

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 575 – 580, 2005.
© Springer-Verlag Berlin Heidelberg 2005

DiVer: SAT-Based Model Checking Platform for
Verifying Large Scale Systems

Malay K Ganai, Aarti Gupta, and Pranav Ashar

NEC Laboratories America, Princeton, NJ USA 08540
{malay, agupta, ashar}@nec-labs.com

Abstract. We present a SAT-based model checking platform (DiVer) based on
robust and scalable algorithms that are tightly integrated for verifying large
scale industry designs. DiVer houses various SAT-based engines each targeting
capacity and performance issues inherent in verifying large designs. The en-
gines with their respective roles are as follows: Bounded Model Checking
(BMC) and Distributed BMC over a network of workstations for falsification,
Proof-based Iterative Abstraction (PBIA) for model reduction, SAT-based Un-
bounded Model Checking and Induction for proofs, Efficient Memory Model-
ing (EMM) and its combination with PBIA in BMC for verifying embedded
memory systems with multiple memories (with multiple ports and arbitrary ini-
tial state). Using several industrial case studies, we describe the interplay of
these engines highlighting their contribution at each step of verification. DiVer
has matured over 3 years and is being used extensively in several industry set-
tings. Due to an efficient and flexible infrastructure, it provides a very produc-
tive verification environment for research and development.

1 Introduction

Verifying modern designs requires robust and scalable approaches in order to meet
more-demanding time-to-market requirements. Compared to symbolic model check-
ing [1, 2] based on Binary Decision Diagrams [3], SAT-based model checking tech-
niques [4-17] have been able to scale and perform well due to the many recent ad-
vances in DPLL-style SAT solvers [18-20]. We present a SAT-based model checking
platform (DiVer) based on robust and scalable algorithms [5-7, 11-17, 20, 21] that are
tightly integrated for verifying large scale industry designs. We present a brief over-
view of DiVer with its engines each targeting capacity and performance issues inher-
ent in verifying large designs. Using several industrial case studies, we describe the
interplay of these engines highlighting their contribution at each step of verification.

2 Tool Overview

DiVer uses an efficient circuit representation with on-the-fly simplification algorithms
[18, 21], and an incremental hybrid SAT solver [20] that combines the strengths of
circuit-based and CNF-based solvers seamlessly. DiVer houses the following

576 M.K Ganai, A. Gupta, and P. Ashar

SAT-based engines, each geared towards verifying large systems: bounded model
checking (BMC) [7] and distributed BMC (d-BMC) over a network of workstations
(NOW) [12] for falsification, proof-based iterative abstraction (PBIA) for model re-
duction [13], SAT-based unbounded model checking (UMC) [15] and induction for
proofs [5, 11], Efficient Memory Modeling (EMM) [14] and its combination with
PBIA in BMC for verifying embedded memory systems with multiple memories
(with multiple ports and arbitrary initial state) and to discover irrelevant memories
and ports for proving property correctness [17].

DiVer has matured over 3 years and is being used extensively by the designers in
our company. Because of an efficient and flexible infrastructure, it provides a very
productive environment for research and development. In this paper we provide use-
ful pointers to the various research efforts, and describe how they fit well together.
We present the tool as a “wheel of verification engines” in Figure 1(a). We show the
interplay of these engines in verification flows for designs with and without embed-
ded memory in Figures 1(b-c). In the following, we briefly describe various engines:

Internal Representation and Hybrid SAT Solver: The verification model is repre-
sented efficiently as a circuit graph with 2-input OR/INVERTER gates, using an on-
the-fly multi-level functional hashing algorithm [18, 21] that detects and removes
structural and local redundancies. We use this graph to represent the transition rela-
tion, unrolled time frames, and the set of enumerated states. For Boolean reasoning,
we combine [20] the strengths of circuit-based [18] and CNF-based SAT solvers [19]
with incremental SAT solving capabilities [7]. The solver uses deduction and diag-
nostics engines efficiently on the hybrid Boolean representation, i.e., circuit graph and
CNF. The decision engine also benefits from both circuit and CNF based heuristics.

 (a) (b) (c)

Fig. 1. DiVer Overview (a), Verification without (b) / with (c) embedded memory

BMC: Our SAT-based BMC engine uses the simplified circuit graph to represent
unrolled time frames and the hybrid SAT solver to falsify the given the property. For
commonly occurring properties, we use customized translations of LTL properties
that involve partitioning the problem and using incremental model checking [7].

Find Bugs
(BMC or D-BMC)

Identify & remove
irrelevant

logic
(BMC + PBIA)

Prove property
correct

(Induction or UMC
With invariants)

Find Bugs in
Memory system

(BMC+EMM)

Identify & remove
irrelevant

memory and logic
(BMC+EMM+PBIA)

Prove property
correct

(Induction or UMC
With invariants)

BUG

PROOF

Find Bugs
(BMC or D-BMC)

Identify & remove
irrelevant

logic
(BMC + PBIA)

Prove property
correct

(Induction or UMC
With invariants)

Find Bugs in
Memory system

(BMC+EMM)

Identify & remove
irrelevant

memory and logic
(BMC+EMM+PBIA)

Prove property
correct

(Induction or UMC
With invariants)

BUG

PROOF

Distributed BMC
Uses NOW, D-SAT
Scalable
Low comm. overhead

BMC + PBIA
Iterative Abstraction
Lazy Constraints

BMC + EMM
EMM replaces
multiple mem, ports

Models arbitrary initial
state precisely

BMC + EMM + PBIA
PBIA on EMM

Removes irrelevant
Memory and Port

Prover
UMC using
circuit-cofactoring
Induction Hybrid SAT

(CNF+Circuit)

Circuit Simplifier
(Functional

Hashing)

BMC
Incremental
Customization

A
d

d

Resources

Distributed BMC
Uses NOW, D-SAT
Scalable
Low comm. overhead

BMC + PBIA
Iterative Abstraction
Lazy Constraints

BMC + EMM
EMM replaces
multiple mem, ports

Models arbitrary initial
state precisely

BMC + EMM + PBIA
PBIA on EMM

Removes irrelevant
Memory and Port

Prover
UMC using
circuit-cofactoring
Induction Hybrid SAT

(CNF+Circuit)

Circuit Simplifier
(Functional

Hashing)

BMC
Incremental
Customization

A
d

d

Resources

 DiVer: SAT-Based Model Checking Platform for Verifying Large Scale Systems 577

d-BMC: Our d-BMC engine over a network of workstations [12] overcomes the
memory limitation of a single server to provide a scalable approach for carrying out
deeper search on memory-intensive designs. We achieve a) scalability by not keeping
the entire problem data on a single processor, and b) low communication overhead by
making each process cognizant of the partition topology while communicating;
thereby, reducing the process’s receiving buffer with unwanted information.

BMC+EMM: Our EMM approach [14, 17] augments BMC to handle embedded
memory systems (with multiple read, write ports) without explicitly modeling each
memory bit, by capturing the memory data forwarding semantics efficiently using
exclusivity constraints. An arbitrary initial state of the memory is modeled precisely
using constraints on the new symbolic variables introduced [17].

BMC+PBIA: Our PBIA technique [13] generates a property-preserving abstract
model (up to a certain depth) by a) obtaining a set of latch reasons (LR) involved in
the unsatisfiability proof of a SAT problem in BMC, and b) by abstracting away all
latches not in this set as pseudo-primary inputs. We further reduce the model size by
using the abstraction iteratively and using lazy constraints [16].

BMC+EMM+PBIA: We combine the EMM and PBIA techniques [17] to identify
fewer memory modules and ports that need to be modeled; thereby reducing the
model size, and verification problem complexity. If no latch corresponding to the
control logic for a memory module or port is in the LR set (obtained by PBIA), we do
not add the EMM constraints for that memory module or port during BMC.

UMC: Our UMC approach [15] improves the SAT-based blocking clause approach
[8] by several orders of magnitude, by using circuit-based cofactoring to capture a
larger set of new states per enumeration, and representing them efficiently using a
simplified circuit graph. The method is combined with inductive invariants, e.g.,
reachability constraints [11] for faster fixed-point computations.

3 Selected Case Studies

Using selected case studies from the industry, we demonstrate the role of various
engines at each step of the verification. Note that without the interplay of the engines
we could not have verified any of these designs. The first two case studies use the
verification flow shown in Figure 1(b) and the next two use that shown in Figure 1(c).
All experiments were performed on a server with 2.8 GHz Xeon processors with 4GB
running Red Hat Linux 7.2.

Industry Design I: The design has 13K flip-flops (FFs), ~0.5M gates in the cone of
influence of a safety property. Using BMC, we showed there was no witness up to
depth 120 (in 1643s) before we run out of memory. Using d-BMC, we showed no
witness up to depth 323 (in 8643s) using 5 workstations (configured as 1 Master and 4
Clients and connected with 1Gps Ethernet LAN), with a communication overhead of
30% and scalability factor of 0.1 (i.e, potentially we could do a 10 times deeper

578 M.K Ganai, A. Gupta, and P. Ashar

analysis than that on the single server.) We hypothesized that the property is correct.
We used the PBIA engine to obtain an abstract model with 71 FFs and ~1K gates in 6
iterations taking ~1200s. With UMC, we proved the property correct taking ~2400s.

Industry Design II: The design with environmental constraints has 3.3K FFs and
~28K gates for a safety property. Using BMC, we showed there was no witness up to
depth 113 (in ~3hr, 720MB). Again, we hypothesized the correctness of the property.
We used PBIA to obtain an abstract model A1 with 163 FFs and ~2K gates in 4 itera-
tions taking 9000s. Without the environmental constraints, the abstract model A2 has
only 66 FFs and ~1K gates. We computed a reachability invariant [11] on the A2
model (in ~4s) and used this with UMC on the A1 model to obtain a proof in ~60s.

Industry Design III: The design has 756 FFs (excluding the memory registers), and
~15K gates. It has two memory modules, both having address width, AW = 10 and
data width, DW = 8. Each module has 1 write and 1 read port, with the memory state
initialized to 0. There are 216 reachabality properties. Using BMC+EMM, we found
witnesses for 206 of the 216 properties, taking ~400s and 50Mb. The maximum depth
over all witnesses was 51. Using explicit modeling, we required 20540s (~6hrs) and
912Mb to find witnesses for all 206 properties. By using induction with BMC+EMM,
we proved the remaining 10 properties in <1s (25 s for explicit modeling).

Quicksort: The implementation has two memory modules: an un-initialized array
with AW=10, DW=32, 1 read and 1 write port and an un-initialized stack (for recur-
sive function calls) with AW=10, DW=24, 1 read and 1 write port. The design has
167 FFs (excluding memory registers), and ~9K gates for array size 5. The property
states that after return from a recursive call, the program counter should go to a recur-
sive call on the right partition or return to the parent on the recursion stack. Using
BMC+EMM+PBIA, we reduced the model to 91 FFs and ~3K gates, and also identi-
fied the array module as irrelevant for this property. On this reduced model we proved
correctness using forward induction (proof diameter = 59) in 2.3Ks, 116MB. (Without
the abstraction, the induction proof in BMC+EMM takes ~5Ks, 400MB. For explicit
model, however, we could obtain neither a proof nor an abstract model in 3 hours).

References

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking: MIT Press, 1999.
[2] K. L. McMillan, Symbolic Model Checking: An Approach to the State Explosion Prob-

lem: Kluwer Academic Publishers, 1993.
[3] R. E. Bryant, "Graph-based algorithms for Boolean function manipulation," IEEE Trans-

actions on Computers, vol. C-35(8), pp. 677-691, 1986.
[4] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, "Symbolic model checking us-

ing SAT procedures instead of BDDs," in Proceedings of DAC, 1999.
[5] M. Sheeran, S. Singh, and G. Stalmarck, "Checking Safety Properties using Induction and

a SAT Solver," in Proceedings of FMCAD, 2000.
[6] M. Ganai and A. Aziz, "Improved SAT-based Bounded Reachability Analysis," in Pro-

ceedings of VLSI Design Conference, 2002.

 DiVer: SAT-Based Model Checking Platform for Verifying Large Scale Systems 579

[7] M. Ganai, L. Zhang, A. Gupta, P. Ashar, and Z. Yang, "Efficient Approaches for
Bounded Model Checking," US Patent Application 2003-0225552, Filed on May 30,
2002.

[8] K. McMillan, "Applying SAT methods in Unbounded Symbolic Model Checking," in
Computer-Aided Verification, 2002.

[9] K. McMillan and N. Amla, "Automatic Abstraction without Counterexamples," in Pro-
ceedings of TACAS, 2003.

[10] K. McMillan, "Interpolation and SAT-based Model Checking," in Proceedings of CAV,
2003.

[11] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar, "Abstraction and Bdds Comple-
ment SAT-Based BMC in DiVer," in Proceedings of CAV, 2003.

[12] M. Ganai, A. Gupta, and P. Ashar, "Distributed SAT and Distributed Bounded Model
Checking," in Proceedings of CHARME, 2003.

[13] A. Gupta, M. Ganai, P. Ashar, and Z. Yang, "Iterative Abstraction using SAT-based
BMC with Proof Analysis," in Proceedings of ICCAD, 2003.

[14] M. Ganai, A. Gupta, and P. Ashar, "Efficient Modeling of Embedded Memories in
Bounded Model Checking," in Proceedings of CAV, 2004.

[15] M. Ganai, A. Gupta, and P. Ashar, "Efficient SAT-based Unbounded Model Checking
Using Circuit Cofactoring," in Proceedings of ICCAD, 2004.

[16] A. Gupta, M. Ganai, and P. Ashar, "Lazy Constraints and SAT Heuristics for Proof-based
Abstraction," in Proceedings of VLSI Design, 2005.

[17] M. Ganai, A. Gupta, and P. Ashar, "Verification of Embedded Memory Systems using
Efficient Memory Modeling," in Proceedings of DATE, 2005.

[18] A. Kuehlmann, M. Ganai, and V. Paruthi, "Circuit-based Boolean Reasoning," in Pro-
ceedings of DAC, 2001.

[19] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, "Chaff: Engineering an
Efficient SAT Solver," in Proceedings of DAC, 2001.

[20] M. Ganai, L. Zhang, P. Ashar, and A. Gupta, "Combining Strengths of Circuit-based and
CNF-based Algorithms for a High Performance SAT Solver," in Proceedings of DAC,
2002.

[21] M. Ganai and A. Kuehlmann, "On-the-fly Compression of Logical Circuits," in Proceed-
ings of IWLS, 2000.

Appendix

DiVer is the core of the verification system as shown in the Figure 2. The tool has the
ability to handle several industry design features including multiple clocks, phase, and
gated clocks with arbitrary frequency ratios, embedded memories with multiple read
and write ports, environmental and fairness constraints. Current input spec is LTL, but
support for other specification like PSL is on the way. DiVer is used extensively by
the designers within the company who are not verification experts. We have often
received feedbacks that tool has been able to discover hard to detect bugs that simula-
tions could not have found, or could have found at very high cost in terms of re-
sources. As of now, the tool is not available for free download.

580 M.K Ganai, A. Gupta, and P. Ashar

Fig. 2. Overview of Verification System

Front-end for Verification
Model Generator

 BLIF
(synchronous,
single clock,
design)

 Design: Proprietary, Verilog
(multiple clock, multiple phase,
gated clock, false combinational
loops, embedded memories with
multiple ports)

Constraints:
Environmental,
Fairness

User-specified
Properties:
LTL (PSL)

Clocking
Characteristics

(names, frequencies)

Memory Description
(port names, interface signals
names, initial states)

Properties+Constraints
(User-specified +
Automatic)

 Initialization: Setting input
Parameters and verification flow

Falsification: BMC, EMM. d-BMC
Abstraction: PBIA, PBIA+EMM
Proof: UMC, BDD, Induction

VCD
(Debug Trace)

Report (correct, bug, or required
more resources), Debug trace

Pre-Solve

Solve

Post-Solve

 C
O
R
E

VCD to Testbench
Gtkwave Viewer
Source Annotator

Pre-Verification

Verification

Post-Verification

	Introduction
	Tool Overview
	Selected Case Studies
	References
	Appendix

