
JML-Testing-Tools: A Symbolic Animator for
JML Specifications Using CLP

Fabrice Bouquet, Frédéric Dadeau, Bruno Legeard, and Mark Utting

Laboratoire d’Informatique (LIFC),
Université de Franche-Comté, CNRS - INRIA,

16, route de Gray - 25030 Besançon cedex, France
{bouquet, dadeau, legeard, utting}@lifc.univ-fcomte.fr

Abstract. This paper describes a tool for symbolically animating JML
specifications using Constraint Logic Programming. A customized solver
handles constraints that represent the value of instance fields. We have
extended a model-based approach to be able to handle object-oriented
specifications. Our tool is also able to check properties during the simula-
tion and exhibit counter-examples for false properties. Therefore, it can
be used both for semi-automated verification and for validation purposes.

Keywords: Java Modeling Language, model-based, object-oriented, sym-
bolic animation.

1 Motivations

Building formal models of systems is a valuable technique for improving the
design of software, and analyzing safety and functionality, particularly when
there is good tool support for the formal method. A variety of different modeling
languages are used for building the formal models. The Java Modeling Language
(JML) [LBR98, LBR99], is an object-oriented modeling language based on Java
and designed to be used as well by developers as by modeling engineers.

The use of formal models makes it possible to check the coherence of the spec-
ification (verification) and also to check the conformance of the specification with
the initial requirements (validation). Good tool support for these verification and
validation processes is always appreciated by users of the modeling language. A
key technique for validation is animation of the model. This is a semi-automated
process, which simulates the execution of the specification, allowing the author
to check that his specification has the desired behavior.

This paper describes a tool, called JML-Testing-Tools, which is able to sym-
bolically execute a JML specification. It also allows users to specify constrained
values as input for the method parameters, which is more general than entering
specific values. We use a novel constraint solver to handle the constrained values
of the resulting state variables. Moreover, our tool is able to check properties
on-the-fly and to display counter examples for properties that fail. Thus, this
tool may also be used for verification purposes. This technology has already

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 551–556, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



552 F. Bouquet et al.

been applied to the animation of B [Abr96], Z [Spi92] or Statechart [Har87]
specifications within the BZ-Testing-Tools environment [ABC+02].

2 Illustrating JML with an Example

JML is used to specify the behavior of Java modules. It is presented as anno-
tations embedded within the Java code, starting with a comment-like syntax so
that they do not interfere with usual Java tools, but specialized JML tools may
take care of them.

The example in figure 1 presents a simplified electronic purse specification
that illustrates the possibilities of JML. This class contains a field named balance
which represents the amount of money stored in the purse, and a static field
named max which designates the maximal amount that the purse may contain.

This specification illustrates the main clauses of JML, such as the class in-
variant (invariant), specifying that the balance should always be greater or
equal to zero, or history constraints (constraint) specifying that the maximal
balance, max, should never be modified. Notice the presence of the \old(x) op-
erator in the before-after predicates, which expresses that the expression x has
to be considered at its before value.

Each method specification clause is described by a keyword indicating its kind
(e.g. requires for preconditions, ensures for normal postcondition, signals for
exceptional postcondition, etc.), followed by a first-order logic predicate or an ex-
plicit keyword (e.g. \nothing, \not_specified, etc.). The assignable clause
in the method specifications is used to list the fields which may be modified
by the execution of the method. The signals clause is used to describe the
postcondition the method establishes when the considered method throws an
exception of the given type. In our example, the exception NoCreditException
is raised when the amount to withdraw is greater than the value of the
balance.

class Purse {

//@ invariant balance >= 0;
short balance;
//@ constraint max == \old(max);
static short max = 32767;

/*@ behavior
@ requires a > 0;
@ assignable balance;
@ ensures balance == \old(balance) - a;
@ signals (NoCreditException e)
@ balance == \old(balance) &&
@ a > \old(balance);
@*/

public void withdraw(short a)
throws NoCreditException {...}

/*@ normal_behavior
@ requires b > 0 && b <= max;
@ assignable balance;
@ ensures getBalance() == b;
@*/

public Purse(short b) {...}

/*@ normal_behavior
@ assignable \nothing;
@ ensures \result == balance;
@*/

public /*@ pure @*/ short getBalance() {...}

}

Fig. 1. The JML specification of the Purse example



JML-Testing-Tools: A Symbolic Animator for JML Specifications 553

JML also introduces new kind of method declaration modifiers, including the
notion of purity, meaning that a method specified as pure does not change the
value of any field of the considered class. In our example, method getBalance()
is described to observe the value of the field balance. Method specifications may
contain method calls, if and only if these methods are described as pure, in order
to avoid side-effects.

3 Description of JML-Testing-Tools

JML-Testing-Tools – JML-TT – is a recently developed JML specification ani-
mator. It relies on a model-based approach, meaning that we only consider the
method specifications to simulate the activation of the behaviors of the system,
and we do not execute the Java code itself.

This is an extension of the BZ-Testing-Tools technology, a framework for
animation and automatic test generation from B, Z or Statechart specifications,
extended for handling object concepts. At the present time, only the animation
part has been studied and implemented.

JML-TT takes as an input a JML annotated
file of a Java class. The tool parses, type-checks
and gathers all the referenced and needed classes
which are then translated it to an intermediate
format file, from which animation is realized. The
animation relies on an original constraint solver
named CLPS-BZ which handles constraints on
the values of state variables, and method input
parameters. Indeed, JML-TT makes it possible
to constrain the value of an input to execute a
method on an instance. Moreover, JML-TT is
able to assign to the state variables a value sat-
isfying the constraints store, by valuation of a
constrained environment.

4 Animating a JML Specification

JML-Testing-Tools uses the JML annotations describing the specification of the
Java module, i.e., class or interface, to symbolically execute it.

The CLPS-BZ animation engine manages an execution environment, which
represents the classes, instances, fields and their corresponding values. Animat-
ing consists in identifying the predicates representing the different behaviors
of a considered method, and interpreting them so that a new execution state
is reached. Therefore, the methods are described using before-after predicates
whose semantics is close to JML.

During the animation, the user is free to choose which objects he wants to
create and which methods he wants to invoke on the created objects. The user



554 F. Bouquet et al.

is also asked to input the value of method parameters, which may also be left
constrained. This latter creates a constrained variable to represent the value of
the parameter, depending on its type and the constraints described in the JML
method annotations. New constrained variable may appear to represent instance
fields values, if they are related to the constrained parameter. A labeling can be
performed at any time to get all the possible values for all the newly introduced
constrained variables.

The invocation of a method may create choice-points identifying behaviors
in the specification. For example, the following JML-annotated method:

/*@ behavior
@ requires P;
@ assignable A;
@ ensures Q;
@ signals (Exception) S;
@*/

TypeReturn methodName(TypeParam1 param1, ...) { ... }

will induce two behaviors: P ∧ Q and P ∧ S, describing the case when the method
terminates normally and establishes the normal postcondition Q, and the case
when the method terminates abnormally by throwing the specified exception
and establishes the exceptional postcondition S. JML-TT makes it possible to
execute each one of them by using a simple backtracking technique.

Each step of the animation is expressed in Java syntax to produce a trace
of the symbolic execution performed. This Java instruction sequence may then
be exported to a Java test case file and compiled to perform runtime assertion
checking as described in [CL02].

Finally, properties can be checked within a specific execution state to ensure
the conformance of the dynamic part of the specification –the methods– with
the static properties of the system –the invariant and the history constraints.
Properties are checked using the principle of refutation, which makes it possible
to check either the validity or the satisfiability of the properties and to exhibit
a reachable counter-example, when the property is checked to false.

5 Features of JML-Testing-Tools

JML-Testing-Tools has the following features:

• Animation of a JML specification in an environment also displaying all the
referenced classes;

• Execution of the methods by activating their behaviors with precondition
checking;

• Possibility to leave input values of method parameters unspecified, to create
constrained states;

• Valuation of the constrained state to assign all their possible values to the
constrained variables, with the possibility to take into account the invariant
and/or the history constraints;



JML-Testing-Tools: A Symbolic Animator for JML Specifications 555

• Properties checking (invariant, history constraints) within an execution state,
and exhibition of counter-examples for unchecked properties;

• Exportation of the user-defined execution sequence to a Java test case file,
that can be checked by a runtime assertion checker;

• Good coverage of JML specifications clauses: class invariant, history con-
straints, preconditions (requires), postcondition (ensures, signals), delaying
(when), divergence (diverges);

• Undo and redo features;
• Possibility to save and open animations.

All these features are realized by the user through a user-friendly Graphical
User Interface described hereafter.

6 Description of the GUI

The Graphical User Interface displayed by the tool is presented in figure 2.
The left area (1) displays the state informations: the instances that have been

created, the value of their fields, etc. From this area, the user can execute the
class methods on the instances, or several specific actions on public fields such
as directly assigning a value. The top-right area (2) displays the Java code corre-
sponding to the execution sequence that is being created. The middle-right area
(3) recalls information on the selected instance and on the corresponding class.
The bottom-right area (4) is used to present the result of properties checking,
such as invariant or history constraints. If a property evaluates to false, it is

Fig. 2. The JML-Testing-Tools animator main frame



556 F. Bouquet et al.

displayed and a counter-example exhibits the state of the system that presents
an error. The menu is used to run the verification of properties or the valuation
of a constrained environment.

7 General Information

The JML-Testing-Tools has been developed at the Computer Science Laboratory
of the University of Franche-Comté CNRS INRIA (France), in the Constraint
group led by Professor Bruno Legeard, in partnership with the GECCOO1 and
INRIA CASSIS2 projects.

JML-Testing-Tools is available for download at the following address:

http://lifc.univ-fcomte.fr/~jmltt/

References

[ABC+02] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. BZ-TT: A Tool-Set for Test Generation from Z
and B using Constraint Logic Programming. In Robert Hierons and Thierry
Jerron, editors, Formal Approaches to Testing of Software, FATES 2002
workshop of CONCUR’02, pages 105–120. INRIA Report, August 2002.

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, 1996.

[CL02] Y. Cheon and G.T. Leavens. A runtime assertion checker for the Java
Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun, ed-
itors, Proceedings of the International Conference on Software Engineering
Research and Practice (SERP ’02), Las Vegas, Nevada, USA, June 24-27,
2002, pages 322–328. CSREA Press, June 2002.

[Har87] D. Harel. Statecharts: a Visual Formalism for Complex Systems. Journal
of Science of Computer Programming, 8:231–274, 1987.

[LBR98] G.T. Leavens, A.L. Baker, and C. Ruby. JML: a java modeling language. In
Formal Underpinnings of Java Workshop (at OOPSLA ’98), October 1998.

[LBR99] G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed
design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Be-
havioral Specifications of Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, Boston, 1999.

[Spi92] J.M. Spivey. The Z notation: A Reference Manual. Prentice-Hall, 2nd

edition, 1992. ISBN 0 13 978529 9.

1 GEneration of Certified Code for Object-Oriented applications
http://geccoo.lri.fr

2 Combining ApproacheS for the Security of Infinite state Systems
http://www.loria.fr/equipes/cassis/


	Motivations
	Illustrating JML with an Example
	Description of JML-Testing-Tools
	Animating a JML Specification
	Features of JML-Testing-Tools
	Description of the GUI
	General Information



