensured if the properties required for making a hypothesis
ensure that only one automaton can be inferred from T .

In this section, we present conditions on T that are defined by the L∗ al-
gorithm of Angluin [Ang87] using observation tables, and the observation packs
defined by Balcázar et al. [BDG97].

Let T be an observation structure. Two situations are particularly interesting
and separately well-studied in the literature

Definition 8. Let T be an observation structure, where Dom(T ) = U ∪UΣ for
a set U of access strings. T is an

– observation table if Dom(T ) is prefix-closed, and all Dom(T (u)) for
u ∈ Dom(T ) are equal and suffix-closed.

– observation pack if ε ∈ U , and
• T (u) �≈ T (u′) for u, u′ ∈ U with u �= u′, and
• for each u ∈ Dom(T ) there is a u′ ∈ U with T (u) = T (u′). ��

Based on these definitions, we obtain:

Theorem 3 (Uniqueness Theorem). Let T be an observation structure with
U as in Definition 8. If T is either

– an observation table, where ≈ is U -closed and U -consistent, or
– an observation pack, where ≈ is U -closed,

then the relation ≈ on Dom(T ) is an equivalence relation. Let n be the number
of equivalence classes of ≡. Then any automaton A with at most n states, which
is conformant with OT , is isomorphic to 〈T , U〉/ ≡.

Proof. It follows from Definition 8 that ≈ is an equivalence relation. The rest
follows immediately from the Characterization Theorem 1 ��

Please note that the Uniqueness Theorem does not guarantee the existence
of a conformant automaton with n states. However, for observation tables we
can give such a guarantee.
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Theorem 4 (Existence Theorem). Let T be an observation table with U as
in Definition 8, where ≈ is U -closed and U -consistent. Then 〈T , U〉/ ≈ |= OT .

This theorem is proved in [Gol78, Ang87]. Our Existence Theorem is a straight-
forward generalization.

6 Relating Testing and Learning Techniques

Conformance testing and learning are both concerned with establishing a rela-
tionship between a formal model and a black box system. Both techniques work
by constructing a particular set of tests serving for the observation of the black
box system. These conceptual similarities should be clear from the previous sec-
tions.

In fact, this similarity even reaches down to the level of technical detail of
observation structures:

From Automata Learning to Conformance Testing

– Let T be an observation table with U as in Definition 8, such that ≈ is
U -closed and U -consistent. Let W denote Dom(T (u)) for some u ∈ U (the
choice of u is irrelevant by Definition 8). If M is isomorphic to 〈T , U〉/ ≈,
then the set (U ∪ UΣ)W is a W-set for M.

– Let T be an observation pack with U as in Definition 8, such that ≈ is
U -closed. If M = 〈T , U〉/ ≈ is conformant with OT , then the set

⋃
u∈U

u Dom(T (u)) ∪
⋃

u∈U,a∈Σ

ua Dom(T (ua))

is a Z-set for M.

From Conformance Testing to Automata Learning Let M = 〈Q, δ, q0, λ〉 be an
FSM and let U be a state cover set of M, and UΣ the corresponding transition
cover set.

– If U is prefix-closed, and W is a suffix-closed characterizing set, then the
observation structure T defined by Dom(T ) = U∪UΣ and Dom(T (u)) = W
for any u ∈ U , with OT = M|(U∪UΣ)W , is an observation table where ≈
is U -closed and U -consistent, such that M is isomorphic to 〈T , U〉/ ≈ and
M |= OT .

– If {Zq}q∈Q is a separating family and

I =
⋃
q∈Q

uqZq ∪
⋃

q∈Q,a∈Σ

uqaZδ(q,a)

is a corresponding Z-set, then the observation structure T defined by
Dom(T ) = U ∪ UΣ and Dom(T (u)) = Zδ(q0,u) for u ∈ U ∪ UΣ, with
OT = M|I , is an observation pack where ≈ is U -closed, such that M is
isomorphic to 〈T , U〉/ ≈ and M |= OT .
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Thus the observation table technique is strongly related to the W-method and
the observation pack technique to the conformance testing technique described
in [LY96].

However, there is also an intrinsic conceptual difference:

– conformance testing solves a checking problem: given a model and a black box
system, it checks for conformance of the two. This allows us to systematically
construct the tests from the given model, and

– learning solves a synthesis problem: given a black box, it synthesizes a model
on the basis of a systematic experimentation process. The tests used here
must be generated online in parallel with the model synthesis.

This conceptual difference becomes particularly clear under the often used as-
sumption that the number of states of the black box system is known to be at
most the number of states of the model n. In this case, we have:

The construction of a conformance test suite is a systematic and rather effi-
cient process (O

(
n2 |Σ|

)
) that extracts sufficiently many tests from the model

to characterize the model up to isomorphism.
The process of generating tests during the learning process is much more

involved, as there is no model for orientation. Thus we are essentially left with a
systematic search problem. Angluins assumption of an equivalence oracle, which
provides a (minimal) counter example in case of failure, draws a nice dividing
line between the efficient and expensive part:

– Complexity relative to the equivalence oracle: Angluins observation table only
grows polynomially in the size of the resulting model. The original proof
for O

(
n3 |Σ|

)
can straightforwardly be extended to FSMs. Thus there is

only an additional factor n in comparison to the conformance test suite
generation. This factor is due to the fact that one must maintain many
strings as potential state representatives as their redundancy can only be
decided after the learning process has terminated.

– Complexity for realizing/approximating the equivalence oracle: In general it
is impossible to implement an equivalence oracle, and even if the size of the
black box system is known the problem is exponential in this size. Thus
the equivalence oracle is the true bottleneck of automata learning. However,
also here are similarities to conformance testing: a conformance test suite
capturing IUTs which may have k states more than the model also grows
exponentially in k. In fact, one could consider conformance testing of this
more general kind as a good approximation of the equivalence oracle.2

7 Discussion

In this paper, we have established a common framework for investigating the
similarities of conformance testing and automata learning by showing how re-

2 Note, this is usually the line where the interplay of learning and conformance testing
is mentioned.
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sults in one area can be transferred to results in the other and to explain the
reasons for their differences. Both techniques aim at identifying the model struc-
ture underlying a black box system on the basis of a limited set of observations.
Whereas the former technique aims at checking for equivalence with a given
conjecture model, the latter techniques addresses the corresponding synthesis
problem: given a system, it aims at inferring a corresponding model. Our uni-
fied framework makes it possible to directly transfer results between these two
communities or, more concretely, to build tools that easily specialize to tools for
conformance testing or automata learning, respectively.

Beyond this rather technical match, our contribution also directly addresses
the following question: What is the essential information about an automaton
in terms of observations/traces? The similarity of the corresponding character-
izations in the two domains mark them as a ’natural’ choice. And, in fact, the
state of the art here does not seem to leave much room for further optimiza-
tions, at least for the general setting. In particular when considering automata
learning this means that major performance gains, a necessary precondition for
a significant practical impact of this technology, are only possible for restricted
scenarios. In other words, learning will only scale to practically relevant system
scenarios, if its is possible to steer the learning process on the basis of com-
plementary knowledge, e.g. about the structure of the black box systems, its
intended behavior or certain other behavioral characteristics like input enabled-
ness or output determinism. Our first experiments [HNS03, SH03] indicate the
power of exploiting such knowledge, which does not only reduce the learning
effort, but also the size of the model representation. We are currently investigat-
ing, how similar considerations may also be used to minimize conformance test
suites.
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