
Drawing Large Graphs with a
Potential-Field-Based Multilevel Algorithm

Extended Abstract

Stefan Hachul and Michael Jünger

Universität zu Köln, Institut für Informatik,
Pohligstraße 1, 50969 Köln, Germany

{hachul,mjuenger}@informatik.uni-koeln.de

Abstract. Force-directed graph drawing algorithms are widely used for
drawing general graphs. However, these methods do not guarantee a
sub-quadratic running time in general. We present a new force-directed
method that is based on a combination of an efficient multilevel scheme
and a strategy for approximating the repulsive forces in the system by
rapidly evaluating potential fields. Given a graph G = (V, E), the asymp-
totic worst case running time of this method is O(|V | log |V |+ |E|) with
linear memory requirements. In practice, the algorithm generates nice
drawings of graphs containing 100000 nodes in less than 5 minutes. Fur-
thermore, it clearly visualizes even the structures of those graphs that
turned out to be challenging for some other methods.

1 Introduction

Given a graph G = (V, E), force-directed graph drawing methods generate draw-
ings of G in the plane in which each edge is represented by a straight line con-
necting its two adjacent nodes. The computation of the drawings is based on
associating G with a physical model. Then, an iterative algorithm tries to find
a placement of the nodes so that the total energy of the physical system is
minimal. Such algorithms are quite popular, since they are easy to implement
and often generate nice drawings of general graphs. In practice, classical force-
directed algorithms like [5, 12, 6, 4] are not well suited for drawing large graphs
containing many thousands of vertices, since their worst case running time is
at least quadratic. Significantly accelerated force-directed algorithms have been
developed by [15, 14, 7, 9, 17]. These algorithms generate nice drawings of a big
range of large graphs in reasonable time. Some of these methods guarantee a
sub-quadratic running time in special cases or under certain assumptions but
not in general. Others are not sub-quadratic in any case. Besides force-directed
algorithms other very fast methods for drawing large graphs have been invented
by Harel and Koren [10] and Koren et al. [13] that do not use a physical force
model.

In Section 2 we sketch the most important parts of a new force-directed graph
drawing algorithm that guarantees a sub-quadratic worst case running time. An

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 285–295, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

286 Stefan Hachul and Michael Jünger

excerpt of the experimental results is given in Section 3. For space restrictions,
we can neither describe every basic component of this algorithm in detail, nor
compare our method with the existing ones in a satisfactory way. This will be
presented in the full version of this paper.

2 The Fast Multipole Multilevel Method (FM 3)

We describe the most important parts of the new method that is a combination
of an efficient multilevel technique with an O(|V | log |V |) approximation algo-
rithm to obtain the repulsive forces between all pairs of nodes/particles. Other
important parts like a preprocessing step that enables the algorithm to draw
graphs with nodes of different sizes and a part that is designed to handle dis-
connected graphs are not described here. Therefore, we simply assume that the
given graph G is a connected weighted graph. The edge weight of each edge
represents its individual desired edge length.

2.1 The Force Model

First, we must choose a force model. This is done by identifying the nodes with
charged particles that repel each other and by identifying edges with springs, like
in most classical force-directed methods. If in R2 two charges u, v are placed at a
distance d from each other, the repulsive forces between u and v are proportional
to 1/d. Our choice of the spring forces is not strictly related to physical reality.
We found that choosing the spring force of an edge e to be proportional to
log(d/desired edgelength(e)) · d2 gives very good results in practice.

2.2 The Multilevel Strategy

Since in classical force-directed algorithms many iterations are needed to trans-
form an initial (random) drawing of a large graph into the final drawing, one
might hope to reduce the constant factor of force-directed algorithms by us-
ing a multilevel strategy. Multilevel strategies have been introduced into force-
directed graph drawing by [7, 9, 17] and share the following basic ideas: Given
G = (V, E) =: G0 they create a series of Graphs G1, . . . , Gk with decreasing
sizes. Then, the smallest graph Gk at level k is drawn using (a variation of)
a classical force-directed (single-level) algorithm. This drawing is used to get
an initial layout of the next larger graph Gk−1 that is drawn afterwards. This
process is repeated until the original graph G0 is drawn.

Unlike previous approaches, we want to design a multilevel algorithm that
has provably the same asymptotic running time as the single-level algorithm
that is used to draw all graphs Gi with i = 0, . . . , k.

The idea of our multilevel step is as follows: First, we partition the node
set of G into disjoint subsets. The induced connected subgraphs are called solar
systems. A solar system S consists of one central sun node (s-node). Each of
its neighbors is called planet node (p-node) and is also contained in S. The rest

Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm 287

of the nodes in a solar system are called moon nodes (m-nodes), and each m-
node is required to have graph-theoretic distance 2 to its associated s-node in G.
Each m-node is assigned to its nearest neighboring p-node in S. This p-node is
relabeled planet with moon node (pm-node), indicating that at least one m-node
is assigned to it. Thus, the subgraph of G that is induced by a solar system has
diameter at most 4.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Fig. 1. (left) Drawing of G = G0. (right) Drawing of G1.

Figure 1(left) shows an example of a grid graph that is partitioned into 17
solar systems. The sun, planet, and moon nodes are represented by the white big,
grey medium, and black small circles, respectively. The solid edges represent intra
solar system edges, whereas the edges connecting nodes of two different solar
systems (inter solar system edges) are dashed edges. The edges that connect an
m-node and its assigned pm-node are drawn as directed edges, indicating that
the m-node is assigned to this planet node.

We sketch a linear time method for constructing a solar system partitioning
of a graph G that works in three steps: First, we create the sun nodes. We store
a candidate set V ′ that is a copy of V and randomly select a first sun node s1

from V ′. Then, s1 and all nodes that have a graph-theoretic distance at most 2
from s1 in G are deleted from V ′. We iteratively select the next sun nodes in the
same way, until V ′ is empty and Suns = s1, . . . , sl is the list of all sun nodes.
Second, for each si ∈ Suns all its neighbors are labeled as planet nodes. Finally,
there might be some nodes in V that are neither labeled as planet nodes, nor as
sun nodes. These nodes are the moon nodes, and we assign each moon node to
the planet node that is its nearest neighbor in G.

Given a solar system partition of the node set of G = G0, we construct
a smaller graph G1 by collapsing (shrinking) the node set of each solar sys-
tem into one single node and deleting parallel edges (see Figure 1(right)). The
smaller graph should reflect the attributes of the bigger graph as much as pos-
sible. Therefore, we initialize the desired edge length of an edge e1 = (u1, v1)
in G1 as follows: Suppose that p-node u0 belongs to the solar system S0 with
sun node s0 in G0 and p-node v0 belongs to the solar system T0 with sun node

288 Stefan Hachul and Michael Jünger

t0 in G0. Let us also assume that the edge e0 = (u0, v0) is the unique inter
solar system edge connecting S0 and T0. Furthermore, we assume that nodes
u1 and v1 in G1 are obtained by collapsing S0 and T0. Then, we set the de-
sired edge length of e1 to desired edgelength((s0, u0)) + desired edgelength(e0) +
desired edgelength((v0, t0)). For later use, we denote the corresponding path P0

and its length p0. If more than one inter solar system edge in G0 connects nodes
of S0 with nodes of T0, we just take the average of the previously calculated
desired edge lengths. The case that u0 and/or v0 is a moon node is treated
similarly.

This partitioning and collapsing process is iterated until the smallest graph
Gk contains only a constant number of nodes. Then, this graph is drawn by an
algorithm that is introduced later.

Going upwards to Gk−1, we assign initial positions to the nodes of Gk−1 in
two steps: First, we place each sun node s of Gk−1 at the position of its an-
cestor (that represents its solar system) in the drawing of Gk. Now, we place
the other nodes of Gk−1. This is done by using information that has been gen-
erated during the collapsing process: Given u0, v0, s0, t0, p0, and P0 like in the
example above, we place u0 on the line connecting s0 and t0 at the position
Pos(s0) + desire edgelength((s0,u0))

p0
(Pos(t0) − Pos(s0)). If u0 belongs to more than

one such path P0, we take the barycenter of all these positions. The case that
u0 is a moon node is treated similarly.

(a)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(c)

Fig. 2. (a) Drawing of G2. (b) Initial placement of G1. (c) Drawing of G1.

Figure 2 demonstrates this procedure. Figure 2(a) is a drawing of the multi-
level graph G2 of Figure 1(left). Figure 2(b) is the initial position of the drawing
of G1 that is obtained from the drawing of G2. Figure 2(c) shows G1 that is
drawn with a new force-directed single-level algorithm.

The total running time of the multilevel strategy is tmult(|V |, |E|) =
∑k−1

i=0

tcreate(|Vi|, |Ei|) +
∑k−1

i=0 tinit pl(|Vi|, |Ei|) +
∑k

i=0 tsingle(|Vi|, |Ei|). Here, tcreate
(|Vi|, |Ei|) denotes the time that is needed to create the multilevel graph Gi+1

from Gi. tinit pl(|Vi|, |Ei|)) denotes the time that is needed to get an initial
placement of the nodes of the multilevel graph Gi from the drawing of Gi+1.
tsingle(|Vi|, |Ei|) is the time that the chosen single-level algorithm needs to draw
Gi.

Since every node of Gi belongs to a solar system, and a solar system contains
at least two nodes, Gi+1 contains at most |Vi|/2 nodes. Therefore, k ≤ log |V |.

Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm 289

Let us assume that |Ei+1| ≤ |Ei|/2 for all i = 0, . . . , k − 1. Since both
tcreate(|Vi|, |Ei|) and tinit pl((|Vi|, |Ei|) are linear in |Vi|+ |Ei| we get

∑k−1
i=0 tcreate

(|Vi|, |Ei|) +
∑k−1

i=0 tinit pl(|Vi|, |Ei|) = O(|V | + |E|). Furthermore, we get the
following estimation on tsingle:

∑k
i=0 tsingle(|Vi|, |Ei|) ≤ ∑k

i=0 tsingle

(
|V |
2i , |E|

2i

)
≤ tsingle(|V |, |E|)∑k

i=0
1
2i ≤

2 tsingle(|V |, |E|). The second inequality is true for sufficiently large values of
|V | and |E|, since tsingle(|V |, |E|) = Ω(|V | + |E|). Therefore, tmult(|V |, |E|) and
tsingle(|V |, |E|) have the same asymptotic running time.

Certainly, it cannot be guaranteed that the number of edges decreases by a
factor 1

2 as well. This might result in an additional factor k = log |V | on the parts
of the algorithm that touch edges. However, it can be shown by an analogous
argumentation that tmult(|V |, |E|) and tsingle(|V |, |E|) have the same asymptotic
running time if |Ei+1| ≤ |Ei|/d for all i = 0, . . . , k − 1 and a fixed divisor d > 1.
Therefore, it is sufficient to stop the multilevel process, whenever the algorithm
has generated more than a constant number of graphs Gi that do not satisfy the
inequality |Ei+1| ≤ |Ei|/d for some small 1 < d ≤ 2.

2.3 The Force Calculation Step

In order to save running time, the multilevel algorithms [7, 9, 17] use the grid-
variant method of [6] or variations of [12] that are comparatively inaccurate
approximative variations of the original single-level algorithms [6, 12].

Unlike this, the single-level algorithm that is used in FM 3 follows the basic
strategy of [15, 14] by approximating the repulsive forces between all pairs of
distinct nodes/particles with high accuracy and calculating the forces induced
by the edges/springs exactly. Then, these forces are added, and the nodes are
moved in the direction of the resulting forces. This process is repeated a con-
stant number of iterations. (In practice, we let the constant decrease from 300
iterations for Gk to 30 iterations for G0, although convergence is reached even
faster for many tested graphs.)

In the following, we concentrate on the calculation of the repulsive forces.
Greengard [8] has invented an N -body simulation method that is based on the
evaluation of the field of the potential energy of N := |V | particles. This is done
by evaluating multipole expansions using a hierarchical data structure called
quadtree. However, Aluru et al. [1] have shown that the running time of his
method depends on the particle distribution and cannot be bounded in the
number of particles. They also have proven that the running time of the popu-
lar center of mass approximation method of Barnes and Hut [3] that is used in
the graph drawing methods [15, 14] cannot be bounded in the number of par-
ticles. Based on the techniques and analytical tools of Greengard [8], Aluru et
al. [1] have presented an O(N log N) approximative multipole algorithm that is
distribution independent.

Based on the work of Greengard [8] and Aluru et al. [1], we have developed
a new O(N log N) multipole method that – in practice – is faster than Aluru
et al.’s [1] method. It works in two steps. Given a distribution of N particles

290 Stefan Hachul and Michael Jünger

in the plane, first a special quadtree data structure is constructed. Then, each
node of the quadtree is assigned information that is used for approximating the
potential energy of the system. In particular, a constant number of coefficients
of a so called multipole expansion (to be introduced later) are associated with
each tree node and are used to obtain the repulsive forces.

Construction of the Reduced Quadtree. Suppose that N particles are
distributed on a square D and we fix a leaf capacity c ≥ 1. (In practice we
choose c = 25.) Furthermore, suppose one recursively subdivides D into four
squares of equal size, until each square contains at most c particles. This process
can be represented by an ordered rooted tree of maximum child degree four
(with the root representing D) that is called quadtree. The particles are stored
in the leaves of the quadtree. A degenerate path P = (v1, . . . , vp) in a quadtree
is a path in which v1 and vp have at least 2 nonempty children and v2, . . . , vp−1

each have exactly one nonempty child. A reduced quadtree T can be obtained
from a quadtree by shrinking degenerate paths P = (v1, . . . , vp) to edges (v1, vp).
Figure 3 shows an example.

1

2

3

4
5

8 6
7

9
10

11

(a)

4 8

3{1,2}

5 {6,7}9 10 11

3v

1v

2
v

(b)

4 8

3{1,2}

5 {6,7}9 10 11

3v

1v

(c)

Fig. 3. (a) A distribution of N = 11 particles in the plane. (b) The quadtree with
leaf capacity c = 2 associated with (a). P = (v1, v2, v3) is a degenerate path in the
quadtree. (c) The reduced quadtree with leaf capacity c = 2 associated with (a).

A reduced quadtree has only O(N) nodes independently of the distribution
of the particles. This allows the development of a linear time method (excluding
the time needed for constructing the reduced quadtree) for approximating the
repulsive forces, using this structure.

Aluru et al. [1] present an O(N log N) method that constructs a reduced
quadtree with c = 1. As can be shown by a reduction from sorting, it is neither
possible to construct a quadtree nor a reduced quadtree for arbitrary distribu-
tions of the particles in o(N log N) time.

We have developed a new O(N log N) method that is omitted here for brevity,
since it quite technical. Instead, we will explain another new tree construction
method that is conceptionally simpler and in practice faster. But (motivated
by the assumptions in [15]) it restricts the possible particle distributions: We
force the particles to be placed on a large square grid with a resolution that is
polynomial in N . This can be realized by rounding the x, y coordinates of each

Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm 291

particle to integers in the range [0,P(N)], where P(N) is any whole-numbered
polynomial in N of maximum degree l, and by treating pathological cases in
which particles have same coordinates efficiently. In practice, it is sufficient to
set P(N) = d · N2, with a big constant d, say 1000. This bounds the depth of
the reduced quadtree to O(log(P(N)) = O(l · log N) = O(log N).

5 81 2 3 4
6
7

9
10
11

(a)

{1,2} 3

4 8 9
10
11

5
6
7

v3v4

(b)

{1,2} 3

4 8
4v v3

5 6
7

119 10

(c)

Fig. 4. Building up the reduced quadtree T with leaf capacity c = 2 and N = 11
particles for the distribution of Figure 3(a). (a) First step: Building up the complete
subtree T 1. (b) Second step: Thinning out T 1. (c) Recursion: Building up the complete
quadtrees T 2(v3) and T 2(v4).

First, we build up a complete truncated subtree T 1 with depth max{1,
�log N/c�}. Then, all particles are assigned to the leaves of T 1. Since T 1 contains
O(N) nodes and its structure is predefined, this step can be performed in linear
time. Figure 4(a) shows an example of T 1 that corresponds to the distribution
of Figure 3(a). In the next step, we thin out T 1. This is done by traversing the
tree bottom up and thereby calculating for each internal tree node the num-
ber of particles that are contained in the square region that it represents. This
also needs time linear in N . Then, we traverse the subtree T 1 top down, delete
all nodes that do not contain particles and shrink degenerate path to edges. If
(during this process) we visit an internal node v that is the root of a subtree con-
taining at most c particles, this subtree is deleted, and all the particles that were
stored in the deleted subtree are assigned to v. Figure 4(b) shows the thinned
out subtree T 1.

If none of the leaves of T 1 contains more than c particles, the procedure
ends and T 1 = T has been constructed in linear time. Otherwise, we repeat the
previous steps recursively. For example, the nodes v3 and v4 in Figure 4(b) both
contain 3 > c particles. Therefore, we build up complete subtrees T 2(v3) rooted
at v3 and T 2(v4) rooted at v4. Both subtrees have depth max{1, �log 3/c�} = 1.
Now, the particles 5, 6, 7 are assigned to the leaves of T 2(v4) and the particles
9, 10, 11 are assigned to the leaves of T 2(v3) (see Figure 4(c)). After thinning out
T 2(v3) and T 2(v4) the desired tree T (see Figure 3(c)) is created.

What is the total running time of this approach? Building up T 1 needs O(N)
time. If T 1 is not the reduced quadtree, we build up subtrees T 2(v1), . . . , T 2(vk)
for all leaves v1, . . . , vk of T 1 that contain more than c particles. This needs
O(N) time in total, since the sum of the tree nodes contained in all T 2(vi) is at
most O(N). Then, we possibly have to build up subtrees rooted at the leaves of

292 Stefan Hachul and Michael Jünger

the T 2 trees and so forth. Since for each j ≥ 1 the sum of the tree nodes of all T j

is bounded above by O(N), the total running time is O(|recursion levels| · N).
Therefore, the running time is bounded by O(N log N). The construction of the
tree needs linear time whenever |recursion levels| is a constant.

Evaluating Multipole Expansions. Unlike the construction of the tree, the
calculation of the forces – using the tree data structure – is quite complex.
Therefore, we only sketch the basic ideas. The most essential part is the following
theorem of Greengard [8]. First, we identify each point p = (x, y) ∈ R2 with a
point z = x + iy ∈ C.

Theorem 1 (Multipole Expansion) Suppose that m charges of strengths qi,
{i = 1, . . . , m} are located within a circle of radius r around the center z0. Then,
for any z ∈ C with |z − z0| > r, the potential Energy E(z) induced by the m
charged particles is given by:
E(z) = Q log(z−z0)+

∑∞
k=1

ak

(z−z0)k with Q =
∑m

i=1 qi and ak =
∑m

i=1
−qi(zi−z0)

k

k

The corresponding force is F(z) = (Re(E ′(z)),−Im(E ′(z))). Based on this
theorem, the idea is to develop the infinite series only up to a constant index
p. In practice, choosing p = 4 has turned out to be sufficient to keep the error
of the approximation less than 10−2. The resulting truncated Laurent series is
called p-term multipole expansion. Estimations of the error and several other
fundamental theorems for working with such series can be found in [8].

We demonstrate the use of this theorem for speeding up force-calculation
algorithms on an example: Suppose that m particles are located within a circle
C0 of radius r with center z0. Suppose that another m particles are located
within a circle C1 of radius r with center z1, and let |z0−z1| > 3r (see Figure 5).

�� ��

����

����

�
�
�
�

��

��

����

��

��

������

�
�
�
�

����

��
��
��
������

��

���� �
�
�
�

��
��
��
��

��

����

��

�
�
�
�

��

����

����������������
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

r
r r

C C1z z0 0 1

Fig. 5. An example distribution, showing the use of the Multipole Expansion Theorem.

Computing the repulsive forces acting on each particle in C0 due to all parti-
cles in C1 naively would need Θ(m2) time. Now, suppose that we first compute
the coefficients of a p-term multipole expansion of the potential due to the par-
ticles in C1. This needs Θ(pm) time. Evaluating the resulting p-term multipole
expansion for all particles within C0 needs also Θ(pm) time. Therefore, we ob-
tain an accurate approximation of the potential energy of all particles placed in
C0 due to the particles placed in C1 in Θ(m) time. Since we are interested in
the forces rather than the energy, we first calculate the derivative of the p-term
multipole expansion before evaluating it for each particle in C0. Since the mul-
tipole expansion is a simple Laurent series, the calculation of the derivative of
the p-term multipole expansion needs only O(p) additional time.

Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm 293

Now we sketch the idea how this theorem is used for calculating the forces:
First, the p-term multipole expansions of the particles in the leaves of the reduced
quadtree are calculated. Then, the reduced quadtree is traversed bottom up,
and thereby p-term multipole expansions of the interior nodes are obtained.
Afterwards, the tree is traversed top down, and suitable coefficients of p-term
multipole expansions are used to calculate coefficients of special power series
that are called p-term local expansions. Finally, these expansions are evaluated
to obtain the repulsive forces. All these operations together take time linear in
the number of particles.

To get a better impression how this algorithm really works, we refer the
interested reader to [8, 1]. Our method for evaluating the multipole expansions is
an extension of the method of Aluru [1] et al. for the general case in which c ≥ 1.

It is important to note that our multipole method remains O(N log N) –
even if we allow arbitrary particle positions during the computation – if we use
our other tree construction method or the tree construction method of Aluru
et al. [1].

(a) (b)

(c) (d) (e)

Fig. 6. (a) finan512 : |V | = 74752, |E| = 261120, CPU-time = 158.2 seconds. (b)
fe body : |V | = 44775, |E| = 163734, CPU-time = 96.5 seconds. (c) bcsstk31 : |V | =
35588, |E| = 572914, edge density = 16.1, CPU-time = 83.6 seconds. (d) dg 1087 :
|V | = 7602, |E| = 7601, maximum degree = 6566, CPU-time = 18.1 seconds. (e)
ug 380 : |V | = 1104, |E| = 3231, maximum degree = 856, CPU-time = 2.1 seconds.

294 Stefan Hachul and Michael Jünger

3 Remarks on the Experimental Results

The method FM 3 has been implemented in C++ within the framework of
AGD [11]. We tested our method on a 2.8 GHz PC running Linux. The tested
graphs are the graphs contained in the graph partitioning archive of C. Wal-
shaw [16] with up to 200000 nodes and the biggest graphs from the AT&T
graph collection [2]. Furthermore, we generated artificial graphs containing up to
100000 nodes. For example, these graphs include grid graphs, sierpinski graphs,
random disconnected graphs, graphs that contain many biconnected compo-
nents, graphs with a very high edge density, and graphs that contain nodes with
a very high degree. The tested graphs containing less than 1000, 10000, and
100000 nodes have been drawn in less than 2, 24, and 263 seconds, respectively.
Figure 6 shows example drawings that are generated by FM 3. Our practical ex-
periments indicate that the combination of our multilevel strategy with a highly
accurate force approximation algorithm increases the quality of the generated
drawings.

4 Conclusions and Future Work

We have developed a new force-directed graph drawing algorithm (FM 3) that
runs in O(|V | log |V | + |E|) time. The practical experiments demonstrate that
FM 3 is very fast and creates nice drawings of even those graphs that turned out
to be challenging for some other tested algorithms. This will be presented in the
full version of this paper.

References

1. S. Aluru et al. Distribution-Independent Hierarchical Algorithms for the N-body
Problem. Journal of Supercomputing, 12:303–323, 1998.

2. The AT&T graph collection: www.graphdrawing.org
3. J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Na-

ture, 324(4):446–449, 1986.
4. R. Davidson and D. Harel. Drawing Graphs Nicely Using Simulated Annealing.

ACM Transaction on Graphics, 15(4):301–331, 1996.
5. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,

1984.
6. T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-directed

Placement. Software–Practice and Experience, 21(11):1129–1164, 1991.
7. P. Gajer et al. A Multi-dimensional Approach to Force-Directed Layouts of Large

Graphs. In J. Marks, editor, Graph Drawing 2000, volume 1984 of Lecture Notes
in Computer Science, pages 211–221. Springer-Verlag, 2001.

8. L. F. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems.
ACM distinguished dissertations. The MIT Press, Cambridge, Massachusetts,
1988.

9. D. Harel and Y. Koren. A Fast Multi-scale Method for Drawing Large Graphs. In
J. Marks, editor, Graph Drawing 2000, volume 1984 of Lecture Notes in Computer
Science, pages 183–196. Springer-Verlag, 2001.

Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm 295

10. D. Harel and Y. Koren. Graph Drawing by High-Dimensional Embedding. In
M. T. Goodrich and S. G. Kobourov, editors, Graph Drawing 2002, volume 2528
of Lecture Notes in Computer Science, pages 207–219. Springer-Verlag, 2002.

11. M. Jünger et al. Graph Drawing Software, volume XII of Mathematics and Vi-
sualization, chapter AGD - A Library of Algorithms for Graph Drawing, pages
149–169. Springer-Verlag, 2004.

12. T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected Graphs.
Information Processing Letters, 31:7–15, 1989.

13. Y. Koren et al. Drawing Huge Graphs by Algebraic Multigrid Optimization. Mul-
tiscale Modeling and Simulation, 1(4):645–673, 2003.

14. A. Quigley and P. Eades. FADE: Graph Drawing, Clustering, and Visual Abstrac-
tion. In J. Marks, editor, Graph Drawing 2000, volume 1984 of Lecture Notes in
Computer Science, pages 197–210. Springer-Verlag, 2001.

15. D. Tunkelang. JIGGLE: Java Interactive Graph Layout Environment. In S. H.
Whitesides, editor, Graph Drawing 1998, volume 1547 of Lecture Notes in Com-
puter Science, pages 413–422. Springer-Verlag, 1998.

16. C. Walshaw’s graph collection: www.gre.ac.uk/~c.walshaw/partition
17. C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. In

J. Marks, editor, Graph Drawing 2000, volume 1984 of Lecture Notes in Computer
Science, pages 171–182. Springer-Verlag, 2001.

	1 Introduction
	3 Remarks on the Experimental Results
	2 The Fast Multipole Multilevel Method (FM^3)
	2.1 The Force Model
	2.2 The Multilevel Strategy
	2.3 The Force Calculation Step

	4 Conclusions and Future Work
	References

