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Abstract. In this paper we present a new decision procedure for the satisfiabil-
ity of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional
variables and linear constraints over numerical variables. Our approach is based
on the well known integration of a propositional SAT procedure with theory de-
ciders, enhanced in the following ways.

First, our procedure relies on an incremental solver for linear arithmetic, that is
able to exploit the fact that it is repeatedly called to analyze sequences of increas-
ingly large sets of constraints. Reasoning in the theory of LA interacts with the
boolean top level by means of a stack-based interface, that enables the top level
to add constraints, set points of backtracking, and backjump, without restarting
the procedure from scratch at every call. Sets of inconsistent constraints are found
and used to drive backjumping and learning at the boolean level, and theory atoms
that are consequences of the current partial assignment are inferred.

Second, the solver is layered: a satisfying assignment is constructed by rea-
soning at different levels of abstractions (logic of equality, real values, and integer
solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at
higher levels is used to prune the search. In addition, theory reasoning is parti-
tioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough
experimental evaluation: our approach is competitive with and often superior to
several state-of-the-art decision procedures.

� This work has been sponsored by the CALCULEMUS! IHP-RTN EC project, contract code
HPRN-CT-2000-00102, and has thus benefited of the financial contribution of the Commis-
sion through the IHP programme. It has also been partly supported by ESACS, an European
sponsored project, contract no. G4RD-CT-2000-00361, by ORCHID, a project sponsored by
Provincia Autonoma di Trento, and by a grant from Intel Corporation. The work of T. Junttila
has also been supported by the Academy of Finland, project 53695. S. Schulz has also been
supported by a grant of the Italian Ministero dell’Istruzione, dell’Universit e della Ricerca and
the University of Verona. R. Sebastiani is also sponsored by a MIUR COFIN02 project, code
2002097822 003.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 317–333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



318 M. Bozzano et al.

1 Motivations and Goals

Many practical domains require a degree of expressiveness beyond propositional logic.
For instance, timed and hybrid systems have a discrete component as well as a dy-
namic evolution of real variables; proof obligations arising in software verification are
often boolean combinations of constraints over integer variables; circuits described at
Register Transfer Level, even though expressible via booleanization, might be easier to
analyze at a higher level of abstraction (see e.g. [15]). Many of the verification problems
arising in such domains can be naturally modeled as satisfiability in Linear Arithmetic
Logic (LAL), i.e., the boolean combination of propositional variables and linear con-
straints over numerical variables. For its practical relevance, LAL has been devoted a
lot of interest, and several decision procedures exist that are able to deal with it (e.g.,
SVC [17], ICS [24, 19], CVCLITE [17, 10], UCLID [36, 33], HDPLL [30]).

In this paper, we propose a new decision procedure for the satisfiability of LAL,
both for the real-valued and integer-valued case. We start from a well known approach,
previously applied in MATHSAT [26, 4] and in several other systems [24, 19, 17, 10, 35,
3, 21]: a propositional SAT procedure, modified to enumerate propositional assignments
for the propositional abstraction of the problem, is integrated with dedicated theory
deciders, used to check consistency of propositional assignments with respect to the
theory.

In this paper, we extend the MATHSAT approach in the following directions. First,
the linear arithmetic solver is incremental: since the theory solver is called to analyze
increasingly large sets of constraints, theory reasoning interacts with the boolean top
level by means of a stack-based interface, that enables the top level to add constraints,
set points of backtracking, and backjump. In addition, sets of inconsistent constraints
are identified and used to drive backjumping and learning at the boolean level, and
theory atoms that are consequences of the current partial assignment are automatically
inferred. Second, we make aggressive use of layering: a satisfying assignment is incre-
mentally constructed by reasoning at different levels of abstractions (logic of equality,
real values, and integer solutions). Cheaper, more abstract solvers are called first, and
unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning
is partitioned in different clusters, and tightly integrated with boolean reasoning.

We evaluated our approach by means of a thorough experimental comparison: the
MATHSAT solver is compared against the state-of-the-art systems ICS, CVCLITE, and
UCLID [33] on a large set of benchmarks proposed in the literature. We show that our
approach is able to deal effectively with a wide class of problems, with performances
comparable with and often superior to the other systems.

This paper is structured as follows. In Sect. 2 we define Linear Arithmetic Logic.
In Sect. 3 we describe the basic algorithm, the interplay between boolean and theory
reasoning, and the incrementality of the theory solver. In Sect. 4 we describe the internal
structure of the solver, focusing on the ideas of layering and clustering. In Sect. 5 we
describe the MATHSAT system, and in Sect. 6 we present the result of the experimental
evaluation. In Sect. 7 we discuss some related work; finally, in Sect. 8 we draw some
conclusions and outline the directions for future work.
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2 Background

Let B := {⊥,�} be the domain of boolean values. Let D be the domain of either real
numbers R or integers Z. By math-terms and math-formulas on D we denote respec-
tively the quantifier-free linear mathematical expressions and formulas built on con-
stants, variables and arithmetical operators over D and on boolean propositions, closed
on boolean connectives. Math-terms are either constants ci ∈ D , or variables vi over
D , possibly with coefficients (i.e. ci · v j), or applications of the arithmetic operators +
and − to math-terms. Atomic math-formulas are either boolean propositions Ai over
B, or applications of the arithmetic relations =, �=,>,<,≥,≤ to math-terms. Such for-
mulas are also called atoms. Math formulas are either atoms or combinations of math
formulas by means of the standard boolean connectives ∧, ¬, ∨, →, ↔. For instance,
A1 ∧ ((v1 +5) ≤ 2v3) is a math-formula on either R or Z; an atom is called boolean if it
is a boolean proposition, otherwise it is called a mathematical atom. A literal is either
an atom (a positive literal) or its negation (a negative literal). Examples of literals are
A1, ¬A2, (v1 +5v2 ≤ 2v3 −2), ¬(2v1 −v2 = 5). If l is a negative literal ¬ψ, then by “¬l”
we mean ψ rather than ¬¬ψ. We denote by Atoms(φ) the set of mathematical atoms of
a math-formula φ.

We introduce abijective function M 2B (for “Math-to-Boolean”),also called boolean
abstraction function, that maps boolean atoms into themselves, math-atoms into fresh
boolean atoms —so that two atom instances in ϕ are mapped into the same boolean
atom iff they are syntactically identical— and distributes over sets and boolean connec-
tives. Its inverse function B2M (for “Boolean-to-Math”) is respectively called refine-
ment.

An interpretation in D is a map I which assigns values in D to math-terms and truth
values in B to math-formulas, and interprets mathematical constants, arithmetical and
boolean operators according to the usual semantics of arithmetical and logical symbols.
We say that I satisfies a math-formula φ, written I |= φ, iff I (φ) evaluates to true. E.g.,
the math-formula ϕ := (A1 → (v1 − 2v2 ≥ 4))∧ (¬A1 → (v1 = v2 + 3)) is satisfied by
an interpretation I in Z s.t. I (A1) = �, I (v1) = 8, and I (v2) = 1. We say that a math-
formula ϕ is satisfiable in D if there exists an interpretation in D which satisfies ϕ.

We address the problem of checking the satisfiability of math-formulas. As standard
boolean formulas are a strict sub-case of math-formulas, it follows trivially that the
problem is NP-hard. Thus the problem is theoretically “at least as hard” as standard
boolean satisfiability, and much harder in practice.

A total (resp. partial) truth assignment for a math-formula φ is a truth value assign-
ment µ to all (resp. a subset of) the atoms of φ. We represent truth assignments as set of
literalsµ ={α1, . . . ,αN ,¬β1, . . . ,¬βM,A1, . . . ,AR,¬AR+1, . . . ,¬AS},α1, . . . ,αN ,β1, . . . ,βM

being mathematical atoms and A1, . . . ,AS being boolean atoms, with the intended mean-
ing that positive and negative literals represent atoms assigned to true and to false re-
spectively.

We say that µ propositionally satisfies φ, written µ |=p φ, iff M 2B(µ) |= M 2B(φ).
Intuitively, if we see a math-formula φ as a propositional formula in its atoms, then |=p

is the standard satisfiability in propositional logic.
We say that an interpretation I satisfies µ iff I satisfies all the elements of µ. For

instance, the assignment {A1,(v1 − 2v2 ≥ 4),¬(v1 = v2 + 3)} propositionally satisfies
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(A1 → (v1 − 2v2 ≥ 4)) ∧ (¬A1 → (v1 = v2 + 3)), and it is satisfied by I s.t. I (A1) =
�, I (v1) = 8, and I (v2) = 1. We say that an assignment or a math-formula is LAL-
satisfiable if there is an interpretation I satisfying if, LAL-unsatisfiable otherwise.

Example 1. Consider the following math-formula ϕ:

ϕ = (¬(2v2 − v3 > 2) ∨A1) ∧ (¬A2 ∨ (2v1 −4v5 > 3))

∧ ((3v1 −2v2 ≤ 3) ∨A2) ∧ (¬(2v3 + v4 ≥ 5) ∨¬(3v1 − v3 ≤ 6) ∨¬A1)

∧ (A1 ∨ (3v1 −2v2 ≤ 3)) ∧ ((v1 − v5 ≤ 1) ∨ (v5 = 5−3v4)∨¬A1)

∧ (A1 ∨ (v3 = 3v5 +4) ∨A2).

The truth assignment given by the underlined literals above is:

µ = {¬(2v2 −v3 >2),¬A2,(3v1−2v2 ≤3),¬(3v1 −v3 ≤6),(v1 −v5 ≤1),(v3 =3v5 +4)}.

µ propositionally satisfies ϕ as it sets to true one literal of every disjunction in ϕ. Notice
that µ is not satisfiable, as both the following sub-assignments of µ

{¬(2v2 − v3 > 2),(3v1 −2v2 ≤ 3),¬(3v1 − v3 ≤ 6)} (1)

{¬(3v1 − v3 ≤ 6),(v1 − v5 ≤ 1),(v3 = 3v5 +4)} (2)

do not have any satisfying interpretation. �

Given a LAL-unsatisfiable assignment µ, we call a conflict set any LAL-unsatisfiable
sub-assignment µ′ ⊆ µ; we say that µ′ is a minimal conflict set if all subsets of µ′ are
LAL-satisfiable. E.g., both (1) and (2) are minimal conflict sets of µ.

3 The Top Level Algorithm: Boolean+Theory Solving

This section describes the MATHSAT algorithm [4] (see Fig. 1), and its extensions.
MATHSAT takes as input a math-formula φ, and returns � if φ is LAL-satisfiable (with
I containing a satisfying interpretation), and ⊥ otherwise. (Without loss of generality, φ
is assumed to be in conjunctive normal form (CNF).) MATHSAT invokes MATHDPLL

on the boolean formula ϕ := M 2B(φ). (Both M 2B and B2M can be implemented so
that they require constant time in mapping one atom.)

MATHDPLL tries to build an assignment µ satisfying ϕ, such that its refinement
is LAL-satisfiable, and the interpretation I satisfying B2M (µ) (and φ). This is done
recursively, with a variant of DPLL modified to enumerate assignments, and trying to
refine them according to LAL:

base. If ϕ == �, then µ propositionally satisfies M 2B(φ). In order to check if µ is
LAL-satisfiable, which shows that ϕ is LAL-satisfiable, MATHDPLL invokes the linear
mathematical solver MATHSOLVE on the refinement B2M (µ), and returns a Sat or
Unsat value accordingly.

backtrack. If ϕ == ⊥, then µ has lead to a propositional contradiction. Therefore
MATHDPLL returns Unsat and backtracks.

unit. If a literal l occurs in ϕ as a unit clause, then l must be assigned a true value.
Thus, MATHDPLL is invoked recursively with assign(l,ϕ) and the assignment obtained
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function MATHSAT (Math-formula φ, interpretation & I )
return MATHDPLL (M 2B(φ),{},I );

function MATHDPLL (Boolean-formula ϕ,assignment & µ, interpretation & I )
if (ϕ == �) /* base */

then return MATHSOLVE (B2M (µ),I ) ;
if (ϕ == ⊥) /* backtrack */

then return Unsat;
if {l occurs in ϕ as a unit clause} /* unit prop. */

then return MATHDPLL (assign(l,ϕ),µ∪{l},I );
if (MATHSOLVE (B2M (µ),I ) == Unsat) /* early pruning */

then return Unsat;
l := choose-literal(ϕ); /* split */
if ( MATHDPLL (assign(l,ϕ),µ∪{l},I ) == Sat )

then return Sat;
else return MATHDPLL (assign(¬l,ϕ),µ∪{¬l},I );

Fig. 1. High level view of the MATHSAT algorithm

by adding l to µ. assign(l,ϕ) substitutes every occurrence of l in ϕ with � and proposi-
tionally simplifies the result.

early pruning MATHSOLVE is invoked on (the refinement of) the current assignment
µ. If this is found unsatisfiable, then there is no need to proceed, and the procedure
backtracks.

split If none of the above situations occurs, then choose-literal(ϕ) returns an unassigned
literal l according to some heuristic criterion. Then MATHDPLL is first invoked recur-
sively with arguments assign(l,ϕ) and µ∪{l}. If the result is Unsat, then MATHDPLL

is invoked with arguments assign(¬l,ϕ) and µ∪{¬l}.

The schema of Fig. 1 is over-simplified for explanatory purposes. However, it can be
easily adapted to exploit advanced SAT solving techniques (see [38] for an overview).
In the rest of this section, we will focus on the interaction between boolean reason-
ing (carried out by MATHDPLL) and theory reasoning (carried out by MATHSOLVE)
instead of on the details underlying the boolean search.

Theory-Driven Backjumping and Learning. [23, 37]. When MATHSOLVE finds the
assignment µ to be LAL-unsatisfiable, it also returns a conflict set η causing the un-
satisfiability. This enables MATHDPLL to backjump in its search to the most recent
branching point in which at least one literal l ∈ η is not assigned a truth value, pruning
the search space below. We call this technique theory-driven backjumping. Clearly, its
effectiveness strongly depends on the conflict set generated.

Example 2. Consider the formula ϕ and the assignment µ of Ex. 1. Suppose that MATH-
DPLL generates µ following the order of occurrence within ϕ, and that MATHSOLVE(µ)
returns the conflict set (1). Thus MATHDPLL can jump back directly to the branch-
ing point ¬(3v1 − v3 ≤ 6) without exploring the right branches of (v3 = 3v5 + 4) and
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(v1 − v5 ≤ 1). If instead MATHSOLVE(µ) returns the conflict set (2), then MATHSAT
backtracks to (v3 = 3v5 +4). Thus, (2) causes no reduction in search. �

When MATHSOLVE returns a conflict set η, the clause ¬η can be added in conjunc-
tion to ϕ: this will prevent MATHDPLL from generating again any branch containing η.
We call this technique theory-driven learning.

Example 3. As in Ex. 2, suppose MATHSOLVE(µ) returns the conflict set (1). Then the
clause (2v2 − v3 > 2) ∨ ¬(3v1 − 2v2 ≤ 3) ∨ (3v1 − v3 ≤ 6) is added in conjunction to
ϕ. Thus, whenever a branch contains two elements of (1), then MATHDPLL will assign
the third to false by unit propagation. �

As in the boolean case, learning must be used with some care, since it may cause an ex-
plosion in the size of ϕ. Therefore, some techniques can be used to discard learned
clauses when necessary [11]. Notice however the difference with standard boolean
backjumping and learning [11]: in the latter case, the conflict set propositionally fal-
sifies the formula, while in our case it is inconsistent from the mathematical viewpoint.

Theory-Driven Deduction. [2, 4, 21]. With early pruning, MATHSOLVE is used to
check if µ is LAL-satisfiable, and possibly close whole branches of the search. It is
also possible to use MATHSOLVE to reduce the remaining boolean search: in fact, the
mathematical analysis of µ performed by MATHSOLVE can allow for discovering that
the value of some mathematical atoms ψ �∈ µ is already determined, based on some sub-
set µ′ ∈ µ being part of the current assignment. For instance, consider the case where
the literals (v1 − v2 ≤ 4) and (v2 = v3) are in the current (partial) assignment µ, while
(v1 −v3 ≤ 5) is currently unassigned. Since {(v1 −v2 ≤ 4),(v2 = v3)} |= (v1 −v3 ≤ 5),
atom (v1 −v3 ≤ 5) can not be assigned to ⊥, since this would make µ LAL-inconsistent.
MATHSOLVE is therefore used to detect and suggest to the boolean search which unas-
signed literals have forced values. This kind of deduction is often very useful, since it
can trigger new boolean constraint propagation: the search is deepened without the need
to split. Moreover, the implication clauses (e.g. ¬(v1 −v2 ≤ 4)∨¬(v2 = v3)∨(v1 −v3 ≤
5)) can be learned and added to the main formula: this constrains the remaining boolean
search in the event of backtracking.

Incremental and Backtrackable Theory Solver. [5, 17, 24]. Given the stack-based
nature of the boolean search, the MATHSOLVE can significantly exploit previous com-
putations. Consider the following trace (left column, then right):

MATHSOLVE (µ1) =⇒ Sat Undo µ2
MATHSOLVE (µ1 ∪µ2) =⇒ Sat MATHSOLVE (µ1 ∪µ′

2) =⇒ Sat
MATHSOLVE (µ1 ∪µ2 ∪µ3) =⇒ Sat MATHSOLVE (µ1 ∪µ′

2 ∪µ′
3) =⇒ Sat

MATHSOLVE (µ1 ∪µ2 ∪µ3 ∪µ4) =⇒ Unsat MATHSOLVE (µ1 ∪µ′
2 ∪µ′

3 ∪µ′
4) =⇒ Sat

On the left, an assignment is repeatedly extended until a conflict is found. We notice
that MATHSOLVE is invoked (during early pruning calls) on incremental assignments.
When a conflict is found, the search backtracks to a previous point (on the right), and
MATHSOLVE is then restarting from a previously visited state. Based on these consid-
erations, our MATHSOLVE is not a function call: it has a persistent state, and is incre-
mental and backtrackable. Incremental means that it avoids restarting the computation
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from scratch whenever it is given as input an assignment µ′ such that µ′ ⊃ µ and µ has
already been proved satisfiable. Backtrackable means that it is possible to return to a
previous state on the stack in a relatively efficient manner. In fact, MATHSOLVE mimics
the stack based behaviour of the boolean search.

4 Clustering and Layering in MATHSOLVE

In this section, we discuss how to optimize MATHSOLVE, based on two main ideas:
clustering and layering.

Clustering. At the beginning of the search, the set Atoms(φ) of all atoms occurring in
the formula is partitioned into disjoint clusters: intuitively, two atoms (literals) belong to
the same cluster if they share a variable. Say Lits(φ) = L1 ∪ ·· ·∪Lk is the so-obtained
static partitioning of the literals. Because no two Li have a variable in common, the
assignment µ is satisfiable if and only if each µ∩Li is satisfiable.

Based on this idea, instead of having a single, monolithic solver for linear arithmetic,
k different solvers are constructed, each responsible for the handling of a single cluster.
The advantage of this approach is not only that running k solvers on k disjoint problems
is faster then running one solver on the union of those k problems, but also a significant
gain is obtained by the potential construction of smaller conflict sets. Additionally, we
are hashing the results of calls to the linear solvers; if there are more linear solvers, then
the likelihood of a hit increases.

Layering. In many calls to MATHSOLVE, a general solver for linear constraints is not
needed: very often, the unsatisfiability of the current assignment µ can be established
in less expressive, but much easier, sub-theories. Thus, MATHSOLVE is organized in a
layered hierarchy of solvers of increasing solving capabilities. If a higher level solver
finds a conflict, then this conflict is used to prune the search at the boolean level; if it
does not, the lower level solvers are activated.
Layering can be explained as trying to privilege

equational
solver

dispatcher

real linear

integers

solver
real linear

integers

solver
real linear

integers

solver

MathSolve

Fig. 2. Clustering and layering

faster solvers for more abstract theories over
slower solvers for more general theories. Fig. 2
shows a rough idea of the structure of MATH-
SOLVE, and highlights the two places in MATH-
SOLVE where this layering is taking place. Firstly,
the current assignment µ is passed to the equa-
tional solver, described in more detail in Sect. 4.1, that only deals with (positive and
negative) equalities. Only if this solver does not find a conflict is a full-blown solver
for linear arithmetic invoked. Secondly, the solver for linear arithmetic, described in
Sect. 4.2, is itself layered: when reasoning about integer variables, it first tries to find a
conflict over the real numbers, and looks for a conflict over the integers only in case of
satisfiability.
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4.1 The Equational Satisfiability Procedure

The first layer of MATHSOLVE is provided by the equational solver, a satisfiability
checker for the logic of unconditional ground equality over uninterpreted function sym-
bols. It is incremental and supports efficient backtracking. The solver generates conflict
sets, deduces assignments for equational literals, and can provide explanations for its
deductions. Thanks to the equational solver, MATHSAT can be used as an efficient deci-
sion procedure for the full logic of equality over uninterpreted function symbols (EUF).
However, in this section we focus on the way the equational solver is used to improve
the performance on LAL.

The solver is based on the congruence closure algorithm suggested in [28], and
reuses some of the data structures of the theorem prover E [32] to store and process
terms and atoms. It internally constructs a congruence data structure that can deter-
mine if two arbitrary terms are necessarily forced to be equal by the currently asserted
constraints, and can thus be used to determine the value of (some) equational atoms.

It also maintains a list of asserted disequations, and signals unsatisfiability if one of
these is violated by the current congruence. Similarly, the solver implicitly knows that
syntactically different constants in D are semantically distinct, and efficiently detects
and signals if a new equation forces the identification of distinct domain elements.

If two terms are equal, an auxiliary proof tree data structure allows us to extract
the reason, i.e. the original constraints (and just those) that forced this equality. If a
disequality constraint is violated, we can return the reason (together with the violated
inequality) as a conflict set.

Similarly, we can perform forward deduction: for each unassigned equational atom,
we can determine if the two sides are already forced to be equal by the current assign-
ment, and hence whether the atom has to be asserted as true or false. Again, we can
extract the reason for this deduction and use it to represent the deduction as a learned
clause on the Boolean level.

There are two ways in which the equational solver can be used: as a solver for equa-
tional clusters, or as a layer in the arithmetic reasoning process. In the first case, only
those clusters not involving any arithmetic at all are given to the equational solver: the
dispatcher moves to the equational solver only equations of the form vi �� v j, vi �� c j,
with ��∈ {=, �=}. Thus, the equational solver provides a full solver for some clusters,
avoiding the need to call an expensive linear solver on an easy problem. This can sig-
nificantly improve performance, since in practical examples it is often the case that a
purely equational cluster is present – typical examples are modeling of assignments in
a programming language, and gate and multiplexer definitions in circuits.

In the second case, the dispatcher also passes constraints involving arithmetic op-
erators to the equational solver. While arithmetic functions are treated as fully uninter-
preted, the equational solver has a limited interpretation of < and ≤, knowing only that
s < t implies s �= t, and s = t implies s ≤ t and ¬(s < t). However, all deductions and
conflicts under EUF semantics are also valid under fully interpreted semantics. Thus,
the efficient equational solver can be used to prune the search space. Only if the equa-
tional solver cannot deduce any new assignments and reports a tentative model, this
model has to be verified (or rejected) by lower level solvers.
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4.2 The Solver for Linear Arithmetic

The task of the linear solver is to check a given assignment µ of linear constraints
(∑i civi �� c j, with ��∈ {=, �=,>,<,≥,≤}) for satisfiability and, as appropriate, return
a model or a conflict set.

The linear solver itself is also layered, running faster, more general solvers first and
using slower, more specialized solvers only if the early ones do not detect an inconsis-
tency. The control flow through the linear solver is given in Fig. 3.

First, we consider only those constraints that are in the difference logic fragment,
i.e., the subassignment of µ consisting of all constraints of the forms vi − v j �� c and
vi �� c, with ��∈ {=, �=,<,>,≤,≥}. Satisfiability checking for this subassignment is
reduced to a negative-cycle detection problem in the graph whose nodes correspond to
variables and whose edge correspond to the constraints. We use an incremental ver-
sion of the Bellman-Ford algorithm to search for a negative-cycle and hence for a
conflict [16].

Second, we try to determine if the current assignment µ is consistent over the reals,
by means of the Cassowary constraint solver. Cassowary [13, 8] is a simplex-based
solver over the reals, using slack variables to efficiently allow the addition and removal
of constraints and the generation of a minimal conflict set.

Cassowary is called on µ minus the disequalities (i.e., with �� equal to �=). When
Cassowary does not find a conflict, its incremental and backtrackable machinery is
used to check for each disequality ∑civi �= c j in µ separately if it is consistent with
the non-disequality constraints in µ. We do so by adding and retracting both ∑civi < c j

and ∑civi > c j. Of course, if one of the disequalities is inconsistent, the whole assign-
ment µ is inconsistent. However, if each disequality separately is consistent, then by
dimensionality reasons all of µ is consistent.1

Whenever the variables are interpreted over the reals, MATHSOLVE is done at this
point. If the variables are interpreted over the integers, and the problem is unsatisfiable
in the reals, then it is so in the integers. When the problem is satisfiable in the reals, a
simple form of branch-and-cut is carried out, to search for solutions over the integers,
using Cassowary’s incremental and backtrackable machinery. If branch-and-cut does
not find either an integer solution or a conflict within a small, predetermined amount of
search, the Omega constraint solver [29] is called on the current assignment. Omega is a
constraint solver over the integers based on Fourier-Motzkin. Since it is computationally

1 Basically because it is impossible to write an affine subspace A of R
k as a finite union of proper

affine subspaces of A.
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expensive to call, does not have an incremental and backtrackable interface and also is
not capable of generating a conflict set, it is called only as a last resort.

One implementation issue is that everything has to be done with infinite precision.
For this, we modified the Cassowary solver to handle arbitrary large rational numbers.

5 The MATHSAT System

The actual MATHSAT system has three components: (i) a preprocessor, (ii) a boolean
satisfiability solver, and (iii) the MATHSOLVE theory solver described in Sect. 4.

Preprocessor. MATHSAT allows the input formulas to contain constructions that can-
not be handled directly by the MATHDPLL algorithm. These features and some opti-
mizations are handled by a preprocessor. First, MATHSAT allows the input formulas
to be in non-clausal form and to include boolean operators such as → and ternary if-
then-else. Thus the last step in the preprocessor is to translate the formula into CNF by
using a standard linear-time satisfiability preserving translation. Second, the input for-
mulas may contain uninterpreted functions and predicates. If they are used in a mixed
way that cannot be handled either by the EUF solver or linear arithmetic solver alone
(e.g. an atom f (x)+ f (z) = c), the preprocessor uses Ackermann’s reduction to elimi-
nate them [1].

In addition, the preprocessor uses a form of static learning to add some satisfiability
preserving constraints that help to prune the search space in the boolean level. For
instance, if a formula φ contains a set of math-atoms of form {(t = c1), ...,(t = cn)},
where t is a math-term and ci are mutually disjoint constants, then φ is conjuncted
with constraints enforcing that at most one of the atoms can be true. Similarly, a linear
number of constraints encoding the basic mathematical relationships between simple
(in)equalities of the form t �� ci, �� ∈ {<,≤,=≥,>}, are added. E.g. if (t ≤ 2),(t =
3),(t > 5) are math-atoms in φ, then φ is conjuncted with the constraints (t = 3) →
¬(t > 5), (t = 3) → ¬(t ≤ 2), and (t ≤ 2) → ¬(t > 5). Furthermore, some facts between
difference constraints of form t1 − t2 �� c, where �� ∈ {<,≤,≥,>} and c is a constant,
are included: (i) mutual exclusion of conflicting constraints is forced, e.g. for (t1 − t2 ≤
3) and (t2 − t1 < −4), the constraint ¬(t1 − t2 ≤ 3) ∨ ¬(t2 − t1 < −4) is added, and
(ii) constraints corresponding to triangle inequalities are added, e.g. for (t1 − t2 ≤ 3),
(t2 − t3 < 5), and (t1 − t3 < 9), the constraint (t1 − t2 ≤ 3)∧ (t2 − t3 < 5) → (t1 − t3 < 9)
is included.

Boolean Solver. The math-formula in CNF produced by the preprocessor is given to
the boolean satisfiability solver extended to implement the MATHDPLL algorithm in
Sect. 3. In MATHSAT, the boolean solver is built upon the MINISAT solver [18].
Thus it inherits conflict-driven learning and back-jumping, restarts [34, 11, 22], opti-
mized boolean constraint propagation based on the two-watched literal scheme, and
an effective splitting heuristics VSIDS [27] for free. It communicates with MATH-
SOLVE through an interface (resembling the one in [21]) that passes assigned literals,
LAL-consistency queries and backtracking commands to MATHSOLVE and gets back
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answers to the queries, mathematical conflict sets and implied literals (Sect. 3). The
boolean solver is also extended to handle some optimization options relevant when
dealing with math-formulas. For instance, MATHSAT inherits MINISAT’s feature of
periodically discarding some of the learned clauses to prevent explosion of the formula
size. But because clauses generated by theory-driven learning and forward deduction
mechanisms (Sect. 3) may have required a lot of work in MATHSOLVE, as a default
option they are never discarded. As a second example, it is possible to initialize the
VSIDS heuristics weights of literals so that either boolean or mathematical atoms are
preferred as splitting choices early in the MATHDPLL search.

Furthermore, as the theory of linear arithmetic on Z is much harder, in theory and
in practice, than that on R [12], in early pruning calls we only use weaker but faster
versions of MATHSOLVE, which look for a solution on the reals only. This is based on
the heuristic consideration that, in practice, if an assignment is consistent in R it is often
also consistent in Z, and that early pruning checks are not necessary for the correctness
and completeness of the procedure.

6 Experimental Evaluation

In this section we report on the experiments we have carried out to evaluate the per-
formance of our approach. The experiments were run on a 4-processor PentiumIII 700
MhZ machine with more than 6 Gb of memory, running Linux RedHat 7.1. An exe-
cutable version of MATHSAT and the source files of all the experiments performed in
the paper are available at [26].

Description of the Test Cases. The first set of experiments was performed on the SAL
suite [31], a set of benchmarks for ground decision procedures. The suite is derived
from bounded model checking of timed automata and linear hybrid systems, and from
test-case generation for embedded controllers. The problems are represented in non-
clausal form, and constraints are in linear arithmetic. This suite contains 217 problems,
110 of which are in the separation logic fragment.

The second set of experiments was performed on a benchmark suite (called RTLC
hereafter) formalizing safety properties for RTL circuits, provided to us by the authors
of [30] (see [30] for a more detailed description of the benchmarks).

Finally, we used a benchmark suite (CIRC) generated by ourselves, verifying prop-
erties for some simple circuits. The suite is composed of three different kinds of bench-
marks, all of them being parametric in (and scaling up with) N, where [0..2N − 1] is
the range of an integer variable. In the first benchmark, the modular sum of two inte-
gers is checked for equality against the bit-wise sum of their bit decomposition. The
negation of the resulting formula is therefore unsatisfiable. In the second benchmark,
two identical shift-and-add multipliers and two integers a and b are given; a and the bit
decomposition of b (respectively b and the bit decomposition of a) are given as input to
the first (respectively, the second) multiplier, and the outputs of the two multipliers are
checked for equality. The negation of the resulting formula is therefore unsatisfiable.
In the third benchmark, an integer a and the bitwise decomposition of an integer b are
given as input to a shift-and-add multiplier; the output of the multiplier is compared
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Fig. 4. Execution time ratio: the X and Y axes report MATHSAT and each competitor’s times
respectively

with the constant integer value p2, p being the biggest prime number strictly smaller
than 2N . The resulting formula is satisfiable, but it has only one solution: a = b = p and
corresponding bit values.

Comparison with Other State-of-the-Art Tools. We evaluated the performance of
MATHSAT with respect to other state-of-the-art tools, namely ICS, CVCLITE and
UCLID. For ICS and UCLID, the latest officially released versions were used for
the comparative evaluation. For CVCLITE, we used the latest available version on the
online repository, given that the latest officially released version showed a bug related
to the management of integer variables. Moreover, the version we used turned out to be
much faster than the other one. The time limit for these experiments was set to 1800
seconds (only one processor was allowed to run for each run) and the memory limit was
set to 500 MB.

The overall results are reported in Fig. 4. The rows show the comparison between
MATHSAT and, respectively, CVCLITE, ICS and UCLID, whereas the columns cor-
respond to the different test suites. The X and Y axes show, respectively, MATHSAT
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Fig. 5. Number of benchmarks solved (X axis) versus accumulated time (Y axis)

and each of the competitor’s execution times. A dot in the upper part of a picture, i.e.
above the diagonal, means a better performance of MATHSAT and viceversa. The two
uppermost horizontal lines and the two rightmost vertical lines represent, respectively,
benchmarks that ended in out-of-memory (higher) or timed-out (lower) for, respec-
tively, each of the competitors and MATHSAT.

For the UCLID tests only, the dots on the uppermost horizontal line represent prob-
lems on which UCLID could not be run on, because it does not support full LAL; thus,
these points are significant only for MATHSAT.

The comparison with CVCLITE shows that MATHSAT performs generally better
on the majority of the benchmarks in the SAL suite (CVCLITE timeouts on several of
them). On the RTLC suite, the comparison is slightly in favour of CVCLITE for some
of the problems whose time ratio is close to 1, however CVCLITE has high computation
times and even timeouts a couple of times for a few problems which MATHSAT can
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solve in less than a second. For the CIRC suite, the comparison is definitely in favour
of MATHSAT.

The comparison with ICS shows that ICS is superior on the SAL suite (that is, on
its own test suite) on a majority of smaller problems. However, MATHSAT performs
better on the most difficult problems in the suite (ICS timeouts on some of them). On
the RTLC and CIRC suite MATHSAT performs clearly better than ICS.

Finally, the comparison with UCLID shows a substantial difference of performance
in favour of MATHSAT 2.

Fig. 5 shows an overall comparison between MATHSAT and its competitors, where
the number of tests solved within the time and memory limits (X axis) is plotted against
the accumulated execution time (Y axis). Notice that plots with less samples indicate
a higher number of time outs. For this reason, we do not report the data for UCLID,
given that it could be run only on a subset of the benchmarks.

On the SAL suite, ICS generally performs the best on most examples; however
MATHSAT performs better than ICS on the hardest examples (MATHSAT is able to
solve some problems for which ICS timeouts); CVCLITE performance on this suite is
definitely worse. On the RTLC suite, the performances of MATHSAT and CVCLITE

are quite close to each other, whereas ICS performance is definitely worse. Finally, on
the CIRC suite MATHSAT is the the best performer followed by ICS, whereas CV-
CLITE performs much worse. The last picture shows the results obtained by putting
together the data in the three benchmarks suites: overall, MATHSAT and ICS per-
form clearly better than CVCLITE, with MATHSAT performing better than ICS on
the harder problems and ICS performing slightly better on simpler ones.

7 Related Work

In this paper we have presented a new decision procedure for Linear Arithmetic Logic.
The verification problem for LAL is well known, and it has been devoted a lot of interest
in the past. In particular, our approach builds upon and improves our previous work on
MATHSAT [5, 4, 7, 6, 14], along the lines described in Sect. 3.

Other related decision procedures are the ones considered in Sect. 6, namely CV-
CLITE [17, 10], ICS [24, 19] and UCLID [36, 33]. CVCLITE is a library for checking
validity of quantifier-free first-order formulas over several interpreted theories, includ-
ing real and integer linear arithmetic, arrays and uninterpreted functions. CVCLITE

replaces the older tools SVC and CVC [17]. ICS is a decision procedure for the satisfi-
ability of formulas in a quantifier-free, first-order theory containing both uninterpreted
function symbols and interpreted symbols from a set of theories including arithmetic,
tuples, arrays, and bit-vectors. Finally, UCLID is a tool incorporating a decision pro-
cedure for arithmetic of counters, the theories of uninterpreted functions and equality
(EUF), separation predicates and arrays. It can also handle limited forms of quantifi-
cation. In this paper these tools have been compared using the benchmarks falling into
the class of linear arithmetic logic (in the case of UCLID the subset of arithmetic of

2 UCLID could not be run on some of the problems in SAL and RTLC and on all of the problems
in CIRC, because it does not support full LAL, hence the emptiness of the bottom-right picture.
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counters). A comparison on the benchmarks dealing with the theory of EUF is part of
our future work.

Other relevant systems are Verifun [20], a tool using lazy-theorem proving based
on SAT-solving, supporting domain-specific procedures for the theories of EUF, linear
arithmetic and the theory of arrays, and the tool ZAPATO [9], a tool for counterexample-
driven abstraction refinement whose overall architecture is similar to Verifun. The
DPLL(T) [21] tool is a decision procedure for the theory of EUF, which, similarly
to MATHSAT, is based on a DPLL-like SAT-solver engine coupled with a specialized
solver for EUF. A comparison with DPLL(T) in the case of EUF is also planned as fu-
ture work. ASAP [25], is a decision procedure for quantifier-free Presburger arithmetic
(that is, the theory of LAL over non-negative integers) implemented on top of UCLID;
a comparison was not possible given that the system is not publicly available. A further
relevant system is TSAT++ [35, 3], which is limited, however, to the separation logic
fragment of LAL.

Finally, we mention [30], which presents HDPLL, a decision procedure for LAL,
specialized to the verification of circuits at RTL level. The procedure is based on DPLL-
like Boolean search engine integrated with a constraint solver based on Fourier-Motzkin
elimination and finite domain constraint propagation. According to the experimental
results in [30], HDPLL seems to be very competitive, at least for property verification
of circuits at RTL level. It would be very interesting to perform a thorough experimental
evaluation wrt. MATHSAT (at the moment this was not possible due to unavailability of
the tool) and also to investigate the possibility of tuning MATHSAT using some ideas
mentioned in the paper.

8 Conclusions and Future Work

In this paper we have presented a new decision procedure for the satisfiability of Linear
Arithmetic Logic. The work is carried out within the (known) framework of integration
between off-the-shelf SAT solvers, and specialized theory solvers. We proposed several
improvements. First, the theory solver is incremental and backtrackable, and therefore
able to tightly interact with the boolean top level by mimicking its stack-based be-
haviour; furthermore, it provides explanations in case of conflict, and can carry out
deductions that provide truth values to unassigned atoms. Second, we heavily exploit
the idea of layering: the satisfiability of theory constraints is evaluated in theories of
increasing strength (Equality, Separation logic, Linear Arithmetic over the reals, and
Linear Arithmetic over the integers). The idea is to privilege less expensive solvers
(for weaker theories), thus reducing the use of more expensive solvers. Finally, static
learning and weakened early pruning are also used. We carried out a thorough exper-
imental evaluation of our approach: the MATHSAT solver is able to tackle effectively
a wide class of problems, with performance comparable with and often superior to the
state-of-the-art competitors.

Besides the experiments shown in this paper, we have performed an additional set of
experiments to evaluate the impact of the above mentioned improvements on the overall
performance of MATHSAT. The results of this evaluation are reported in an extended
version of this paper, available at [26].



332 M. Bozzano et al.

As future work, we plan to further tune MATHSAT, to investigate the impact of
different splitting heuristics taking into account the internal nature of constraints. In
addition, we plan to extend MATHSAT to deal with other theories, including non-linear
arithmetics, arrays, bitvectors, and a model of memory access. We are investigating
an extension of MATHSAT to combinations of theories, in particular EUF and LAL.
Finally, we plan to lift SAT-based model checking beyond the boolean case, to the
verification of sequential RTL circuits and of hybrid systems.
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