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Abstract. The classical model for concurrent systems is based on ob-
serving execution sequences of global states, separated from each other
by atomic transitions. This model is intuitively simple and enjoys a va-
riety of mathematical tools, e.g., finite automata and linear temporal
logic, and algorithms that can be applied in order to test and verify con-
current systems. Although this model is sufficient for most frequently
used validation tasks, some phenomena of concurrent systems are dif-
ficult to express using its related formalisms. In particular, not all the
global states (snapshots) related to an execution appear on a particular
execution sequence; some appear on equivalent sequences. Previous at-
tempts to move into formalisms that are based on a more detailed model
of execution, e.g,. the causality based model, resulted in specification
formalisms with inherently high complexity verification algorithms. We
study here verification problems that involve allowing the execution se-
quences model to observe past global states from equivalent executions.
We show various algorithms and complexity results related to our exten-
sion of the interleaving model.

1 Introduction

Several temporal logics are tailored to reason about partial order executions.
With such logics, we are interested in local states of actions that occurred ac-
cording to the partial order, or in the global states compatible with a partial
order. A partial order among events can be completed into multiple total orders
that are consistent with it, forming a set of equivalent execution sequences. As
these equivalent sequences cannot be distinguished by an observer not capable
of monitoring instantaneously concurrent processes, it is unnatural to distin-
guish between them. A specification that permits some interleaving sequence
but forbids another equivalent one is possibly ambiguous. Local temporal log-
ics like TLC [5], LocTL [8] and all MSO-definable temporal logics [12], do not
distinguish equivalent sequences and allow model-checking in PSPACE. But ex-
pressing global properties of the system is notoriously hard in most of these
formalisms. Alternatively, one can use global temporal logics that are tailored
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to express global properties. The inherent problem of these logics is the very
high computational complexity (e.g., EXSPACE-complete for the UNTIL-free
fragment of ISTL [4] and non-elementary for LTrL [24, 26]).

In this paper, we consider a global temporal logic whose capability to talk
about partial-order properties is restricted to expressing elementary properties
of snapshots.

As a partial order execution model we select Mazurkiewicz traces. Namely,
equivalence classes of sequences over some finite alphabet generated using a
(fixed) independence relation over the alphabet. Two sequences are equivalent
exactly when we can obtain one from the other by commuting adjacent indepen-
dent occurrences of letters. Thus, if the alphabet includes a, b and c, where a and
b are independent, but both interdependent with c, then we have cabba ≡ caabb,
with [cabba] denoting the trace (equivalence class) that includes the denoted
sequence. A trace [v] subsumes a trace [u] if there is a sequence u′ such that
v ≡ uu′. In concurrency theory, this represents the fact that [u] is a (possible)
past of [v]. For example, [cab] subsumes itself, [ca], [cb], [c] and [ε] (the empty
trace). Informally, we also say that the word cab subsumes cb.

We describe the Snapshot Linear Temporal Logic, a new temporal logic with
propositions [p], expressing that a state satisfying p has to be subsumed. Together
with that logic, we give a model-checking algorithm, which is EXPSPACE only
in the size of the alphabet, and has the same complexity as the model-checking
of LTL otherwise. We further identify a fragment of the logic which is PSPACE-
complete only in the size of the formula, extending the model-checking algo-
rithm for LTL. In order to gain further insight of the model-checking problem
(as we do not have a tight lower bound for it), we study the model-checking of
snapshots of a word. The corresponding language theoretic problem is: given a
word (which can represent an execution), we want to check whether it subsumes
a word that is in some language L (where L can represent some property).
To formalize the problem, we consider that the property is given by a trace-
closed automaton. Hence, checking whether the snapshot of a word satisfies the
property is equivalent to test whether w ∈ [LΣ�], which is somehow related
to pattern matching in traces. We later use a construction for the word prob-
lem for giving a more efficient model checking algorithm for a subset of our
temporal logic.

Model-checking snapshots of a word can be seen as an extension of model-
checking a word [19], which is an important task that has not received enough
attention. For instance, model-checking a word is the core of runtime verifica-
tion, but is also needed for DNA algorithms, or checking for a spurious counter-
example in an abstracted model. We study variations of the problem, namely
relaxing the dependencies and considering very long words. A case where the de-
pendencies are not too complicated, is when the trace alphabet is series-parallel
[9], that is, built on serial and parallel composition of letters. This kind of al-
phabets is often used to facilitate algorithms [7, 17]. To produce more efficient
algorithms on very long words, we follow several papers [15, 19, 22] that con-
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sider that the word is given in a compressed way, by means of Straight Line
Programs [22].

Related works deal with checking whether snapshots of an execution of a dis-
tributed system satisfy a given propositional predicate. Solutions for this appear
e.g., in [11, 23]. In our work, we study the problem of checking whether such a
word, or a finite state system, satisfy a given temporal property that also deals
with snapshots.

2 Preliminaries

Let Σ be a finite alphabet. An independence relation is an irreflexive and sym-
metric relation I ⊆ Σ × Σ. The pair (Σ, I) is called a concurrency alphabet.

For two words u, v ∈ Σ∗, write u
1≡ v if there exist words w1, w2 and letters

a, b such that (a, b) ∈ I, u = w1abw2 and v = w1baw2, i. e., if u is obtained
from v by exchanging the order of two adjacent independent letters. Let ≡ be
the reflexive and transitive closure of the relation

1≡. We say that u and v are
trace equivalent [18] over (Σ, I) if u ≡ v. That is, u is trace equivalent to v
if u can be obtained from v by repeatedly commuting adjacent independent
letters.

We next want to extend this equivalence to infinite words. Denote by u ≺ v
the fact that u is a finite prefix of v. For two infinite words w1, w2 ∈ Σω over Σ,
we write w1 ≡lim w2 iff

– for every u ∈ Σ� such that u ≺ w1 there exist v, v′ ∈ Σ� such that v ≺ w2
and uv′ ≡ v, and

– for every u ∈ Σ� such that u ≺ w2 there exist v, v′ ∈ Σ� such that v ≺ w1
and uv′ ≡ v.

Since no confusion can arise, we abbreviate w1 ≡lim w2 by w1 ≡ w2, i.e., we
consider the trace equivalence ≡ as an equivalence relation on the set of finite
and infinite words. A trace is an equivalence class w.r.t. ≡. It is usually de-
noted by writing one representative of the equivalence class in square brackets,
e.g., [abaac]. The alphabet and independence relation should be clear from the
context. Note that u ≡ u′ and v ≡ v′ imply uv ≡ u′v′ (for u, u′ finite and
v, v′ possibly infinite). Thus, we can define a concatenation of traces simply by
[u][v] = [uv] for a finite word u and a finite or infinite word v. A trace [u]
subsumes [v], denoted [v] � [u] if there exists some v′ such that u ≡ vv′ (equiva-
lently, if [u] = [v][v′]). For a language L of finite and infinite words we write [L]
for the set {u | u ≡ v, v ∈ L}.

A (labeled) transition system over Σ is a tuple A = (S,E, ι,Σ) with set of
states S, transitions E ⊆ S × Σ × S, and initial state ι ∈ S. An automaton is
a transition system extended by a set of accepting states F . It is trace-closed if
[L(A)] = L(A), i.e., if its language is closed under the trace equivalence ≡.
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3 Snapshot Linear Temporal Logic

3.1 Syntax, Semantics, and Motivation

We extend the definition of Linear Temporal Logic (LTL) by adding a construct
for dealing with snapshots. We call the new extension Snapshot Linear Temporal
Logic or SLTL. Let P be a finite set of propositional formulas and Bool(P) be
the set of Boolean combinations of propositions over P.

ϕ ::= p | [p] | (¬ϕ) | (ϕ ∨ ϕ) | (©ϕ) | (�ϕ) | (ϕUϕ)

where p ∈ Bool(P). Note that the ‘[ ]’ construct is applied only to a Boolean
expression, never to a formula with modalities. Note also that we use square
brackets for two different (although related) notions: for trace equivalence classes,
as in the previous section, and in the logic to denote that a Boolean combination
holds in a subsumed snapshot.

A Kripke structure S = (S,E, ι,Σ, val) is a deterministic transition system
(S,E, ι,Σ) together with a valuation function val : S → 2P assigning to a
state s those atomic propositions that hold in this state. We now fix a Kripke
structure S. For a word w ∈ Σ∗, let state(ι, w) denote the unique state that is
obtained by applying the actions of w to the initial state ι. The interpretation
of SLTL-formulas is defined over a pair of sequences u ∈ Σ� and v ∈ Σω.

• (u, v) |= p iff p ∈ val(state(ι, u)) for p ∈ P.
• (u, v) |= [p] iff there exists a sequence u′ ∈ Σ� such that [u′] � [u] and

state(ι, u′) |= p for p ∈ Bool(P) (according to propositional logic).
• (u, v) |= ¬ϕ iff (u, v) 	|= ϕ.
• (u, v) |= ϕ ∨ ψ iff (u, v) |= ϕ or (u, v) |= ψ.
• (u, v) |= ©ϕ iff (ua, v′) |= ϕ where a ∈ Σ and v′ ∈ Σω with v = av′.
• (u, v) |= ϕUψ iff we can write v = wv′ such that (uw, v′) |= ψ and for any

decomposition w = w1w2 where w2 is nonempty, (uw1, w2v) |= ϕ.

Based on these temporal operators, we can define (as usual) several other ones.
In particular, ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ)), ϕVψ = ¬((¬ϕ)U(¬ψ)), true = p ∨ ¬p,
false = p ∧ ¬p, �ϕ = falseVϕ, and �ϕ = trueUϕ.

It is not hard to verify that the following are tautologies involving the new
snapshot operator:

�([p] → �[p]) �(p → [p]) �(([p ∧ q]) → [p] ∧ [q])
�(([p] ∨ [q]) ↔ [p ∨ q]) �(¬[p] → [¬p])

To motivate such a logic, we describe a situation where an execution is a
partial order of events, and a global state is a collection of local states of the
different system components that are history closed. History closeness means that
if the past or history (basically, a set of events) includes some event, then it must
also include any event that happened previously. This notion of global states
coincides with Chandy and Lamport’s snapshot algorithm [6]. In an equivalent
way, such a global state is related to snapshots as defined in Section 2. Thus,
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unlike interleaving semantics, we do not just have a simple sequence of global
states. Snapshots are in particular important for achieving fault tolerance, where
occasional snapshots of a distributed system are saved in order to allow the
system to recover in a consistent way.

In our example, consider a bank with several branches, in different states. The
bank operation hours in the different states accord with the local time. There
is no global observation of the bank operation. Different branches can update
each other by making phone calls. The bank employees are working according to
some code of conduct that dictates what action to take in different situations.
The customers can make various interactions with their branches (or even visit
other branches), including deposits withdrawals and balance enquiries. Phone
calls between branches are also actions of the system.

The bank analysts prepared a finite state model of the bank, and have written
a specification of allowed behaviors of the bank system, using our specification
formalism. The marked nodes in the graph correspond to some bank targets,
e.g., having a certain balance, which is defined as the sum of money over the
different branches in some global state. The bank lawyers can use histories of
the executed actions to show that a balance existed. The bank does not stop
everything in all branches to take frequent global and synchronized snapshots,
e.g., printing the balance in each branch at exactly every hour. Hence snapshots
are a good notion of balance that they can have.

We can express the fact that the bank has a positive balance snapshot for
every (execution) sequence by �[p], where p is a predicate denoting positive
balance. This does not mean that p holds for some state in every execution
sequence. We can also express the fact that q starts to hold for the minimal
state that has a subsumed snapshot satisfying p by (¬q ∧ ¬[p])U(q ∧ [p]). We
can extend the logic with related operators. For example, under the current
definitions, ��[p] does not mean under our semantics that there are infinitely
many subsumed snapshots satisfying p, since [p] is monotonic, thus one snapshot
satisfying p suffices. Therefore, we can add an appropriate construct to capture
such a property.

3.2 Model-Checking SLTL

In this section, we outline an algorithm that decides whether an SLTL-formula
ϕ holds true for all words in a given Kripke structure S = (S,E, ι,Σ, val). The
idea is to construct a second Kripke structure B that includes the ‘memory’
which is required for deciding snapshot properties. While P is the set of atomic
propositions of S, we allow in B atomic propositions of the form p for p ∈ P as
well as [p] for p ∈ Bool(P).

– The state set SB equals 2S×2Σ ×S. For s = (X , t) ∈ SB, we write current(s) =
t ∈ S and past(s) = {s′ ∈ S | ∃A ⊆ Σ : (s′, A) ∈ X}.

– The valuation function valB is given by valB(X , s) = val(s) ∪ {[p] | ∃t ∈
past(X , s) : t |= p}.

– There is an a-labeled edge in EB from (X , s) to (Y, t) if
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1. (s, a, t) ∈ E, and
2. Y is the set of all pairs (t′, B) ∈ S × 2Σ for which there is (s′, A) ∈ X

satisfying either
(a) s′ = t′ and B = A ∪ {a}, or
(b) (s′, a, t′) ∈ E, A = B, and {a} × A ⊆ I.

– the initial state ιB is ({(ι, ∅)}, ι)

Intuitively, we keep in every state of B the current state s on A given the
same sequence of letters from the initial state. In addition, we keep with s the
set of states of subsumed traces. If t is a state of a subsumed trace, then we keep
with it also the set A of letters (but not the actual sequence) that belong to the
difference between the actual sequence and the subsumed one. Let s

a−→ r in E.
Given a pair 〈t, A〉 kept as a past of s we generate the following pairs as a past
of r: We add a to A and remain in state t, obtaining 〈t, A∪{a}〉. This is because
the set of subsumed traces is just extended, and if t

v−→ s then t
va−→ r. Another

pair is formed when a is independent of all letters in A. In this case we can also
progress from t to r according to the transition relation of E obtaining 〈r,A〉.
This is because if u ≡ vv′ (and hence [v] is a prefix of [u]), and a is independent

of the letters in v′) then [va] is a prefix of [ua] and t
v′

−→ r.
A model-checking algorithm for SLTL uses the structure B instead of S. Let

ϕ be some SLTL-formula whose validity over S we want to check. Recall that
the atomic propositions of B are of the form p for p ∈ P and [p] for p a Boolean
combination of elements from P. Hence ϕ can be seen as a classical LTL-formula
speaking about paths in the structure B. Because of the construction of B from
S, we get for any infinite word v: (ε, v) |=S ϕ (seen as SLTL-formula) iff (ε, v) |=B
ϕ (seen as LTL-formula). Now the well-known model-checking algorithm (i.e.,
translating the LTL-formula ¬ϕ into an automaton and checking emptiness of
the intersection of this automaton and B) yields the following result

Theorem 1. Let S be a Kripke structure describing the system, and ϕ be
an SLTL-formula of the Snapshot Linear Temporal Logic. Then one can check
whether S |= ϕ in EXPSPACE, with a space complexity of O(|S| × 2|Σ| × |ϕ|),
that is, in space complexity exponential only in the size of the alphabet.

4 Model-Checking Snapshots of a Word

We are given a language L = [L] i.e., a language closed under trace equivalence
w.r.t. some concurrency alphabet (Σ, I). We are also given an automaton A such
that L = L(A), and a word w ∈ Σ�. We want to check whether some snapshot
of w fulfills the property given by A, that is, whether w ∈ [LΣ�]. Note that the
language [LΣ�] consists of words from L where arbitrary letters are appended
to them, and then shuffled to the left according to the independence relation I.
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4.1 A Non deterministic Construction for the Membership
Problem

Let I ⊆ Σ2 be an independence relation and A = (S,E, ι,Σ, F ) be a trace-closed
automaton.

For checking emptiness or inclusion of a word w ≡ xy in the language
[L(A)Σ�] with x ∈ L(A), we can make the following construction. The idea
is to guess the set of letters of the suffix of x that can still appear (as opposed to
the previous automaton which kept what is used before from any point, hence
had to keep many histories). Thus, the set of states is S × 2Σ and a state 〈s,A〉
is accepting iff s ∈ F . The initial state is 〈ι, Σ〉. Given a letter a ∈ Σ, there
is a transition from state 〈s,A〉 labeled by a to 〈s,B〉, where B ⊆ A excludes
any letter from A that depends on a. If a ∈ A, we continue from a state 〈s,A〉
according to the transition relation of A to a state 〈t, A〉.

Formally, we define an automaton D with the following transitions:

– 〈s,A〉 a−→ 〈s,B〉, when B = A \ {b ∈ A | (b, a) ∈ D}.
– 〈s,A〉 a−→ 〈t, A〉, when a ∈ A and s

a−→ t ∈ E.

Basically, D is built on 2|Σ| copies of A. Now, consider that if a word belongs
to L(D), then it will pass through at most |Σ| of these copies. That is, these Σ
automata can be non-deterministically guessed, together with the positions of w
where the transition from one automaton to another is made. Then, it suffices
to test whether each factor of w between two consecutive positions belongs to
the automaton that was guessed, which can be easily performed in polynomial
time.

Theorem 2. Let (Σ, I) be a concurrency alphabet. Let A be a trace-closed
automaton and w a word of Σ�. Then one can test in NP whether w ∈ [L(A)Σ�].
If the alphabet is fixed (not part of the input), then the problem is NLOGSPACE.

4.2 Lower Bound in the Deterministic Case

In this section, we show that the minimal deterministic automaton accepting
[LΣ∗] is exponential in the size of the automaton accepting L. To this aim, let
Σ = {a, b, c, d} with I = {a, b}×{c, d}. We consider, for p ∈ N, the language Lp =
[{uavc | u ∈ {a, b}∗, v ∈ {c, d}∗, |u| ≡ |v| mod p}]. Because of the special form
of the independence relation I, a word w ∈ Σ∗ belongs to Lp iff its projection
to {a, b} ends with an a, its projection to {c, d} ends with a c, and these two
projections have the same length modulo p. Thus, in order to accept Lp, we need
to count modulo p the occurrences of letters from {a, b} and remember the last
one of them, and similarly for {c, d}. Thus, we need 4 · p2 many states.

Now let u1, · · · , un ∈ {a, b} and v1, · · · , vm ∈ {c, d}. Then the words u1 . . . un

v1 . . . vm and u1 . . . ui v1 . . . vj ui+1 . . . un vj+1 . . . vm are equivalent for any i and
j. Hence the former belongs to [Lp Σ∗] iff there are 1 ≤ i ≤ n and 1 ≤ j ≤ m
with i = j (mod p), ui = a and vj = c.

We want to show that in order to accept [Lp Σ�] with a deterministic au-
tomaton, we need exponentially many states (exponential in p): For a set X =
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{x1, x2, . . . , xn} ⊆ {0, 1, . . . , p − 1} let uX = (bx1abp−x1−1)(bx2abp−x2−1) . . .
(bxnabp−xn−1). Then, by the observation in the previous paragraph, for m < p
we have uXdmc ∈ [Lp · Σ�] ⇐⇒ ∃i : m = xi (mod p) ⇐⇒ m ∈ X.

Now suppose A is a deterministic automaton accepting [Lp Σ∗] and let ι be its
initial state. Furthermore, let X and X ′ be two distinct subsets of {0, 1, . . . , p−1}
and suppose that they both lead to the same state when executed in the initial
state of A. Then there is (without loss of generality) x ∈ S \ X ′. Since uX and
uX′ lead to the same state, so do uX dxc and uX′ dxc. Since uX dxc ∈ [Lp Σ∗] this
state is accepting, implying that uX′ dxc is accepted by A. Since this contradicts
our assumption on A to accept [Lp Σ∗], two distinct words of the form uX cannot
lead to the same state of A when executed in the initial state ι. Since there are
exponentially many words uX , the automaton A has exponentially many states.

Note that, in contrast to the exponential lower bound for a deterministic au-
tomaton, Theorem 2 gives a polynomial non deterministic automaton accepting
[Lp Σ∗] (since the alphabet is fixed).

5 A PSPACE-Complete Fragment of SLTL

We define now the ‘negative’ fragment of SLTL, whose model-checking exploits
the model-checking of snapshots of a word (see section 4). Let us look at the
usual normal form of LTL, that is when only the expression {p, [p]} can use
negation (negation is pushed the deepest possible). Then we say that a formula
ϕ is a negative formula of SLTL if in the normal form of ¬ϕ, the negation is
used only over Boolean combinations. That is, the snapshot expressions [p] only
appear in a positive form (in the negation of the formula). Note that negation
may appear inside the ‘[ ]’ operator. For instance, the property ϕ = �¬[p]∨�¬[q]
is a negative formula of SLTL since ¬ϕ = (�[p] ∧ �[q]).

Notice that every LTL formula is a negative formula of SLTL since it does not
use [p]. Hence, model-checking of negative SLTL formulas is already PSPACE-
hard.

We show now how to do model-checking in PSPACE for such a formula.
We use the LTL translation [14], except that subformulas of the form [p] are
kept as a whole (as in the construction for Theorem 1). This construction does
not introduce new negations to propositional letters or snapshot subexpressions
(as opposed e.g., to the construction in [25]). We know that there exists an
automaton B¬ϕ accepting L(¬ϕ), labeled by p,¬p and by positive [p], whose
size is exponential in |ϕ|.

We check each subformula [p] on a separate automaton copy, computing the
snapshots (trace prefixes) of S, that is [L(S)Σ�], as constructed in Section 4.1.
Note however that for two different [p], [q], the prefixes need not be the same,
and thus we need two different copies of the trace prefix automaton. Notice that
once [p] holds, it holds forever, so we need not have several copies for the same
subformula [p].

For every subformula [p] (there are at most |ϕ| such propositions), we create
an automaton Sp from the Kripke structure S as follows: states, initial states,
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and transitions are those from S and a state is accepting iff it satisfies p; i.e., Sp

accepts all those words that lead to a state in S satisfying p. There exists an au-
tomaton Ap of size exponential only in |Σ| accepting [L(Sp)Σ�] (see section 4.1).
We just need to check whether there exists accepting paths ρ¬ϕ, ρ, ρp1 , · · · , ρpn

of A¬ϕ, S,Ap1 , · · · ,Apn
labeled by the same word w (in the different copies),

such that for every prefix u of w, the state v¬ϕ, v, vp1 , · · · , vpn
reached on u

satisfy: if v¬ϕ |= (¬)p, then v |= (¬)p and if v¬ϕ |= [p], then vp |= p. Hence,

Theorem 3. Let S be a Kripke structure describing the system, and ϕ be a
negative formula of SLTL. Then the model-checking of S |= ϕ is PSPACE-
complete, with a space complexity of O(log(|S|) · |ϕ| · |Σ|).

6 Efficient Model-Checking of a Word

Since model-checking snapshots of a word is important (see section 4 and 5), we
propose here some variations to improve its efficiency.

6.1 Series-Parallel Alphabets

We show that the membership problem in [L(A)Σ∗] is in PTIME provided the
independence alphabet is series-parallel (see also [7, 17] for algorithms on series-
parallel alphabet). Actually, we consider the more general case of deciding mem-
bership in [L(A)L(B)] in polynomial time provided A and B are trace-closed
automata over a series-parallel independence alphabet (Σ, I).

In this section, we consider independence alphabets together with a chosen
total order on the letters. Let (Σ1, I1,≤1) and (Σ2, I2,≤2) be disjoint inde-
pendence alphabets where ≤1 and ≤2 are linear orders on Σ1 and Σ2, resp.
A linear order ≤ is defined on Σ1 ∪ Σ2 by a ≤ b iff a ≤1 b or a ≤2 b or
a ∈ Σ1 and b ∈ Σ2. Then the serial composition (Σ1, I1,≤1) · (Σ2, I2,≤2) is
(Σ1 ∪ Σ2, I1 ∪ I2,≤). The parallel composition (Σ1, I1,≤1) � (Σ2, I2,≤2) is de-
fined to be (Σ1 ∪ Σ2, I1 ∪ I2 ∪ (Σ1 × Σ2) ∪ (Σ2 × Σ1),≤). A series-parallel
independence alphabet is a tuple (Σ, I,≤) that can be constructed from ordered
independence alphabets of the form ({α}, ∅,≤). A component of (Σ, I,≤) is a set
Γ ⊆ Σ that occurs in this inductive construction. Note that any series-parallel
independence alphabet has at most |Σ| many components.

The linear order ≤ on Σ can be extended to words setting x1x2 . . . xm ≤
y1y2 . . . yn if m < n or m = n and x1 < y1 or m = n, x1 = y1 and x2x3 . . . xm ≤
y2y3 . . . yn. Since this length-lexicographic order is a well order on Σ∗, any trace
(i.e., any equivalence class of words) contains a minimal element. We call the
minimal element of [u] the lexicographic normal form LNF(u) of u.

From now on, we fix some series-parallel independence alphabet (Σ, I,≤) and
two trace-closed automata A = (SA, EA, ιA, Σ, FA) and B = (SB, EB, ιB, Σ, FB).
We will construct an automaton C(Σ) with states of the form (s, t, Γ,X) where
s ∈ SA, t ∈ SB, Γ ⊆ Σ is a component of (Σ, I,≤), and X is A or B with the
following property:
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Let Γ ⊆ Σ be a component and u ∈ Γ ∗ be in lexicographic normal form.
Then (s, t, Γ,X) u−→C (s′, t′, Γ, Y ) iff there exist uA, uB ∈ Γ ∗ with u ≡ uAuB,
s

uA−→A s′, t
uB−→B t′, and uB = ε provided X = Y = A and uA = ε provided

X = Y = B.

This automaton C will be constructed inductively following the inductive con-
struction of the series-parallel independence alphabet (Σ, I,≤), i.e., we will have
automata C(∆) for any component ∆ such that the above invariant holds for
all components Γ ⊆ ∆ (and C(∆) does not have transitions labeled by letters
outside of ∆).

In this construction, we will use the following automata AΓ and BΓ for Γ
a component: The set of states of AΓ is SA × SB × {Γ} × {A}. There is tran-
sition (s, t, Γ,A) a−→AΓ

(s′, t′, Γ,A) iff a ∈ Γ , s
a−→A s′ and t = t′. Symmetri-

cally, the set of states of BΓ is SA × SB × {Γ} × {B} and there is a transition
(s, t, Γ,B) a−→BΓ

(s′, t′, Γ,B) in B iff a ∈ Γ , s = s′, and t
a−→B t′.

The base case is simple: if |Γ | = 1, then C(Γ ) is the union of AΓ and BΓ ,
plus transitions from AΓ to BΓ . That is, the set of states of C(Γ ) equals SA ×
SB × {Γ} × {A,B} and there is a transition (s, t, Γ,X) a−→C(Γ ) (s′, t′, Γ, Y ) iff
a ∈ Γ , s

a−→A s′, t = t′, and X = A or s = s′, t
a−→B t′ and X = Y = B.

Now suppose that Γ is a component that is built as the parallel product of the
components Γ1 and Γ2. Then we take as C(Γ ) the union of the automata C(Γ1)
and C(Γ2) together with transitions of the form (s, t, Γ1,X) a−→C(Γ ) (s′, t′, Γ2, Y )
provided a ∈ Γ , s

a−→A s′ and t = t′ or s = s′ and t
a−→B t′. Note that words

over Γ in lexicographic normal form belong to Γ ∗
1 Γ ∗

2 . This allows to prove the
invariant for C(Γ ).

Finally, let Γ be a component that is built as the serial product of the com-
ponents Γ1 and Γ2. Then C(Γ ) is the union of the automata AΓ , C(Γ1), C(Γ2),
and BΓ together with transitions of the form (s, t,∆1,X) a−→C(Γ ) (s′, t′,∆2, Y )
provided ∆1,∆2 are components of Γ (already seen by induction) and one of
the following holds

(1) (s, t,∆1,X) is a state of AΓ and
– (s′, t′,∆2, Y ) is a state of C(Γ1) or of BΓ and a ∈ Γ2, or
– (s′, t′,∆2, Y ) is a state of C(Γ2) or of BΓ and a ∈ Γ1

(2) (s′, t′,∆2, Y ) is a state of BΓ and
– (s, t,∆1,X) is a state of C(Γ1) and a ∈ Γ2, or
– (s, t,∆1,X) is a state of C(Γ2) and a ∈ Γ1.

This construction is visualized in Figure 1. To prove the invariant for C(Γ ), let
u ∈ Γ ∗ be in lexicographic normal form. Write u as an alternating sequence of
nonempty words ui from Γ+

1 and of Γ+
2 . For any trace equivalent factorization

v w ≡ u1u2 . . . un, there exists i and a trace equivalent factorization v′ w′ ≡ ui

with v ≡ u1u2 . . . ui−1v
′ and w ≡ w′ui+1 . . . un. If v′ = ε or w′ = ε, we go directly

from AΓ to BΓ . Otherwise, we go from AΓ to BΓ via C(Γk) with ui ∈ Γ+
k .

Proposition 1. Let (Σ, I,≤) be a series-parallel independence alphabet. More-
over, let A and B be automata such that LNF(w) is accepted as soon as w is
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AΓ BΓ

CΓ1

CΓ2

Γ2

Γ1, Γ2

Γ1

Γ2

Γ1

Fig. 1. Construction of C(Γ1 � Γ2)

accepted for any w ∈ Σ∗.1 Then u ∈ [L(A)L(B)] if and only if LNF(u) ∈ L(C(Σ))
for any u ∈ Σ∗.

Note that C(Γ ) is polynomial in A and B since there are only linearly many
components of (Σ, I,≤). Since, in addition, LNF(u) can be constructed in poly-
nomial time from u, we get the following improvement of Theorem 2:

Theorem 4. Let (Σ, I,≤) be a series-parallel independence alphabet and A,
B be trace-closed automata. Then we can test in polynomial time whether w ∈
[L(A)Σ∗].

Notice that if the automata A or B are not trace-closed, then the membership
problem is NP-complete. Actually, a slightly easier problem, deciding whether
there exists v ≡I w such that v ∈ L(A), is already NP-complete [2]. The fact is
that it remains NP-complete even if the alphabet is fully parallel, in particular
even if it is series-parallel.

6.2 Compression

Usually, when one model-checks a word (see section 4), either this word comes
from a very long log file (or DNA encoding), or it can be a looping run of
some system: it is often very long. Having the most succinct representation for
this word is then a big advantage, since it can severely decrease the runtime of
the algorithm. We present here the idea of using words compressed by means
of straight-line programs. If the word is not already compressed, then the tool
from [1] can be used.

Straight-line programs. A straight-line program (SLP for short) over the
alphabet Σ is a context-free grammar with variables V = {X1, . . . , Xk}, initial
variable X1 and rules from V ×(V ∗∪Σ). The rules are such that there is exactly
one rule for each left-hand side variable, and if Xi −→ α, then each Xj in α
satisfies j > i.

1 This holds in particular if A and B are trace-closed.
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The constraint on the rules makes that any variable Xi generates a unique
word. For convenience, we denote the word generated by the variable Xi also as
Xi. Without loss of generality, we can assume that rules are of size 2, that is of
the form X −→ Y Z with Y,Z ∈ (V ∪ {ε}) ∪ Σ. The size |X| of an SLP X is its
number of variables. Lately, algorithms on SLP-compressed objects have been
intensively studied [1, 15, 19, 22]. We will used two known results, namely:

Proposition 2. Let w be an SLP, A an automaton and (Σ, I) a concurrency
alphabet.

– The problem whether w ∈ L(A) is PTIME-complete [15, 19, 22], and solvable
in time O(|w| · |A|3).

– The problem whether there exists some v ≡I w with v ∈ L(A) is PSPACE-
complete [15].

Using the first part of proposition 2 and theorem 2, we can easily show that:

Proposition 3. Let w be an SLP and A,B two trace-closed automata. The test
whether w ∈ [L(A)L(B)] is of complexity NP in the size of the alphabet (i.e.,
polynomial-time for a fixed alphabet).

We can restate the second result of proposition 2, showing that testing
whether w ∈ [L(A)L(B)] is PSPACE-complete if w is an SLP and A or B is
not trace-closed. With more work, we can show that the complexity remains
PSPACE-complete if the alphabet is series-parallel.

The interesting question is what happens when A,B are both trace-closed and
the alphabet is series-parallel. Actually, we manage to show that the problem
is PTIME-complete in this case. That is, unlike the case where A or B is not
trace-closed, compression does not increase the complexity.

Theorem 5. Let w be an SLP, (Σ, I) be a series-parallel alphabet, and A,B be
two trace-closed automata. Then testing whether w ∈ [L(A)L(B)] is PTIME-
complete, and solvable in time O(|w| · (|Σ|2 · |A| · |B|)3).

Proof. Let w be an SLP. We use proposition 1 to obtain an automaton C
that recognizes LNF(w) exactly when w ∈ [L(A)L(B)]. As soon as we obtain
a polynomial-size SLP representation of LNF(w), we can use proposition 2 to
have a PTIME algorithm for testing whether LNF(w) ∈ L(C). It is PTIME-hard
using [19].

The blow-up for obtaining an SLP representation of LNF(w) from an SLP w
is likely to be exponential in general. Anyway, we are in the special case where the
alphabet is series-parallel, for which we show now how to compute a polynomial
SLP for LNF(w).

We first need to describe the SLP variables differently than for the SLP w.
For any component alphabet Σi and rule X = Y Z, we define the projection
(X,Σi) of X on Σi by the rules:
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– (a,Σi) = a if a ∈ Σi, else (a,Σi) = ε,
– (X,Σi) = (Y,Σi)(Z,Σi).

Then, for Σi = Σj · Σk and X = Y Z, we describe the longest prefix and
suffix in Σ�

j of the projection on Σi of X by Pref(X,Σj),Suf(X,Σj).
The rules associated with Pref(X,Σj) are as follows:

– If a ∈ Σj , then Pref(a,Σj) = a, else Pref(a,Σj) = ε.
– If Pref(Y,Σj) does not contain any letter from Σk, then

Pref(X,Σj) = (Y,Σj)Pref(Z,Σj), else Pref(X,Σj) = Pref(Y,Σj).

The SLP (w,Σ) is defined using variables (X,Σi),Pref(X,Σi),Suf(X,Σj).
Then, for every rule X = Y Z of (w,Σ), we add the variable (XY ) with the rule
(XY ) = XY . In particular, X,Y,Z can be a suffix or a prefix of variables of w.
This gives an SLP of size O(2|Σ| · |w|).

We can now describe the SLP LNF(w,Σ) computing LNF(w). For each com-
ponent alphabet Σi = Σj · Σk and each variable X = Y Z of (w,Σ), we in-
troduce new variables Fact(Y,Σh, Σl) for h, l ∈ {j, k} representing the factor of
LNF(Y,Σi) obtained by deleting the longest prefix of Y in Σ�

h and the longest suf-
fix of Y in Σ�

l . In particular, Fact(Y, ∅, Σj)LNF(Suf(Y,Σj), Σj) = LNF(Y,Σi).
Let X = Y Z, Σi = Σj · Σk and h, l, t ∈ {j, k} such that Suf(Y,Σt) 	= ε. The

rule associated with Fact(X,Σh, Σl) is:

Fact(X,Σh, Σl) =
Fact(Y,Σh, Σt) LNF((Suf(Y,Σt)(Pref(Z,Σt)), Σt) Fact(Z,Σt, Σl)

The rules associated with LNF(X,Σi) are

– LNF(a,Σi) = a if a ∈ Σi, else LNF(a,Σi) = ε,

– If Σi = Σj �Σk and Σj ≺ Σk, then LNF(X,Σi) = LNF(X,Σj)LNF(X,Σk),

– If Σi = Σj · Σk with Suf(Y,Σj) 	= ε, then

LNF(X,Σi) =
Fact(Y, ∅, Σj) LNF(Suf(Y,Σj)Pref(Z,Σj), Σj) Fact(Z,Σj , ∅)

Notice that in the description above, it might be the case that Suf(X,Σj)
stands for Suf(Suf(Y,Σl), Σj), because X = Suf(Y,Σl) is a variable of (w,Σ).
Even though Suf(Suf(Y,Σl), Σj) is not a variable of (w,Σ), we can express it
with only one suffix, that is with variables of (w,Σ). Assume that Σi = Σj ·Σk.
If Suf(Y,Σl) contains a letter of Σk, then Suf(Suf(Y,Σl), Σj) = Suf(Y,Σj). Else,
Suf(Suf(Y,Σl), Σj) = Suf(Y,Σl). The case with two (or more) nested prefixes is
symmetric. Notice moreover that a prefix of a suffix or a suffix of a prefix is not
possible.

It is easy to show by induction that LNF(w,Σ) computes exactly the lexico-
graphic normal form of the projection of w on Σ. Moreover, the size of the SLP
LNF(w,Σ) is at most O(|Σ|3 · |w|).

Since the time complexity of checking whether an SLP S belongs to L(A) is
O(|S| · |A|3), we get a complexity of O(|w| · (|Σ|2 · |A| · |B|)3). �
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7 Conclusion

We described in this paper a new Linear Temporal Logic, the Snapshot LTL,
which captures some properties of global logics on traces without the inherently
high complexity. We proposed an EXPSPACE algorithm to do model-checking
against this logic, based on a deterministic automaton construction. It would
be interesting to compare the properties expressed by our logic with the one
expressed by the EXPSPACE-complete fragment of LTrL [24] and of ISTL [21].
Moreover, the ’negative’ fragment of SLTL is PSPACE-complete, yet more gen-
eral than LTL.

We also considered model-checking for snapshots of a word, which is not
easy to tackle either. For instance, the precise complexity is still unknown (but
neither is known the precise complexity of model-checking a word against LTL
properties [19]).

w ∈ [L(A)Σ�] A trace-closed A
Normal case NP NP-complete
w compressed NP PSPACE-complete

Series-parallel 2|Σ| × |A| NP-complete
Series-parallel + compression PTIME-complete PSPACE-complete

Fig. 2. Complexity of the snapshot verification of a word

We studied the complexity when we vary slightly the problem (see figure 2),
to understand the limits of our algorithms. We show that the time complexity
becomes quickly polynomial, for instance when the alphabet is not too complex
(series-parallel). Moreover, we show that the algorithms we proposed are pretty
robust, since the complexity remains the same even in case where we use com-
pressed words. On series-parallel alphabets and using compression, we obtained
a PTIME-algorithm, which contrasts with the PSPACE-complete complexity as
soon as A is not trace-closed.

Notice that this problem is somehow not complicated enough to get an
NP-completeness result, since we would need for this more than a fixed num-
ber of automata. Indeed, the problem whether w ∈ [L(A1) · · · L(An)] is NP-
complete.

This work also shows that pattern matching a trace is PTIME in |Σ| and
NLOG in the size of the word (trace) if the alphabet is series-parallel, unlike the
general case. In this case, our algorithm greatly simplifies the general pattern
matching algorithm for compressed traces given in [15].
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