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Abstract. We present a SAT-based model checking platform (DiVer) based on 
robust and scalable algorithms that are tightly integrated for verifying large 
scale industry designs. DiVer houses various SAT-based engines each targeting 
capacity and performance issues inherent in verifying large designs. The en-
gines with their respective roles are as follows: Bounded Model Checking 
(BMC) and Distributed BMC over a network of workstations for falsification, 
Proof-based Iterative Abstraction (PBIA) for model reduction, SAT-based Un-
bounded Model Checking and Induction for proofs, Efficient Memory Model-
ing (EMM) and its combination with PBIA in BMC for verifying embedded 
memory systems with multiple memories (with multiple ports and arbitrary ini-
tial state). Using several industrial case studies, we describe the interplay of 
these engines highlighting their contribution at each step of verification. DiVer 
has matured over 3 years and is being used extensively in several industry set-
tings. Due to an efficient and flexible infrastructure, it provides a very produc-
tive verification environment for research and development.  

1 Introduction 

Verifying modern designs requires robust and scalable approaches in order to meet 
more-demanding time-to-market requirements. Compared to symbolic model check-
ing  [1, 2] based on Binary Decision Diagrams [3], SAT-based model checking tech-
niques [4-17] have been able to scale and perform well due to the many recent ad-
vances in DPLL-style SAT solvers [18-20]. We present a SAT-based model checking 
platform (DiVer) based on robust and scalable algorithms  [5-7, 11-17, 20, 21] that are 
tightly integrated for verifying large scale industry designs. We present a brief over-
view of DiVer with its engines each targeting capacity and performance issues inher-
ent in verifying large designs. Using several industrial case studies, we describe the 
interplay of these engines highlighting their contribution at each step of verification. 

2 Tool Overview 

DiVer uses an efficient circuit representation with on-the-fly simplification algorithms 
[18, 21], and an incremental hybrid SAT solver [20] that combines the strengths of 
circuit-based and CNF-based solvers seamlessly. DiVer houses the following  
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SAT-based engines, each geared towards verifying large systems: bounded model 
checking (BMC) [7] and distributed BMC (d-BMC) over a network of workstations 
(NOW) [12] for falsification, proof-based iterative abstraction (PBIA) for model re-
duction [13], SAT-based unbounded model checking (UMC) [15] and induction for 
proofs [5, 11], Efficient Memory Modeling (EMM) [14] and its combination with 
PBIA in BMC for verifying embedded memory systems with multiple memories 
(with multiple ports and arbitrary initial state) and to discover irrelevant memories 
and ports for proving property correctness [17]. 

DiVer has matured over 3 years and is being used extensively by the designers in 
our company. Because of an efficient and flexible infrastructure, it provides a very 
productive environment for research and development. In this paper we provide use-
ful pointers to the various research efforts, and describe how they fit well together. 
We present the tool as a “wheel of verification engines” in Figure 1(a). We show the 
interplay of these engines in verification flows for designs with and without embed-
ded memory in Figures 1(b-c). In the following, we briefly describe various engines: 
 
Internal Representation and Hybrid SAT Solver: The verification model is repre-
sented efficiently as a circuit graph with 2-input OR/INVERTER gates, using an on-
the-fly multi-level functional hashing algorithm [18, 21] that detects and removes 
structural and local redundancies. We use this graph to represent the transition rela-
tion, unrolled time frames, and the set of enumerated states. For Boolean reasoning, 
we combine [20] the strengths of circuit-based [18] and CNF-based SAT solvers [19] 
with incremental SAT solving capabilities [7]. The solver uses deduction and diag-
nostics engines efficiently on the hybrid Boolean representation, i.e., circuit graph and 
CNF. The decision engine also benefits from both circuit and CNF based heuristics.  

 
 
 

 
 
 
 
 
 
 
 
 

 
                                (a)                                                    (b)                                (c) 

Fig. 1. DiVer Overview (a), Verification without (b) / with (c) embedded memory 

BMC: Our SAT-based BMC engine uses the simplified circuit graph to represent 
unrolled time frames and the hybrid SAT solver to falsify the given the property. For 
commonly occurring properties, we use customized translations of LTL properties 
that involve partitioning the problem and using incremental model checking [7]. 
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d-BMC: Our d-BMC engine over a network of workstations [12] overcomes the 
memory limitation of a single server to provide a scalable approach for carrying out 
deeper search on memory-intensive designs.  We achieve a) scalability by not keeping 
the entire problem data on a single processor, and b) low communication overhead by 
making each process cognizant of the partition topology while communicating; 
thereby, reducing the process’s receiving buffer with unwanted information. 
 
BMC+EMM: Our EMM approach [14, 17] augments BMC to handle embedded 
memory systems (with multiple read, write ports) without explicitly modeling each 
memory bit, by capturing the memory data forwarding semantics efficiently using 
exclusivity constraints. An arbitrary initial state of the memory is modeled precisely 
using constraints on the new symbolic variables introduced [17].  
 
BMC+PBIA: Our PBIA technique [13] generates a property-preserving abstract 
model (up to a certain depth) by a) obtaining a set of latch reasons (LR) involved in 
the unsatisfiability proof of a SAT problem in BMC, and b) by abstracting away all 
latches not in this set as pseudo-primary inputs. We further reduce the model size by 
using the abstraction iteratively and using lazy constraints [16]. 
 
BMC+EMM+PBIA: We combine the EMM and PBIA techniques [17] to identify 
fewer memory modules and ports that need to be modeled; thereby reducing the 
model size, and verification problem complexity. If no latch corresponding to the 
control logic for a memory module or port is in the LR set (obtained by PBIA), we do 
not add the EMM constraints for that memory module or port during BMC.   
 
UMC: Our UMC approach [15] improves the SAT-based blocking clause approach 
[8] by several orders of magnitude, by using circuit-based cofactoring to capture a 
larger set of new states per enumeration, and representing them efficiently using a 
simplified circuit graph. The method is combined with inductive invariants, e.g., 
reachability constraints [11] for faster fixed-point computations. 

3  Selected Case Studies 

Using selected case studies from the industry, we demonstrate the role of various 
engines at each step of the verification. Note that without the interplay of the engines 
we could not have verified any of these designs. The first two case studies use the 
verification flow shown in Figure 1(b) and the next two use that shown in Figure 1(c). 
All experiments were performed on a server with 2.8 GHz Xeon processors with 4GB 
running Red Hat Linux 7.2.  
 
Industry Design I: The design has 13K flip-flops (FFs), ~0.5M gates in the cone of 
influence of a safety property. Using BMC, we showed there was no witness up to 
depth 120 (in 1643s) before we run out of memory. Using d-BMC, we showed no 
witness up to depth 323 (in 8643s) using 5 workstations (configured as 1 Master and 4 
Clients and connected with 1Gps Ethernet LAN), with a communication overhead of 
30% and scalability factor of 0.1 (i.e, potentially we could do a 10 times deeper  
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analysis than that on the single server.) We hypothesized that the property is correct. 
We used the PBIA engine to obtain an abstract model with 71 FFs and ~1K gates in 6 
iterations taking ~1200s. With UMC, we proved the property correct taking ~2400s.   
 
Industry Design II: The design with environmental constraints has 3.3K FFs and 
~28K gates for a safety property. Using BMC, we showed there was no witness up to 
depth 113 (in ~3hr, 720MB). Again, we hypothesized the correctness of the property. 
We used PBIA to obtain an abstract model A1 with 163 FFs and ~2K gates in 4 itera-
tions taking 9000s. Without the environmental constraints, the abstract model A2 has 
only 66 FFs and ~1K gates. We computed a reachability invariant [11] on the A2 
model (in ~4s) and used this with UMC on the A1 model to obtain a proof in ~60s.  
 
Industry Design III: The design has 756 FFs (excluding the memory registers), and 
~15K gates. It has two memory modules, both having address width, AW = 10 and 
data width, DW = 8. Each module has 1 write and 1 read port, with the memory state 
initialized to 0. There are 216 reachabality properties. Using BMC+EMM, we found 
witnesses for 206 of the 216 properties, taking ~400s and 50Mb. The maximum depth 
over all witnesses was 51. Using explicit modeling, we required 20540s (~6hrs) and 
912Mb to find witnesses for all 206 properties. By using induction with BMC+EMM, 
we proved the remaining 10 properties in <1s (25 s for explicit modeling).  
 
Quicksort: The implementation has two memory modules: an un-initialized array  
with AW=10, DW=32, 1 read and 1 write port and an un-initialized stack (for recur-
sive function calls) with AW=10, DW=24, 1 read and 1 write port. The design has 
167 FFs (excluding memory registers), and ~9K gates for array size 5. The property 
states that after return from a recursive call, the program counter should go to a recur-
sive call on the right partition or return to the parent on the recursion stack. Using 
BMC+EMM+PBIA, we reduced the model to 91 FFs and ~3K gates, and also identi-
fied the array module as irrelevant for this property. On this reduced model we proved 
correctness using forward induction (proof diameter = 59) in 2.3Ks, 116MB. (Without 
the abstraction, the induction proof in BMC+EMM takes ~5Ks, 400MB. For explicit 
model, however, we could obtain neither a proof nor an abstract model in 3 hours). 
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Appendix 

DiVer is the core of the verification system as shown in the Figure 2. The tool has the 
ability to handle several industry design features including multiple clocks, phase, and 
gated clocks with arbitrary frequency ratios, embedded memories with multiple read 
and write ports, environmental and fairness constraints. Current input spec is LTL, but 
support for other specification like PSL is on the way.  DiVer is used extensively by 
the designers within the company who are not verification experts. We have often 
received feedbacks that tool has been able to discover hard to detect bugs that simula-
tions could not have found, or could have found at very high cost in terms of re-
sources. As of now, the tool is not available for free download. 
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Fig. 2. Overview of Verification System 
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