
On the Realizable Weaving Patterns
of Polynomial Curves in R

3

Saugata Basu1,�, Raghavan Dhandapani2, and Richard Pollack2,��

1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA
saugata@math.gatech.edu

2 Courant Institute of Mathematical Sciences, NYU, New York, NY 10012, USA
raghavan@cs.nyu.edu, pollack@cims.nyu.edu

Abstract. We prove that the number of distinct weaving patterns pro-
duced by n semi-algebraic curves in R

3 defined coordinate-wise by poly-
nomials of degrees bounded by some constant d, is bounded by 2O(n log n),
where the implied constant in the exponent depends on d. This general-
izes a similar bound obtained by Pach, Pollack and Welzl [3] for the case
when d = 1.

1 Introduction

In [3], Pach, Pollack and Welzl considered weaving patterns of n lines in R
3

and showed that asymptotically only a negligible fraction of possible weaving
patterns are realizable by straight lines in R

3 (see Remark 2 below). In this
paper, we consider weaving patterns produced by polynomial curves in R

3. Since,
such curves are much more flexible than lines, it is reasonable to expect a much
bigger number of realizable weaving patterns. In this paper, we prove that the
number of distinct weaving patterns, realized by polynomial curves with degrees
bounded by some constant d, is still asymptotically negligible.

Crossing patterns of semi-algebraic sets of fixed description complexity were
considered in [1], where Ramsey type results are proved for such arrangements.
However, since semi-algebraic curves in R

3 (unlike lines) need not satisfy sim-
ple above-below relationships and can intertwine in complicated ways, it is not
immediately clear whether the framework in [1] is applicable in our setting.

The rest of the paper is organized as follows. In Section 2, we define weaving
patterns for polynomial curves and state the main result of the paper (Theo-
rem 1). Since, the projections to the plane of curves defined by polynomials in R

3

can have complicated patterns of intersection, defining what is meant by a weav-
ing pattern for such curves requires some care. In Section 3, we recall some basic
facts from [2]. The main tools used in the proof of Theorem 1, are Cylindrical
Algebraic Decomposition, and a bound on the number of connected components
of the realizations of all realizable sign conditions on a family of polynomials
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(see Theorem 2). We give here the basic definitions, and state the results that
we need, referring the reader to [2] for details. In Section 4 we prove Theorem 1.
Finally, in Section 5 we compare the number of weaving patterns realizable by
polynomial curves of fixed degrees with the total number of weaving patterns.

2 Weaving Patterns in R
3

Let γ1, . . . , γn : (−∞,∞) → R
3 be n semi-algebraic curves given by

γi(s) = (xi(s), yi(s), zi(s)), 1 ≤ i ≤ n,

where xi, yi, zi are polynomials whose degrees are bounded by d. We will assume
that the curves are not self-intersecting in R

3 and the images of γi and γj do
not intersect, unless i = j.

Let π : R
3 → R

2 denote the projection sending (x, y, z) �→ (x, y). For 1 ≤
i < j ≤ n, let

Mij = {π(γi(s1
ij)), . . . , π(γi(s

�ij

ij ))} ⊂ R
2, s1

ij < · · · < s
�ij

ij ,

denote the finite set of �ij isolated points of intersections of π(image(γi)) and
π(image(γj)). Also, let

Mii = {π(γi(s1
ii)), . . . , π(γi(s�ii

ii ))} ⊂ R
2, s1

ii < · · · < s�ii

ii ,

and such that π(γi(sk
ii)) = π(γi(s)), s �= sk

ii ⇒ s > sk
ii.

We assume that each of the intersection points correspond to a normal cross-
ing. In particular, for p ∈ Mij (respectively, p ∈ Mii) π−1(p) ∩ (image(γi) ∪
image(γj)) (respectively, π−1(p) ∩ image(γi)) consists of exactly two points.
This is not a very strong assumption, since for every finite family of smooth al-
gebraic curves, almost all linear projections, π, satisfy these assumptions. The set
of bad projections is a Zariski closed subset in the space of all linear projections.

For 1 ≤ i < j ≤ n, and 1 ≤ k ≤ �ij , we define V k
ij ∈ {+1,−1} in the following

way.

V k
ij = +1 if zi(sk

ij) > zj(s) where s ∈ R is such that π(γj(s)) = π(γi(sk
ij)),

= −1 else.

In other words, V k
ij is +1 if image(γi) lies above image(γj) over π(γi(sk

ij)), which
is a point of intersection of the projections of the images of the two curves, γi, γj ,
to the XY -plane.

Similarly, we define for each 1 ≤ i ≤ n, and 1 ≤ k ≤ �ii, V k
ii ∈ {+1,−1} as

follows.

V k
ii = +1 if zi(sk

ii) > zj(s) where s �= sk
ii is such that π(γi(s)) = π(γi(sk

ij)),
= −1 else.

Now consider the union of the projections of the images of the curves, namely

π(image(γ1)), . . . , π(image(γn)),
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as a planar embedding of a planar graph (self loops allowed), whose vertices are
at the points, Mk

ij , 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ �ij , and whose edges are the various
curve segments joining the vertices. Two such graph embeddings are said to be
equivalent, if one can be mapped to the other by a homeomorphism of the plane.
Given an ordered set of curves, Γ = {γ1, . . . , γn}, satisfying the assumptions
stated above, we denote by G(Γ ) the equivalence class of the corresponding
embedded graph in the XY -plane. Finally, we call G(Γ ) along with the labeling
of each of its vertex, Mk

ij by V k
ij ∈ {+1,−1}, to be the weaving pattern produced

by Γ.
In this paper we address the following question. How many distinct weaving

patterns can be produced by n algebraic curves, γ1, . . . , γn : (−∞,∞) → R
3

where γi(s) = (xi(s), yi(s), zi(s)), and xi, yi, zi are polynomials whose degrees
are bounded by some constant d ?

We prove the following theorem.

Theorem 1. The number of distinct weaving patterns produced by Γ is bounded
by 2O(n log n), where the constant in the exponent depends on d.

This generalizes the bound proved in [3], which is the special case when d = 1.
Also, note that π(image(γ1)), . . . , π(image(γn)), can have

(
n
2

)
d2 crossing points

and hence the number of possible weaving patterns could be potentially as large
as 2(n

2)d2
. However, its clear from Theorem 1 only a negligible fraction of these

are realizable by curves defined by polynomials with degrees bounded by d.

3 Preliminaries

In this section, we recall a few notions from semi-algebraic geometry that we
will need in the proof of Theorem 1. More details, including proofs of the results
stated below, can be found in [2].

3.1 Realizable Sign Conditions and Associated Bounds

A sign condition is an element of {0, 1,−1}. We denote for x ∈ R






sign(x) = 0 iff x = 0,

sign(x) = 1 iff x > 0,

sign(x) = −1 iff x < 0.

Let Q ⊂ R[X1, . . . , Xk], A sign condition on Q is an element of {0, 1,−1}Q.
We say that Q realizes the sign condition σ at x ∈ R

k if
∧

Q∈Q
sign(Q(x)) = σ(Q).

The realization of the sign condition σ is

R(σ) = {x ∈ R
k |

∧

Q∈Q
sign(Q(x)) = σ(Q)}.
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The sign condition σ is realizable if R(σ) is non-empty. The set Sign(Q) ⊂
{0, 1,−1}Q is the set of all realizable sign conditions for Q over R

k.
For σ ∈ Sign(Q), let b0(σ) denote the number of connected components of

R(σ) = {x ∈ R
k |

∧

Q∈Q
sign(Q(x)) = σ(Q)}.

Let b0(Q) =
∑

σ b0(σ). We write b0(d, k, s) for the maximum of b0(Q) over
all Q, where Q is a finite subset of R[X1, . . . , Xk] whose elements have degree
at most d, #(Q) = s.

The following theorem [2] gives an upper bound on b0(d, k, s) which we will
use later in the paper.

Theorem 2.

b0(d, k, s) ≤
∑

1≤j≤k

(
s

j

)
4jd(2d − 1)k−1.

3.2 Cylindrical Decomposition

Cylindrical Algebraic Decomposition is a classical tool used in the study of,
as well as in algorithms for computing, topological properties of semi-algebraic
sets. We give here the basic definitions and properties of Cylindrical Algebraic
Decomposition referring the reader to [2] for greater details.

A cylindrical decomposition of R
k is a sequence S1, . . . ,Sk where, for each

1 ≤ i ≤ k, Si is a finite partition of R
i into semi-algebraic subsets, called the

cells of level i, which satisfy the following properties:

Each cell S ∈ S1 is either a point or an open interval.
For every 1 ≤ i < k and every S ∈ Si, there are finitely many continuous

semi-algebraic functions

ξS,1 < . . . < ξS,�S : S −→ R

such that the cylinder S × R ⊂ R
i+1 is the disjoint union of cells of Si+1

which are:
either the graph of one of the functions ξS,j, for j = 1, . . . , �S:

{(x′, xj+1) ∈ S × R | xj+1 = ξS,j(x′)} ,

or a band of the cylinder bounded from below and from above by the
graphs of the functions ξS,j and ξS,j+1, for j = 0, . . . , �S, where we take
ξS,0 = −∞ and ξi,�S+1 = +∞:

{(x′, xj+1) ∈ S × R | ξS,j(x′) < xj+1 < ξS,j+1(x′)} .

A cylindrical decomposition adapted to a finite family of semi-algebraic sets
T1, . . . , T� is a cylindrical decomposition of R

k such that every Ti is a union of
cells.
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Given a finite set P of polynomials in R[X1, . . . , Xk], a subset S of R
k is

P-semi-algebraic if S is the realization of a quantifier free formula with atoms
P = 0, P > 0 or P < 0 with P ∈ P . A subset S of R

k is P-invariant if every
polynomial P ∈ P has a constant sign (> 0, < 0, or = 0) on S. A cylindrical
decomposition of R

k adapted to P is a cylindrical decomposition for which each
cell C ∈ Sk is P-invariant. It is clear that if S is P-semi-algebraic, a cylindrical
decomposition adapted to P is a cylindrical decomposition adapted to S.

Given a family of polynomials P ⊂ R[X1, . . . , Xk], there exists another family
of polynomials ElimXk

(P) (see [2], page 145, for the precise definition of Elim)
having the following property.

We denote, for i = k − 1, . . . , 1,

Ci(P) = ElimXi+1(Ci+1(P)),

with Ck(P) = P , so that

Ci(P) ⊂ R[X1, . . . , Xi].

The semi-algebraically connected components of the sign conditions on the fam-
ily,

C(P) = ∪i≤kCi(P)

are the cells of a cylindrical decomposition adapted to P . We call C(P) the
cylindrifying family of polynomials associated to P .

Moreover, if s is a bound on #(P), and d a bound on the degrees of the
elements of P , #(ElimXk

(P)) is bounded by O(s2d3). Moreover, the the degrees
of the polynomials in ElimXk

(P) with respect to X1, . . . , Xk−1 is bounded by
2d2.

Remark 1. The set Ci(P) has the following additional property. For σ ∈
sign(Ci(P)) and C a connected component of R(σ, Ri), for each x = (x1, ..., xi) ∈
C, the family

⋃

i<j≤k

Cj(P)(x1, ..., xi) is the cylindrifying family of polynomials as-

sociated to P(x1, ..., xi), and moreover the induced cylindrical decompositions
have the same structure. More precisely, this means that there is a 1-1 corre-
spondence between the cylindrical cells as x varies over C.

4 Proof of the Main Result

For 1 ≤ i ≤ n, let

Pi =
d∑

j=0

Ai,jT
j
i ∈ R[Āi, Ti],

Qi =
d∑

j=0

Bi,jT
j
i ∈ R[B̄i, Ti],

Ri =
d∑

j=0

Ci,jT
j
i ∈ R[C̄i, Ti],
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wherewe denote by Āi (respectively, B̄i, C̄i) the vector of variables, (Ai,0, ..., Ai,d)
(respectively, (Bi,0, . . . , Bi,d), (Ci,0, . . . , Ci,d)).

Similarly, we denote by Ā (respectively, B̄, C̄) the vector of variables,

(A1,0, . . . , A1,d, . . . , An,0, . . . , An,d)

(respectively, (B1,0, ..., B1,d, ..., Bn,0, ..., Bn,d), (C1,0, ..., C1,d, ..., Cn,0, ..., Cn,d)).
We denote by γi the triple (Pi, Qi, Ri). For fixed values (āi, b̄i, c̄i), the triples
γi(āi, b̄i, c̄i) = (Pi(āi, Ti), Qi(b̄i, Ti), Ri(c̄i, Ti)), 1 ≤ i ≤ n gives rise to an ordered
set of curves in R

3, which we denote by Γ (ā, b̄, c̄). Let WP (ā, b̄, c̄) denote the
weaving pattern produced by Γ (ā, b̄, c̄). We want to bound the cardinality of the
set,

{WP (ā, b̄, c̄) | (ā, b̄, c̄) ∈ R
3(d+1)n}.

Now, consider the following family of polynomials:

Ai = {X−Pi(Āi, Ti), Y −Qi(B̄i, Ti), Z −Ri(C̄i, Ti)} ⊂ R[Āi, B̄i, C̄i, X, Y, Z, Ti].

Let Bi = ElimTi(Ai) ⊂ R[Āi, B̄i, C̄i, X, Y, Z], and let

B =
⋃

1≤i≤n

Bi.

Notice, if we specialize (Āi, B̄i, C̄i) to some (āi, b̄i, c̄i) ∈ R
3(d+1), the image

of the curve γi(āi, b̄i, c̄i) ∈ R
3 is a Bi(āi, b̄i, c̄i)-semi-algebraic set.

The following proposition relates the weaving pattern, WP (ā, b̄, c̄) to a cylin-
drical decomposition of R3 adapted to the family B(ā, b̄, c̄).

Proposition 1. Let (ā, b̄, c̄) ∈ R
3(d+1)n. The weaving pattern, WP (ā, b̄, c̄) is

determined by the cylindrical decomposition induced by the cylindrifying family
of polynomials associated to B(ā, b̄, c̄).

In particular, if two points (ā, b̄, c̄), (ā′, b̄′, c̄′) ∈ R
3(d+1)n, are such that the

cylindrical decompositions induced by the cylindrifying families of polynomials
associated to B(ā, b̄, c̄) and B(ā′, b̄′, c̄′) have the same structure, then WP (ā,b̄,c̄)=
WP (ā′, b̄′, c̄′).

Proof. The proposition is a consequence of the definition of weaving pattern, the
definition of cylindrifying families of polynomials, and the fact that the images
of the curves, γi(āi, b̄i, c̄i), are all B(ā, b̄, c̄)-semi-algebraic sets.

We now prove Theorem 1.

Proof. Let C1 = ElimZ(B), C2 = ElimY (C1), and C3 = ElimX(C2).
The set C3 has the following property which is a consequence of Remark 1

in Section 3. Let C be a connected component of the realization of a realizable
sign condition of C3. Then, for each (ā, b̄, c̄) ∈ C, B(ā, b̄, c̄)∪C1(ā, b̄, c̄)∪C2(ā, b̄, c̄)
is the cylindrifying family of polynomials associated to B(ā, b̄, c̄) and moreover
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the cylindrical decompositions induced have the same structure as (ā, b̄, c̄) varies
over C.

Since, by Proposition 1, for fixed (ā, b̄, c̄) ∈ R
3(d+1)n the weaving pattern

of Γ (ā, b̄, c̄) is determined by any Cylindrical Decomposition of R
3 adapted to

B(ā, b̄, c̄), then by the previous observation, the number of distinct weaving pat-
terns is clearly bounded by b0(C3), which we now proceed to bound from above.

From the bounds stated in Section 3, we have that for 1 ≤ i ≤ n, #(Bi) =
O(d3) and the degrees of the polynomials in Bi are bounded by O(d2). Hence,
#(B) = O(nd3). Since, C3 is obtained from B after three successive Elim opera-
tions, we get that, #C3 = (nd)O(1) and the degrees of the polynomials in C3 is
bounded by dO(1)). The number of variables in the polynomials in C3 is 3(d+1)n.
Using the bound in Theorem 2, we get that b0(C2) is bounded by

(nd)O(dn) = 2O(n log n).

5 Most Weaving Patterns Are Not Realizable

We have the following theorem which generalizes Theorem 3 in [3].

Theorem 3. The number of weaving patterns realizable by polynomial curves of
degrees bounded by a constant, divided by the total number of weaving patterns
of n curves whose projections are allowed to intersect at most a constant number
of times, tends to 0 exponentially fast, as n → ∞.

Proof. By Theorem 1, the number of distinct weaving patterns produced by
such curves is bounded by 2O(n log n). On the other hand, considering n lines in
the plane in general position, and counting all possible ways of labeling the

(
n
2

)

crossings, we see that there are at least 2(n
2) possible weaving patterns.

Remark 2. The proof of the upper bound in Theorem 3 in [3] does not seem
to consider the fact that the projections of different sets of n lines in R

3 to
the plane, can produce arrangements which are combinatorially distinct, and
these would produce distinct weaving patterns by definition. In fact, obtaining
good control on this number complicates the proof of Theorem 1 in this paper.
However, since the number of combinatorially distinct arrangements of n lines
in R

2 is still bounded by 2O(n log n), the proof of the theorem in [3] is still valid.
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