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Abstract. We introduce a domain-theoretic computational model for multi-
variable differential calculus, which for the first time gives rise to data types for
differentiable functions. The model, a continuous Scott domain for differentiable
functions of n variables, is built as a sub-domain of the product of n + 1 copies
of the function space on the domain of intervals by tupling together consistent
information about locally Lipschitz (piecewise differentiable) functions and their
differential properties (partial derivatives). The main result of the paper is to show,
in two stages, that consistency is decidable on basis elements, which implies that
the domain can be given an effective structure. First, a domain-theoretic notion
of line integral is used to extend Green’s theorem to interval-valued vector fields
and show that integrability of the derivative information is decidable. Then, we
use techniques from the theory of minimal surfaces to construct the least and the
greatest piecewise linear functions that can be obtained from a tuple of n+1 ratio-
nal step functions, assuming the integrability of the n-tuple of the derivative part.
This provides an algorithm to check consistency on the rational basis elements of
the domain, giving an effective framework for multi-variable differential calculus.

1 Introduction

We introduce a domain-theoretic computational model for multi-variable differential
calculus, which for the first time gives rise to data types for differentiable functions.
The model is a continuous Scott domain for differentiable functions of n variables. It
allows us to deal with differentiable functions in a recursion theoretic setting, and is thus
fundamental for applications in computational geometry, geometric modelling, ordinary
and partial differential equations and other fields of computational mathematics. The
overall aim of the framework is to synthesize differential calculus and computer science,
which are two major pillars of modern science and technology.

The basic idea of the model is to collect together the local differential properties
of multi-variable functions by developing a generalization of the concept of a Lip
s

-
chitz constant to an interval vector Lipschitz constant. The collection of these local

differentiable properties are then used to define the domain-theoretic derivative of a
multi-variable function and the primitives of an interval-valued vector field, which leads
to a fundamental theorem of calculus for interval-valued functions, a theorem that has
no counterpart in classical analysis. This fundamental theorem is then used to construct
the domain of differentiable functions as a sub-domain of the product of n + 1 copies
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of the function space on the domain of intervals by tupling together consistent infor-
mation about locally Lipschitz (piecewise differentiable) functions and their differential
properties (partial derivatives). The base of this domain is a finitary data type, given
by consistent tuples of n + 1 step functions, where consistency means that there exists
a piecewise differentiable function, equivalently a piecewise linear function, which is
approximated, together with its n partial derivatives where defined, by the n + 1 step
functions.

The geometric meaning of the finitary data type and consistency is as follows. Each
step function is represented by a finite set of n+1 dimensional rational hyper-rectangles
in, say, [0, 1]n × R such that any two hyper-rectangles have non-empty intersection
whenever the interior of their base in [0, 1]n have non-empty intersection. Such a set of
hyper-rectangle gives a finitary approximation to a real-valued function on the unit cube
[0, 1]n if in the interior of the base of each hyper-rectangle the graph of the function is
contained in that hyper-rectangle. A collection of n + 1 such sets of hyper-rectangles
could thus provide a finitary approximation to a function and its n partial derivatives.
Consistency of this collection means that there exists a piecewise differentiable function
which is approximated together with its partial derivatives, where defined, by the col-
lection. For a consistent tuple, there are a least and a greatest piecewise differentiable
function which satisfy the function and the partial derivative constraints. Figure 1 shows
two examples of consistent tuples for n = 2 and in each case the least and greatest
functions consistent with the derivative constraints are drawn. In the first case, on the
left, there is a single hyper-rectangle for function approximation and the derivative ap-
proximations in the x and y directions over the whole domain of the function are given
respectively by the constant intervals [n, N ] and [m, M ] with n, m > 0. In the second
case, on the right, there are two intersecting hyper-rectangles for the function approx-
imation and the derivative approximations are the constant intervals [0, 0] and [m, M ]
with m > 0.

y

x

slope n

slope m slope m

slope M

Fig. 1. Two examples of consistent function and derivative approximations

The main question now is whether consistency of the n+1 step functions is actually
decidable. This problem is, as we have seen, very simple to state but it turns out to be
very hard to solve, as it requires developing some new mathematics. The main result of
the paper is to show, in two stages, that consistency is decidable on basis elements. As in
classical differential multi-variable calculus, an interval-valued function may fail to be
integrable. Thus, in the first stage, we introduce a domain-theoretic notion of line integral,
which we use to establish a necessary and sufficient condition for an interval-valued
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Scott continuous vector function to be integrable: zero must be contained in the line
integral of the interval-valued vector field with respect to any closed path. This extends
the classical Green’s Theorem for a vector field to be a gradient [9 pages 286-291] to
interval-valued vector fields. We thus obtain a main result of this paper: an algorithm
to check integrability for rational step functions, i.e., given n rational step functions, to
check if there exists a piecewise differentiable function whose partial derivatives, where
defined, are approximated by these step functions.

Finally, we use techniques from the theory of minimal surfaces to construct the least
and the greatest piecewise linear functions obtained from a tuple of n + 1 rational step
functions, in which the n-tuple of the derivative part is assumed to be integrable. These
surfaces are obtained by, respectively, maximalizing and minimalizing the lower and
the upper line integrals of the derivative information over piecewise linear paths. The
maximalization and minimization are achieved for a piecewise linear path which can all
be effectively constructed. The decidability of consistency is then reduced to checking
whether the minimal surface is below the maximal surface, a task that can be done in finite
time. This leads to an algorithm to check consistency of an n + 1 tuple and to show that
consistency is decidable on the rational basis elements of the domain for locally Lipschitz
functions, giving an effective framework for multi-variable differential calculus.

In the last section, we mention two applications of our framework, each worked out
in detail in a follow-up paper. In the first, the domain for differential functions allows
us to develop a domain-theoretic version of the inverse and implicit function theorem,
which provides a robust technique for construction of curves and surfaces in geometric
modelling and CAD. Our second application is a domain-theoretic adaption of Euler’s
method for solving ordinary differential equations, where we use the differential prop-
erties of the vector field defining the equation to improve the quality of approximations
to the solution.

Due to the large number of new concepts in the paper and lack of space, nearly all
proofs had to be omitted.

1.1 Related Work

This work represents an extension of the domain-theoretic framework for differential
calculus of a function of one variable introduced in [6] and its applications in solving
initial value problems [5, 8]. The extension to higher dimension is however far more
involved than the extension of classical differential calculus to higher dimensions.

The domain-theoretic derivative is closely related to the so-called generalized (or
Clarke’s) gradient, which is a key tool in nonsmooth analysis, control theory and opti-
mization theory [3, 4]. For any locally Lipschitz function, the domain-theoretic derivative
at a point gives the smallest hyper-rectangle, with sides parallel to the coordinate planes,
which contains the Clarke’s gradient.

In computable analysis, Pour-El and Richards [11] relate the computability of a
function with the computability of its derivative. Weihrauch’s scheme [13] leads to
partially defined representations, but there is no general result on decidability. Interval
analysis [10] also provides a framework for verified numerical computation. There,
differentiation is performed by symbolic techniques [12] in contrast to our sequence of
approximations of the functions.

,
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1.2 Notations and Terminology

We use the standard notions of domain theory as in [1]. Let D0[0, 1]n = [0, 1]n → IR
be the domain of all Scott continuous functions of type [0, 1]n → IR; we often write
D0 for D0[0, 1]n. A function f ∈ D0 is given by a pair of respectively lower and upper
semi-continuous functions f−, f+ : [0, 1]n → R with f(x) = [f−(x), f+(x)]. Given a
domain A, we denote by An

s the smash product, i.e., a ∈ An
s if a = (a1, · · · , an) ∈ An

with ai �= ⊥ for all i = 1, · · · , n or a = ⊥. Let (IR)m×n
s denote the set of all m × n

matrices with entries in IR, where for such a matrix either all components are non-bottom
or the matrix itself is bottom. We use standard operations of interval arithmetic on interval
matrices. By a = [a, a] ∈ (IR)m×n, where a, a ∈ R

m×n, we denote an interval matrix
with (i, j) entry given by the interval [aij , aij ]. We identify the real number r ∈ R with
the singleton {r} ∈ IR. And similarly for interval vectors and functions. We will use the
sign function given by the multiplicative group homomorphism σ : R → {−, 0, +}. We
write ‖x‖ =

√∑n
i=1 x2

i for the standard Euclidean norm of x = (x1, · · · , xn) ∈ R
n.

The classical derivative of a map f : [0, 1]n → R at y ∈ [0, 1], when it exists, is denoted
by f ′(y). We will reserve the notation df

dx exclusively in this paper for the domain-
theoretic derivative which will be introduced later. The interior of a set A ⊂ R

n is
denoted by A◦ and its closure by cl(A).

2 Ties of Functions of Several Variables

The local differential property of a function is formalized in our framework by the notion
of an interval Lipschitz constant.

Definition 1. The continuous function f : [0, 1]n → IR has an interval Lipschitz con-
stant b ∈ (IR)1×n

s in a ∈ (I[0, 1])n if for all x, y ∈ a◦ we have: b(x−y) � f(x)−f(y).
The single-step tie δ(a, b) ⊆ D0[0, 1] of a with b is the collection of all functions in
D0[0, 1] which have an interval derivative b in a.

For example, if n = 2, the information relation above reduces to b1(x1 − y1)+ b2(x2 −
y2) � f(x)−f(y). For a single-step tie δ(a, b), one can think of b as a Lipschitz interval
vector constant for the family of functions in δ(a, b). A classical Lipschitz would require
k = |bi| = |bi| ≥ 0 for all i = 1 · · ·n. By generalizing the concept of a Lipschitz
constant in this way, we are able to obtain essential information about the differential
properties of the function, which includes what the classical Lipschitz constants provide:

Proposition 1. If f ∈ δ(a, b) for a◦ �= ∅ and b �= ⊥, then f(x) is maximal for each
x ∈ a◦ and the induced function f : a◦ → R is Lipschitz: for all u, v ∈ a◦ we have
|f(u) − f(v)| ≤ k‖u − v‖, where k = max1≤i≤n(|bi|, |bi|).

The following proposition justifies our definition of interval derivative.

Proposition 2. For f ∈ C1[0, 1]n, the following three conditions are equivalent:
(i) f ∈ δ(a, b), (ii) ∀z ∈ a◦. f ′(z) ∈ b and (iii) a ↘ b � f ′.

When the components of a and b are rational intervals δ(a, b) is a family of functions
in D0 with a finitary differential property. For the rest of this section, we assume we are
in dimension n ≥ 2.
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Definition 2. A step tie of D0 is any finite intersection
⋂

1≤i≤n δ(ai, bi) ⊂ D0. A tie of
D0 is any intersection ∆ =

⋂
i∈I δ(ai, bi) ⊂ D0. The domain of a non-empty tie ∆ is

defined as dom(∆) =
⋃

i∈I{a◦
i | bi �= ⊥}.

A non-empty step tie with rational intervals gives us a family of functions with a finite
set of consistent differential properties, and a non-empty general tie gives a family of
functions with a consistent set of differential properties. The following result sums up
the main relation between step ties and step functions.

Proposition 3. For any indexing set I , the family of step functions (ai ↘ bi)i∈I is
consistent if

⋂
i∈I δ(ai, bi) �= ∅.

Let (T 1[0, 1], ⊇) be the dcpo of ties of D0 ordered by reverse inclusion. We are
finally in a position to define the primitives of a Scott continuous function; in fact now
we can do more and define:

Definition 3. The primitive map
∫

: ([0, 1]n → (IR)1×n
s ) → T 1 is defined by∫

(
⊔

i∈I ai ↘ bi) =
⋂

i∈I δ(ai, bi). We usually write
∫

(f) as
∫

f and call it the primi-
tives of f .

Proposition 4. The primitive map is well-defined and continuous.

For n ≥ 2, as we are assuming here, the primitive map will have the empty tie in
its range, a situation which does not occur for n = 1. Therefore, we have the following
important notion in dimensions n ≥ 2.

Definition 4. A map g ∈ [0, 1]n → (IR)1×n
s is said to be integrable if

∫
g �= ∅.

Example 1. Let g ∈ [0, 1]2 → (IR)1×2
s ) be given by g = (g1, g2) =

(λx1.λx2.1, λx1.λx2.x1). Then ∂g1
∂x2

= 0 �= 1 = ∂g2
∂x1

, and it will follow that
∫

g = ∅.

3 Domain-Theoretic Derivative

Given a Scott continuous function f : [0, 1]n → IR, the relation f ∈ δ(a, b), for
some intervals a and b, provides, as we have seen, finitary information about the local
differential properties of f . By collecting all such local information, we obtain the
complete differential properties of f , namely its derivative.

Definition 5. The derivative of a continuous function f : [0, 1]n → IR is the map

df

dx
=

⊔
f∈δ(a,b)

a ↘ b : [0, 1]n → (IR)1×n
s .

Theorem 1. (i) df
dx is well-defined and Scott continuous.

(ii) If f ∈ C1[0, 1]n then df
dx = f ′.

(iii) f ∈ δ(a, b) iff a ↘ b � df
dx .
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We obtain the generalization of Theorem 1(iii) to ties, which provides a duality
between the domain-theoretic derivative and integral and can be considered as a variant
of the fundamental theorem of calculus.

Corollary 1. f ∈ ∫
g iff g � df

dx .

The following proposition relates the domain theoretic derivative to its classical
counterpart.

Proposition 5. (i) Let f : [0, 1]n → IR be Scott continuous. Suppose for some z ∈
[0, 1]n, f(z) is not maximal, then df

dx (z) = ⊥.

(ii) If df
dx (y) = c ∈ (IR)1×n

s is maximal, then f sends elements to maximal elements
in a neighborhood U of y and the derivative of the induced restriction f : U → R

exists at y and f ′(y) = c.

In the full version of the paper, we formulate the relation between the domain-
theoretic derivative with two other notions of derivative, namely Dini’s derivative and
Clarke’s gradient. We express the domain-theoretic derivative in terms of lower and
upper limits of the Dini’s derivatives and we show that, for Lipschitz functions, the
domain-theoretic derivative gives the smallest hyper-rectangle containing the Clarke’s
gradient.

4 Domain for Lipschitz Functions

We will construct a domain for locally Lipschitz functions and for C1[0, 1]n. The idea is
to use D0 to represent the function and [0, 1]n → (IR)1×n

s to represent the differential
properties (partial derivatives) of the function. Note that the domain [0, 1]n → (IR)1×n

s

is isomorphic to the smash product (D0)n
s ; we can write g ∈ [0, 1]n → (IR)1×n

s as
g = (g1, · · · , gn) ∈ (D0)n

s with dom(g) = dom(gi) for all i = 1, · · · , n. Consider the
consistency relation

Cons ⊂ D0 × (D0)n
s ,

defined by (f, g) ∈ Cons if ↑f ∩ ∫
g �= ∅. For a consistent (f, g), we think of f as the

function part or the function approximation and g as the derivative part or the derivative
approximation. We will show that the consistency relation is Scott closed.

Proposition 6. Let g ∈ (D0)n
s and (fi)i∈I be a non-empty family of functions fi :

dom(g) → R with fi ∈ ∫
g for all i ∈ I . If h1 = infi∈I fi is real-valued then h1 ∈ ∫

g.
Similarly, if h2 = supi∈I fi is real-valued, then h2 ∈ ∫

g.

Let R[0, 1] be the set of partial maps of [0, 1] into the extended real line. Consider the
two dcpo’s (R[0, 1],≤) and (R[0, 1],≥). Define the maps s : D0 × (D0)n

s → (R, ≤)
and t : D0 × (D0)n

s → (R, ≥) by

s : (f, g) �→ inf{h : dom(g) → R | h ∈
∫

g & h ≥ f−}
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t : (f, g) �→ sup{h : dom(g) → R | h ∈
∫

g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are ∞
and −∞, respectively. Note that given a connected component A of dom(g) with A ∩
dom(f) = ∅, then s(f, g)(x) = −∞ and t(s, f)(x) = ∞ for x ∈ A. In words, s(f, g)
is the least primitive map of g that is greater than the lower part of f , whereas t(f, g) is
greatest primitive map of g less that the upper part of f .

Proposition 7. The following are equivalent:

(i) (f, g) ∈ Cons.
(ii) s(f, g) ≤ t(f, g).

(iii) There exists a continuous function h : dom(g) → R with g � dh
dx and f � h on

dom(g).

Moreover, s and t are well-behaved:

Proposition 8. The maps s and t are Scott continuous.

This enables us to deduce:

Corollary 2. The relation Cons is Scott closed.

We can now sum up the situation for a consistent pair of function and derivative infor-
mation.

Corollary 3. Let (f, g) ∈ Cons. Then in each connected component O of the domain
of definition of g which intersects the domain of definition of f , there exist two locally
Lipschitz functions s : O → R and t : O → R such that s, t ∈ ↑f ∩ ∫

g and for each
u ∈ ↑f ∩ ∫

g, we have with s(x) ≤ u(x) ≤ t(x) for all x ∈ O.

We now can define a central notion of this paper:

Definition 6. Define

D1 = {(f, g) ∈ D0 × (D0)n
s : (f, g) ∈ Cons}.

From Corollary 2, we obtain our first major result:

Corollary 4. The poset D1 is a continuous Scott domain, i.e. a bounded complete count-
ably based continuous dcpo.

The collection of step functions of the form (f, g) ∈ D0 × (D0)n
s , where f ∈ D0 and

g ∈ (D0)n
s are step functions, forms a basis of D1. The rational basis of D1 is the

collection of all rational step functions (f, g), i.e., those whose domains and values are
defined over rational numbers. We will show in Section 6 that for rational step functions
f ∈ D0 and g ∈ (D0)n

s , the maps s and t will be piecewise linear, and can be effectively
constructed to test the consistency of (f, g).

Let C0[0, 1]n and C1[0, 1]n be, respectively, the collection of real-valued C0 and C1

functions. Let Γ : C0[0, 1]n → D1[0, 1]n be defined by Γ (f) = (f, df
dx ) and let Γ 1 be

the restriction of Γ to C1[0, 1]n.
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Theorem 2. The maps Γ and Γ 1 are respectively embeddings of C0[0, 1]n and C1[0, 1]n

into the set of maximal elements of D1.

Furthermore, Γ restricts to give an embedding for locally Lipschitz functions (where
df
dx �= ⊥ for all x) and it restricts to give an embedding for piecewise C1 functions
(where df

dx is maximal except for a finite set of points).

5 Integrability of Derivative Information

In this section, we will derive a necessary and sufficient condition for integrability and
show that on rational basis elements integrability is decidable.

Let g = (g1, . . . , gn) ∈ (D0)n
s be a step function. Recall that a crescent is the

intersection of an open set and a closed set. The domain dom(g) of g is partitioned into a
finite set of disjoint crescents {Cj : j ∈ Ii}, in each of which the value of gi is constant,
where we assume that the indexing sets Ii are pairwise disjoint for i = 1, . . . , n. The
collection

{
⋂

1≤i≤n

Cki : ki ∈ Ii, 1 ≤ i ≤ n}

of crescents partition dom(g) into regions in which the value of g is a constant interval
vector; they are called the associated crescents of g, which play a main part in deciding
integrability as we will see later in this section. Each associated crescent has boundaries
parallel to the coordinate planes and these boundaries intersect at points, which are
called the corners of the crescent. A point of the boundary of an associated crescent is
a coaxial point of a point in some associated crescent if the two points have precisely
n − 1 coordinates in common. Clearly, each point has a finite number of coaxial points.
In Figure 2, an example of a step function g is given with its associated crescents, the
interval in each crescent gives the value of g in that crescent. A solid line on the boundary
of a crescent indicates that the boundary is in the crescent, whereas a broken line indicates
that it is not. The coaxial points of the corners are illustrated on the picture on the right.

A path in a connected region R ⊂ R
n is a continuous map p : [0, 1] → R with

endpoints p(0) and p(1). If p is piecewise C1, respectively piecewise linear, then the path

[−1, 1]

[−2, 2]

[−3, 3]

[−2, 2]

● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ●

●

●

●

●

●

●

Fig. 2. Crescents of a step function (left); the corners and their coaxial points (right)
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is called a piecewise C1, respectively piecewise linear. The space P (R) of piecewise C1

paths in R is equipped with the C1 norm.A path p is non-self-intersecting if p(r) = p(r′)
for r < r′ implies r = 0 and r′ = 1. We will be mainly concerned with piecewise linear
paths in this paper. For these paths, there exists a strictly increasing sequence of points
(ri)0≤i≤k for some k ∈ N with 0 = r0 < r1 < · · · rk−1 < rk = 1 such that p is linear
in [ri, ri+1] for 0 ≤ i ≤ k−1. The points p(ri) for i = 0, · · · , k, are said to be the nodes
of p; the nodes p(ri) for i = 1, · · · , k − 1 are called the inner nodes. The line segment
{p(r) : ri ≤ r ≤ ri+1} is denoted by p([ri, ri+1]). If p(0) = p(1), the path is said to be
closed.

A simple path in a region R ⊂ R
n is a non-self-intersecting piecewise linear map. We

now consider simple paths in the closure cl(O) of a connected component O ⊆ dom(g).
Recall that given a vector field F : R → R

n in a region R ⊂ Rn and a piecewise
C1 path p : [0, 1] → R, the line integral of F with respect to p from 0 to w ∈ [0, 1]
is defined as

∫ 1
0 F (p(r)) · p′(r) dr, when the integral exists. Here, u · v =

∑n
i=1 uivi

denotes the usual scalar product of two vectors u, v ∈ R
n.

We define a generalization of the notion of scalar product for vectors of type: u ∈
(IR)n and v ∈ R

n. For a = [a, a] ∈ (IR)n
s , let a− = a, a+ = a and a0 = 1. We define

the direction dependent scalar product as the strict map

− � − : (IR)n
s × R

n → R⊥

with u � v =
∑n

i=1 u
σ(vi)
i vi for u �= ⊥. The extension of the usual dot product to the

interval dot product i.e. u · v = {w · v | w ∈ u} then satisfies: (u · v)− = −u � (−v)
and (u · v)+ = u � v. We can now define a notion of line integral of the interval-valued
vector function g = [g−, g+] ∈ (D0)n

s with respect to any piecewise C1 path from y to
x in cl(O), where O is a connected component of dom(g). For each i = 1, · · ·n, the ith
component of g is given by gi = [g−

i , g+
i ].

Definition 7. Given a step function g ∈ (D0)n
s and a piecewise C1 path p in the closure

of connected component O of the domain of g, the upper line integral of g over p from 0
to w ∈ [0, 1] is defined as:

U
∫

p[0,w]
g(r) dr =

∫ w

0
g(p(r)) � p′(r) dr.

The lower line integral of g over p from 0 to w ∈ [0, 1] is similarly defined as

L
∫

p[0,w]
g(r) dr = −

∫ w

0
g(p(r)) � (−p′(r)) dr.

Thus, if the jth component of the path, for some j with 1 ≤ j ≤ n, is increasing locally
at some r ∈ [0, 1], i.e. p′

j > 0 in a neighborhood of r, then g
−σ(pj(r))
j = g−

j will
contribute locally to the jth component of the sum in the lower integral, while if p′

j < 0

in a neighborhood of r, then g
−σ(pj(r))
j = g+

j will contribute. In case the path is locally
perpendicular to the jth axis at r, i.e. p′

j(r) = 0 in a local neighborhood of r, then there
will be zero contribution for the jth component in the sum. For the upper integral the
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contributions of g−
i and g+

i are reversed. Note that for all w ∈ [0, 1] we have from the
definitions: L

∫
p[0,w] g(r) dr � U

∫
p[0,w] g(r) dr.

The geometric interpretation of the lower and upper line integrals is as follows. We
regard g ∈ (D0)n

s as an interval-valued vector field in [0, 1]n. For any continuous vector
field F : dom(g) → R

n with F (x) ∈ g(x) for all x ∈ dom(g) and any piecewise C1

path p ∈ P (O) in a connected component O of dom(g), the classical line integral is
always bounded below and above by the lower and upper line integrals respectively.

We now introduce the domain-theoretic generalization of Green’s celebrated condi-
tion for the integrability of a vector field.

Definition 8. Given a step function g ∈ (D0)n
s and a closed simple path p in the closure

of a connected component of dom(g), we say that g satisfies the zero-containment loop
condition for p if

0 ∈
∫

p[0,1]
g(r) dr.

We say that g ∈ (D0)n
s satisfies the zero-containment loop condition if it satisfies the

zero-containment loop condition for any closed simple path p in the closure of any
connected component of dom(g).

For simplicity, we have only defined the zero-loop condition for step functions as required
in this paper. By using piecewise differentiable closed paths instead of closed simple
paths, the definition can be easily extended to any Scott continuous interval-valued vector
field. If g only takes point (maximal) values, then the zero-containment loop condition is
simply the standard condition for g to be a gradient i.e., that the line integral of g vanishes
on any closed path. Figure 3 gives an example of a step function g = (g1, g2), with
dom(g) = ((0, 3)×(0, 3))\([1, 2]× [1, 2]) which does not satisfy the zero-containment
loop condition. The values of g1 (left) and g2 (right) are given for each of the four single-
step functions. Denote the dashed path by p; it has nodes at p(0) = p(1) = (1/2, 1/2),
p(1/4) = (5/2, 0), p(1/2) = (5/2, 5/2) and p(3/4) = (1/2, 5/2). The lower line
integral of g over p gives a strictly positive value:

L
∫

p
g(r)dr =

∑3
i=0

∫ i+1
4

i
4

−g(p(r)) � (−p′(r))dr

= − ∫ 1
4

0 g(p(r)) � (−8, 0)dr − ∫ 1
2
1
4

g(p(r)) � (0, −8)dr

− ∫ 3
4
1
2

g(p(r)) � (8, 0)dr − ∫ 1
3
4

g(p(r)) � (0, 8)dr

= 1/4(8 · 1 + 8 · 1 + 8 · 1 + 8 · 1) = 8 > 0.

Recall that g ∈ (D0)n
s is called integrable if

∫
g �= ∅. The following is an extension of

Green’s Theorem also called the Gradient Theorem in classical differential calculus [9].

Theorem 3. Suppose g ∈ (D0)n
s is an integrable step function. Then g satisfies the

zero-containment loop condition.

We will now show that if a step function g ∈ (D0)n
s satisfies the zero-containment

loop condition, then it is integrable. Let O be a connected component of dom(g). Note
that any step function g can be extended to the boundary of dom(g) by the lower and
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[−4, 4] [−4, 4]

[−2, −1]

[1, 2]

[−2, −1] [1, 2]

[−4, 4]

[−4, 4]

Fig. 3. Failure of zero-containment: g1 (left) and g2 (right)

upper semi continuity of g− and g+ respectively. We adopt the following convention.
If two crescents have a common boundary, we consider their common boundary as
infinitesimally separated so that they have distinct boundaries. This means that a line
segment of a simple path on a common boundary of two different crescents is always
regarded as the limit of a sequence of parallel segments contained on one side of this
boundary.

We are now ready to introduce a key concept of this paper. For x, y ∈ cl(O)), we put

Vg(x, y) = sup{L
∫

p[0,1]
g(r) dr : p a piecewise linear path in cl(O) from y to x},

Wg(x, y) = inf{U
∫

p[0,1]
g(r) dr : p a piecewise linear path in cl(O) from y to x}.

Proposition 9. Suppose g satisfies the zero-containment loop condition and x, y ∈
cl(O), then there are simple paths p and q from y to x such that:

Vg(x, y) = L
∫

p[0,1]
g(r) dr Wg(x, y) = U

∫
q[0,1]

g(r) dr.

Moreover, for each y ∈ cl(O), the two maps given by Vg(·, y), Wg(·, y) : cl(O) → R

are continuous, piecewise linear and satisfy Vg(y, y) = Wg(y, y) = 0,

g � dVg(·, y)
dx

and g � dWg(·, y)
dx

.

Thus, we obtain the following main result:

Theorem 4. A function g ∈ (D0)n
s is integrable iff it satisfies the zero-containment loop

condition.
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Proposition 10. For a rational step function g ∈ (D0)n
s defined over rational numbers,

the zero-containment loop condition is decidable.

Proof. There are a finite number of connected components of dom(g). In each connected
component O of dom(g), the values of L

∫
p[0,1]g(r) dr and U

∫
p[0,1]g(r) dr, for a closed

simple path in cl(O) depend piecewise linearly on the coordinates of any given node of
the path. It follows that the maximum value of the lower integral and the minimum value
of the upper integral are reached for a path p with nodes at the corners of the crescents
of O and their coaxial points. Since the number of such closed simple paths is finite and
since for each such path L

∫
p[0,1]g(r) dr is a rational number, we can decide in finite

time if the zero-containment loop condition holds for g. �

For an associated crescent a of a step function g we write v(a) for the value of g on
a, i.e. v(a) = g(x) where x ∈ ao is some point in the interior of a. To check whether a
rational step function g is integrable, the proof of Proposition 10 shows that it suffices
to check that g satisfies the zero-containment loop condition on all paths with nodes in
the finite set of corners of the associated crescents and their coaxial points. This gives
rise to the following algorithm:

input: a rational step function g : [0, 1]n → IRn

output: true, if g is integrable and false otherwise
D := connected components of dom(g)
for each C ∈ D do

A := associated crescents of C
R := corners and coaxial points of A
/* P represents the closed paths */

P := all lists (p0
a0−→ . . .

ak−1−→ pk) where ai ∈ A, pi ∈ R, pi, pi+1 ∈ cl(ai)
and pi = pj =⇒ i = 0 and j = k

for each p = (p0
a0−→ . . .

ak−1−→ pk) ∈ P do
/* compute upper and lower line integral */

L :=
∑k−1

i=0 v(ai) � (pi+1 − pi)
U :=

∑k−1
i=0 v(ai) � (pi − pi+1)

if L > 0 or U < 0 then output false; end
enddo

enddo; output true

6 Consistency of Function and Derivative Information

We will now show that for a pair of rational step functions (f, g) ∈ D1, with g integrable,
the consistency relation (f, g) ∈ Cons is decidable. For this, we explicitly construct
s(f, g) and t(f, g), which will be piecewise linear functions that enable us to decide if
s(f, g) ≤ t(f, g). Let x and y be in the same connected component O of dom(g) with
O ∩ dom(f) �= ∅.
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Theorem 5. The maps Vg(·, y), Wg(·, y) : cl(O) → R are respectively the least and
the greatest continuous maps L, G : O → R with L(y) = 0 and G(y) = 0 such that
g � dL

dx and g � dG
dx .

Let S(f,g)(x, y) = Vg(x, y) + limf−(y).

Corollary 5. Let O be a connected component of dom(g) with non-empty intersection
with dom(f). For x ∈ O, we have:

s(f, g)(x) = sup
y∈O∩dom(f)

S(f,g)(x, y). (1)

Proposition 11. There exist a finite number of points y0, y1, . . . , yi ∈ cl(O ∩ dom(f))
with

s(f, g)(x) = max{S(f,g)(x, yj) : j = 0, 1, . . . , i}
for x ∈ O.

Proof. For fixed (f, g) and x, the value of S(f,g)(x, y) depends piecewise linearly on the
coordinates of y, and thus its maximum value is reached for a simple path with modes
at the corners of the crescents of O and x and their coaxial points. �

Results dual to those above are obtained for t(f, g) as follows. We put T(f,g)(x, y) =
Wg(x, y) + limf+(y). Then, we have

t(f, g)(x) = inf
y∈O∩dom(f)

T(f,g)(x, y),

and there exist y0, y1, . . . , yi ∈ cl(O ∩ dom(f)) with

t(f, g)(x) = min{T(f,g)(x, yj) : j = 0, 1, . . . , i},

for x ∈ O.

Corollary 6. The predicate Cons is decidable on basis elements (f, g) consisting of
rational step functions.

The algorithm for deciding consistency of a rational step function f : [0, 1]n → IR
and a rational step function g : [0, 1]n → (IR)n

s works as follows: Recall that f and g
are consistent iff s(f, g) ≤ t(f, g). By the proof of Proposition 11, both functions can
be constructed by evaluating line integrals over simple paths with inner nodes in the set
of corners of the crescents of g, the endpoint of the line integrals and the coaxial points
of these. This is achieved by the following algorithm:

input: a rational step functions f : [0, 1]n → IR
an integrable rational step function g : [0, 1]n → (IR)n

s

output: true, if f is consistent with g, false otherwise.
D := connected components of dom(g)
for each C ∈ D do
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/* x = (x1, . . . , xn) represents the varying endpoint */
R(x) := K ∪ { coaxial points of K ∪ {x}}
/* P (x) represents the paths to x */

P := all lists (p0
a0−→ . . .

ak−1−→ pk) where pi ∈ R(x) are pairwise
distinct, pk = x and pi, pi+1 ∈ cl(ai) for all i = 1, . . . , k − 1.

for each p = (p0
a0−→ . . .

ak−1−→ pk), q = (q0
a0−→ . . .

al−1−→ ql) ∈ P (x) do
/* compute upper and lower line integral */

s(x) := limf−(p0) +
∑k−1

i=0 v(ai) � (pi+1 − pi)
t(x) := limf+(q0) +

∑l−1
i=0 v(ai) � (qi − qi+1)

if s(x) > t(x) for some x ∈ a then output false; end
enddo

enddo; output true

Note that s(x) and t(x) are piecewise linear functions in x with rational coefficients,
hence we can decide s(x) ≤ t(x) on cl(a) by first computing the rectangles on which
both s and t are linear and then checking for s ≤ t on the corners of those.

Theorem 6. The domain D1 can be given an effective structure using a standard enu-
meration of its rational basis.

7 Applications

The construction of an effective domain for differentiable functions paves the road for
applications of domain theory in a number of areas of numerical analysis and computa-
tional mathematics. Here, we make a start on this by mentioning two fields of applications
which have been worked out in detail in two follow-up papers.

7.1 Robust Construction of Curves and Surfaces

In geometric modelling, as in CAD, the standard method to construct curves and surfaces
is to use the implicit function theorem to define these geometric objects implicitly [2].
For example a C1 surface g : [0, 1]2 → R can be specified as the zero set {g(x, y) :
f(x, y, g(x, y)) = 0} where f : [0, 1]3 → R is a C1 function with ∂f

∂z �= 0. The
domain for differential functions allows us to develop a domain-theoretic version of the
implicit function theorem, in which the implicit function together with its derivative are
approximated by step functions. This means that from an increasing sequence of step
functions converging to f and its derivative in the domain of differentiable functions
we can effectively obtain an increasing sequence of step functions converging in this
domain to the desired surface g and its derivative. Combined with the domain-theoretic
model for computational geometry developed in [7], this provides a robust technique for
geometric modelling and CAD.

7.2 A Second Order Method for Solving Differential Equations

We consider the initial value problem given by the system of differential equations

y′ = v(y), y(0) = (0, . . . , 0)

A := associated crescents of C; K := corners of C
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where v ∈ C1([−K, K]n, [−M, M ]n) is a differentiable function defined on a rectangle
containing the origin. A first-order method for solving this equation usually postulates
that the vector field v is Lipschitz, and uses the Lipschitz constant to conservatively
approximate a solution. Assuming that v is differentiable, we can locally replace the
Lipschitz constant by the derivative, giving rise to tighter approximations. Extending
the present framework to functions of interval variables, we can approximate vector
fields along with their derivatives by a pair of functions (v, v′) where v : IRn → IRn

approximates the vector field andv′ : IRn → IR(n×n) approximates the matrix of partial
derivatives. Compared to the approach of interval analysis [10], we are in particular able
to give guarantees on this improved speed of convergence, thus providing a sound and
complete framework for solving the initial value problem.
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