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Abstract. In a visibility representation (VR for short) of a plane graph
G, each vertex of G is represented by a horizontal line segment such that
the line segments representing any two adjacent vertices of G are joined
by a vertical line segment. Rosenstiehl and Tarjan [6], Tamassia and
Tollis [7] independently gave linear time VR algorithms for 2-connected
plane graph. Afterwards, one of the main concerns for VR is the size of
VR. In this paper, we prove that any plane graph G has a VR with height
bounded by � 5n

6
�. This improves the previously known bound � 15n

16
�. We

also construct a plane graph G with n vertices where any VR of G require
a size of (� 2n

3
�) × (� 4n

3
� − 3). Our result provides an answer to Kant’s

open question about whether there exists a plane graph G such that all
of its VR require width greater that cn, where c > 1.

1 Introduction

The first simple linear time VR algorithm was given in [6, 7] for a 2-connected
plane graph G. One of the main concerns afterwards for VR is the size of the
VR, i.e., the height and width of VR. Some work has been done to reduce the
size of VR. We summarize related previous results in the following table:

References Plane graph G 4-Connected plane graph G

[6, 7] Width of VR ≤ (2n − 5) Height of VR ≤ (n − 1)
[2] Width of VR ≤ � 3n−6

2 �
[5] Width of VR ≤ � 22n−42

15 �
[3] Width of VR ≤ (n − 1)
[8] Height of VR ≤ � 15n

16 �
[9] Width of VR ≤ � 13n−24

9 � Height of VR ≤ � 3n
4 �

In this paper, we obtain the following main results:

(1) We prove that every plane graph G has a VR with height bounded by � 5n
6 �,

which can be obtained in linear time.
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(2) We give a plane graph G with n vertices such that any VR of G require a
size of (� 2n

3 �)×(� 4n
3 �−3). This answers Kant’s open question about whether

there exists a plane graph G such that all of its VR require width greater
that cn, where c > 1 [2].

2 Preliminaries

In this section, we give definitions and preliminary results. We abbreviate the
words “counterclockwise” and “clockwise” as ccw and cw respectively.

An orientation of a graph G is a digraph obtained from G by assigning a di-
rection to each edge of G. We will use G to denote both the resulting digraph and
the underlying undirected graph unless otherwise specified. For a 2-connected
plane graph G and an exterior edge (s, t), an orientation of G is called an st-
orientation if the resulting digraph is acyclic with s as the only source and t as
the only sink. Note that, for every face f of G, its boundary cycle consists of two
directed paths. The path on its left (right, resp.) side is called the left (right,
resp.) path of f . There is exactly one source (sink, resp.) vertex on the boundary
of f , it is called the source (sink, resp.) of f .

Let G be a 2-connected plane graph and (s, t) an exterior edge. An st-
numbering of G is a one-to-one mapping ξ : V → {1, 2, · · · , n}, such that
ξ(s) = 1, ξ(t) = n, and each vertex v �= s, t has two neighbors u, w with
ξ(u) < ξ(v) < ξ(w), where u (w, resp.) is called a smaller neighbor (bigger
neighbor, resp.) of v. Lempel et. al. [4] showed that for every 2-connected plane
graph G and an exterior edge (s, t), there exists an st-numbering. Given an st-
numbering ξ of G, we can orient G by directing each edge in E from its lower
numbered end vertex to its higher numbered end vertex. The resulting orien-
tation is called the orientation derived from ξ which is an st-orientation of G.
On the other hand, if G = (V, E) has an st-orientation O, we can define an 1-1
mapping ξ : V → {1, · · · , n} by topological sort. Thus, we can interchangeably
use the term an st-numbering of G and the term an st-orientation of G, where
each edge of G is directed accordingly. The following lemma was given in [6, 7]:

Lemma 1. Let G be a 2-connected plane graph. Let O be an st-orientation of
G. A VR of G can be obtained from O in linear time. The height of the VR is
the length of the longest directed path in O.

Let G be a plane triangulation, v1, v2, · · · , vn an ordering of the vertices of
G where v1, v2, vn are the three exterior vertices of G in ccw order. Let Gk be
the subgraph of G induced by v1, v2, · · · , vk and Hk the exterior face of Gk. Let
G − Gk be the subgraph of G obtained by removing v1, v2, · · · , vk.

Definition 1. [1] An ordering v1, · · · , vn of a plane triangulation G is canonical
if the following hold for every k = 3, · · · , n:

1. Gk is 2-connected, and its exterior face Hk is a cycle containing the edge
(v1, v2).
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2. The vertex vk is on the exterior face of Gk, and its neighbors in Gk−1 form a
subinterval of the path Hk−1−(v1, v2) with at least two vertices. Furthermore,
if k < n, vk has at least one neighbor in G − Gk. (Note that the case k = 3
is degenerated, and H2 − (v1, v2) is regarded as the edge (v1, v2) itself.)

A canonical ordering of G can be viewed as an order in which G is recon-
structed from a single edge (v1, v2) step by step. At step k, when vk is added
to construct Gk, let cl, , · · · , cr be the lower ordered neighbors of vk from left to
right on the exterior face of Gk−1. We call (vk, cl) the left edge of vk, (vk, cr) the
right edge of vk, and the edges (cp, vk) with l < p < r the internal edges of vk.
The collection T of the left edges of the vertices vj for 3 ≤ j ≤ n plus the edge
(v1, v2) is a spanning tree of G and is called a canonical ordering tree of G [1].

3 Compact Visibility Representation of Plane Graphs

Let G be a plane triangulation with n vertices, v1, v2, vn be its exterior vertices
in ccw order. Let T be a canonical ordering tree of G rooted at vn with at least
�n+1

2 � leaves [8]. We will construct the st-numbering ξT . (see Figure 1 for an
illustration. Only part of the tree is drawn. Tree edges are drawn in solid lines,
non-tree edges are drawn in dotted lines, dashed lines represent a path in the
tree.)
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Fig. 1. (a) No edge between ut and u. (b) An edge between ut and u, no edge between
ut and w1. (c) Edges between ut and u, ut and w1. No edge between u1 and w′

r.

Traveling from the leftmost unassigned leaf of T by ccw postordering with
respect to T . (The first visited vertex is v2). Assume we begin from the leaf u1,
continue to u1, u2, · · · , ut, then we reach the next leaf u. There are three cases
to be considered for each step:

Case 1: There is no edge between ut and u. We then assign the remaining
numbers from 1, 2, · · · , n to u1, u2, · · · , ut by ccw postordering with respect to
T , continue to leaf u, continue on, stop before a new leaf encountered. Continue
our assignment if there are leaves left unassigned. See Figure 1 (a).

Case 2: There is an edge between ut and u, but no edge between ut and w1,
where w1 is the rightmost unassigned leaf of T . We then assign the remaining



428 Huaming Zhang and Xin He

numbers from 1, 2, · · · , n to u1, u2, · · · , ut by ccw postordering. Then jump to
leaf w1, continue on by cw postordering, stop before a new leaf encountered.
Continue our assignment if there are leaves left unassigned. See Figure 1 (b).

Case 3: There is an edge between ut and u, and an edge between ut and w1.
Then Starting from the leaf w1, assign the remaining numbers to T by cw pos-
tordering with respect to T . Assume that vertices assigned are w1, w2, · · · , ws,
then to next leaf, denote it by w′

1, keep assign numbers to w′
1, w

′
2, · · · , w′

r until
a new leaf encountered. Jump back to u1, keep assign numbers to u1, u2, · · · , ut

by ccw postordering with respect to T . Stop before a new leaf encountered.
Continue our assignment if there are leaves left unassigned. See Figure 1 (c).

There are at most one or two leaves left at last, then assign remaining num-
bers to them by ccw postordering. (or cw postordering). Figure 2 shows
such a construction.

v

vv

6

4

5

7

10

14

13

12

3

8

9 2

11

12 n

1

Fig. 2. A plane triangulation G, a canonical ordering tree T of G (drawn in solid lines).
The st-numbering ξT of G constructed from T as described above.

Observe that, for each step above, at least one vertex has to be bypassed by
any directed path. We have the following:

Theorem 1. Let G be a plane triangulation with n vertices, T a canonical or-
dering of G with at least �n+1

2 � leaves. Let ξT be constructed as above. Then:

1. ξT is an st-numbering of G. The longest directed path of G according to ξT

is bounded by � 5n
6 �.

2. G has a VR with the same exterior face with height bounded by � 5n
6 �,

which can be obtained in linear time.

Next, we have the following theorem regarding the lower bound of VR:

Theorem 2. There is an n-vertex plane triangulation G such that any VR of
G with the same exterior face requires a size of (� 2n

3 �) × (� 4n
3 � − 3).

Proof. Suppose that Gk is the graph of k nested triangles with n = 3k vertices
as shown in Figure 3 (a). We want to show that any VR of Gk requires a grid
size of (� 2n

3 �) × (� 4n
3 � − 3) = 2k × (4k − 3).
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Fig. 3. (a) Nested triangles, (b) VR of nested triangles.

First, we want to use induction on k to prove the height bound. When k = 1,
it is true. Suppose that it is true for k = t. Now, consider k = t + 1:

Given any VR Rt+1 of Gt+1, by removing the horizontal lines segments rep-
resenting the exterior vertices of Gt+1 and the vertical line segments representing
the edges adjacent to the exterior vertices of Gt+1, the resulting representation
is a VR of Gt, denoted by Rt. Applying induction hypothesis, the height of Rt

is at least 2t.
Observe the topmost and the lowest horizontal line segments in Rt+1, they

have to represent the exterior vertices of Gt+1. Thus, the height of Rt+1 is at
least 2 plus the height of Rt, which is at least 2(t + 1). (See Figure 3 (b)) This
finishes the induction for the height bound.

Next, we want to prove the width bound. Given any VR Rk of Gk. It is easy
to see that we can obtain an st-numbering ξ of Gk from Rk. We assign num-
bers from 1, 2, · · · , n to the vertices of Gk such that the lower its corresponding
horizontal line segment in Rk is, the smaller its assigned number is. (If two or
more vertices have the same level of horizontal line segments, then arbitrarily
assign consecutive numbers to them.) Denote the vertices by v1, v2, · · · , vn=3k,
where ξ(vi) = i. Without loss of generality, we may assume that the vertical line
segment representing the edge (v1, vn=3k) is the leftmost vertical line in Rk. Gk

can be directed according to ξ. And ξ induces its dual st-orientation ξ∗ of R∗
k.

Claim: The width of the VR Rk is greater or equal to the length of the longest
directed paths in ξ∗ of G∗

k .
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Fig. 4. (a) Two left edges and one right edge, (b) one left edge and two right edges.
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Proof of Claim: Let P be a longest directed path of G∗
k in the st-orientation

ξ∗. Obviously, it starts from its source s∗, i.e. an interior face of Gk. And it ends
at its sink t∗, the exterior face of Gk. We try to trace P in Rk. It starts from
the leftmost interior face. Because Gk is a plane triangulation, each face f of Gk

only has two possible representations in Rk as shown in Figure 4. Its right edges
in Rk always have bigger x-coordinates than its left edges. Therefore, when P
passes through one face of Gk (i.e. one vertex in G∗

k), it enters a face f from one
of its left edges, and it walks out of f from one of its right edges. Thus, each
edge on P has to add at least 1 to the x-coordinate of the VR Rk. Therefore,
the width of Rk is at least the length of P . End of the proof of Claim.

Now, we only need to show that for any st-numbering of Gk, the length of its
longest directed paths in its dual st-orientation is no short than � 4n

3 �−3 = 4k−3.
We want to show this by induction: When k = 1, this is trivially true. Assume
that it is true when k = t. Consider the case of k = t+1: Given any st-numbering
ξt+1 of Gt+1, it induces an st-numbering ξt of Gt. According to the induction
hypothesis, a longest directed path Pt in its dual orientation ξ∗t is no shorter
than 4t − 3. Consider Pt in ξ∗t+1, it can be extended to a directed path Pt+1 in
ξ∗t+1 from its source to its sink. Because of the way Gt+1 is nested, Pt+1 has to
pass through at least 2 vertices (2 faces of Gt+1) before it can share edges with
the path Pt. (see Figure 3) After it passes through Pk, it also has to pass through
at least 2 vertices (2 faces of Gt+1) before it can reach its sink. Therefore, the
length of Pt+1 has to be at least 4 plus the length of Pt. Therefore, the length
of Pt+1 has to be at least 4(t + 1) − 3. This finishes our proof.
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