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Abstract. It is an important issue to establish pairwise keys in dis-
tributed sensor networks (DSNs). In this paper, we present two key
predistribution schemes (KPSs) for DSNs, ID-based one-way function
scheme (IOS) and deterministic multiple space Blom’s scheme (DMBS).
Our schemes are deterministic, while most existing schemes are based on
randomized approach. We show that the performance of our schemes is
better than other existing schemes in terms of resiliency against coali-
tion attack. In addition we obtain perfectly resilient KPSs such that the
maximum supportable network size is larger than random pairwise keys
schemes.

1 Introduction

Distributed sensor networks (DSNs) are ad-hoc mobile networks that include
sensor nodes with limited computation and communication capabilities. They
are mainly used for military purposes but they also have wide applications in
civilian areas. In military operations, sensor nodes are distributed in a hostile ter-
ritory in order to monitor and collect various information (e.g., acoustic, seismic,
magnetic). Since they are typically carried by soldiers or spread from airplanes,
we assume that sensor nodes have no information on where they are located,
that is, they are distributed in a random way. Once deployed, they operate
unattended for extended periods without any movement. They have no external
power supply during their operation. Therefore the most essential requirement
is that each sensor should consume as small power as possible.

The sensor nodes in DSNs should be able to communicate with each other in
order to relay or accumulate secret information. There are three ways to establish
pairwise keys between sensor nodes. First is to establish secret keys using a
public key infrastructure. However, asymmetric cryptographic primitives are not
suitable due to expensive computational cost as well as storage constraints in
each node. In another strategy, a sensor node is chosen to be a trusted authority
(TA), which all other nodes in the network are assumed to trust. The TA shares a
long-lived key with every node and transmit session keys between sensor nodes on
request. This method can result in expensive costs for message relay. Arbitrated

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 294–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Deterministic Key Predistribution Schemes for Distributed Sensor Networks 295

protocols are also vulnerable to a single compromise of the TA. Therefore it is
natural that we are interested in key predistribution schemes (KPSs), where a set
of secret keys is installed in each node before each sensor node is deployed. After
being deployed, it sets up a secret key with every node in certain neighborhood
using their common information.

There are two simple strategies for KPSs. One is to use a single secret key
over the entire network. This scheme is obviously efficient in terms of the cost of
computation and memory. However the compromise of only a single node exposes
all communications over the entire network, which is a serious deficiency. The
other approach is to use distinct keys for all possible pairs of nodes. Then every
node is preloaded with n − 1 keys, where n is the network size. This scheme
guarantees perfect resiliency in that links between noncompromised nodes are
secure against any coalition of compromised nodes. However this scheme is not
suitable for large networks since the storage required per node increases linearly
with the network size. In a classic paper by Blom [1], a tradeoff between key
storage and security is presented. Given a security parameter 1 < t < n, each
node is deployed with t + 1 keys. This scheme provides perfect security against
any coalition of up to t compromised nodes, while the compromise of t+1 nodes
would totally break the system. We briefly review this scheme in Sect. 5.

Recently, Eschenauer and Gliger [6] proposed a probabilistic key predistribu-
tion scheme. This scheme consists of three phases: key predistribution, shared-key
discovery, and path-key establishment. We briefly describe these phases since our
scheme also follow the same framework. In key predistribution phase, a large pool
of keys and their key identifiers are generated. Every sensor node is equipped
with a fixed number of keys randomly chosen from the key pool with their key
identifiers. After deployment, the shared-key discovery phase takes place, where
two nodes in a wireless communication range look for their common keys. If
they share common keys in their key rings, they can pick one of them as their
secret key. Sensor nodes can exchange the key identifiers of their keys, for exam-
ple, to discover if they share a common key. The path-key establishment phase
takes place in case there is no common key between a pair of nodes in a wireless
communication range. They look for multiple secure links (hops) to reach each
other so that one of them can choose an arbitrary key and relay it through the
links. In our paper, we focus on the key predistribution phase which is given by
a deterministic way.

The Eschenauer-Gliger scheme is generalized by Chan, Perrig and Song [3],
where two nodes compute a pairwise key only if they share at least q common
keys. They also presented a random-pairwise keys scheme, where a random graph
is generated as the network layer and each link receives a unique key. In [5] and
[9], the Eschenauer-Gligor schemes are combined with Blom’s schemes, resulting
in better performance compared with existing schemes.

DSNs can be regarded as superposition of a physical layer and a network layer.
Due to resource constraints, a sensor node can communicate with only nodes
within a limited radius. Hence the physical layer is represented by a random
geometric graph. On the other hand, the network layer is represented by a graph
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such that two nodes are adjacent if they share a secret key, which is called
a network graph. The network graph is determined by the KPS, independent
of the distribution of sensor nodes. The network graphs have been given by
random graphs since Eschenauer and Gliger’s work. In this paper, we propose to
use strongly regular graphs as network graphs. This means that the assignment
of keys is deterministic. We can reduce the storage per node without loss of
resiliency by introducing public one-way functions in our KPSs. We describe
this method in Sect. 3 and 4. In Sect. 5, we modify Blom’s scheme by allowing
asymmetric matrices when generating keys, which yields a tradeoff between the
connectivity of the network and the resiliency. In a similar way as Du-Deng-
Han-Varsheney/Liu-Ning schemes [5], we use the modified Blom’s schemes on
strongly regular graphs at a network layer. Our schemes show better resiliency
than Du-Deng-Han-Varsheney/Liu-Ning schemes.

2 Preliminaries

In this section we present some basic terminologies and facts on combinatorial
objects. These notions turn out to be useful to describe deterministic KPSs.

2.1 Set Systems and KPSs

We begin with the following definition.

Definition 2.1. A set system is a pair (X, A), where A is a finite set of sub-
sets of X, called blocks. The degree of a point x ∈ X is the number of blocks
containing the point x. (X, A) is regular (of degree d) if all points have the same
degree, d. The rank of (X, A) is the size of the largest block. If all blocks have
the same size, say r, then (X, A) is said to be uniform (of rank r).

Balanced incomplete block designs (BIBDs) are widely studied set systems.
For extensive survey, we refer to [4] and [10].

Definition 2.2. A (v, r, λ)-BIBD is a uniform set system (X, A) of rank r with
|X| = v such that every pair of points in X occurs in exactly λ blocks.

In the context of KPS, the set X corresponds to a key pool and each block to
a sensor node. Thus a node is loaded with the keys in the corresponding block. If
any two blocks have nonempty intersection, then they can establish their secret
key. We can obtain Eschenauer-Gliger schemes choosing blocks of the same size
randomly from a key pool. Each block is required to have size as small as possible
in view of limited memory of a sensor node. In a KPS based on a regular set
system of degree d, the exposure of one key in a node compromises d nodes.
Hence we also wish the degree of each node to be as small as possible.

Example 2.1. An (n2 +n+1, n+1, 1)-BIBD is called a projective plane of order
n. A projective plane of order n exists for a prime power n. It is a symmetric
BIBD, which means that the number of blocks is equal to the number of points. If
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the network chooses a projective plane of order 32 for KPS, it can accommodate
1057 nodes. Each node has 33 keys loaded in it. This scheme is deterministic
and needs no path-key establishment.

For a set system (X, A), the network graph of the corresponding KPS is given
by the intersection graph (A, E) of the set system, where two blocks are adjacent
if they have nonempty intersection. In the above example, the intersection graph
is a complete graph.

2.2 Strongly Regular Graphs and KPSs

Once a set system is defined, we can check the connectivity of the corresponding
KPS through its intersection graph. On the other hand, we can first specify an
intersection graph, and then construct a corresponding KPS as follows: Given a
graph G on n nodes, we use E(G) as a key pool. A set of keys

K(v) = {e ∈ E : e is incident with v}
are predeployed in a node v. In this scheme, each node has a set of ≤ ∆(G)
keys, where ∆(G) is the maximal degree of G. No matter how many nodes
are captured, any link between noncompromised nodes remains secure. When
we take G as a random graph on n nodes, the KPS is reduced to the random
pairwise keys scheme [3]. We want small degrees at the nodes and short paths
between nonadjacent nodes of G. For this reason, we are interested in strongly
regular graphs [4] (though they have stronger properties than we require).

Definition 2.3. A strongly regular graph with parameters (n, r, λ, µ) is a graph
on n vertices, without loops or multiple edges, regular of degree r (with 0 < r <
n − 1), and such that any two distinct vertices have λ common neighbors when
they are adjacent, and µ common neighbors when they are nonadjacent.

Any pair of nonadjacent nodes in a strongly regular graph are connected by µ
paths of length two. There are various ways to construct strongly regular graphs
using combinatorial objects. We define an orthogonal array, a latin square and
mutual orthogonality [10] to describe a construction.

Definition 2.4. An orthogonal array OA(t, n) is an n2 × t array A on an al-
phabet X of n symbols such that every ordered pair of symbols occur in every set
of two columns of A exactly once.

Definition 2.5. A latin square of order n is an n × n array L on an alphabet
X of n symbols such that every symbol occurs exactly once in each row and each
column of L.

Definition 2.6. Let L and M be two latin squares of order n on alphabets X
and Y , respectively. L and M are orthogonal if their superposition contains every
ordered pair of symbols. A set of latin squares L1, . . . , Ls, all of the same order
n are mutually orthogonal if Li and Lj are orthogonal for all i �= j.
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The block graph of a (t, n)-orthogonal array A is a graph with the rows of A as
vertices, where two rows are adjacent if there exists a position in which they have
the same symbol. Such a graph is an (n2, t(n − 1), n + t2 − 3t, t(t − 1))-strongly
regular graph. The following results are well-known.

Theorem 2.1. An OA(t+2, n) exists if and only if t mutually orthogonal latin
squares (MOLS) of order n exist, for positive integers n and t.

Theorem 2.2. Let N(n) denote the largest number of MOLS of order n. Then
N(n) ≤ n − 1, and if n is a prime power, then N(n) = n − 1.

We can construct n−1 MOLS of prime power order n from a projective plane
of order n. The construction of a projective plane and the corresponding MOLS
and orthogonal array is described in [10] in detail. To summarize, we have

Construction 2.3. Let n be a prime power and let 3 ≤ t ≤ n+1. Then we can
construct an (n2, t(n − 1), n + t2 − 3t, t(t − 1))-strongly regular graph.

Consider a KPS whose intersection graph is an (n, r, λ, µ)-strongly regular
graph G. We assume that sensor nodes are distributed on a plane in a random
way and the range where a node can reach physically forms a circle, as shown
in Fig. 1. We call this circle a neighborhood of the sensor node. The probability
that a node shares a common key with another node in a neighborhood is p =
r/(n − 1). Let d denote the average number of nodes in a neighborhood and d′

the number of nodes in the common neighborhood of two nodes u and v within
a wireless communication range. The probability that u and v are connected
within two hops is given by

p2(u, v) = p + (1 − p)
(

1 −
(

n − µ − 2
d′ − 2

)
/

(
n − 2
d′ − 2

))

≈ p + (1 − p)
(

1 −
(
1 − µ

n

)d′−2
)

≥ p + (1 − p)
(

1 −
(
1 − µ

n

) d
3
)

.

The last inequality follows from the fact that two circles of the same radius
has the intersection whose area is at least 1/3 the area of the circle if the distance
between the centres is less than the radius.

Example 2.2. Suppose that 1000 nodes are to be distributed and each neighbor-
hood contains about d = 40 nodes. By taking n = 32 and t = 14 in Construction
2.3, we obtain a (1024, 434, 186, 182)-strongly regular graph G. In the corre-
sponding KPS, we have p2(u, v) ≥ 0.9547 for any two nodes u and v within a
wireless communication range.

Example 2.3. Consider a complete bipartite graph Kn,n. It is a (2n, n, 0, n)-
strongly regular graph. In the corresponding KPS, we have

p2
Kn,n

(u, v) ≈ 0.5 + 0.5(1 − (0.5)d′−2) = 1 − (0.5)d′−1
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Fig. 1. A 2-hop path between two sensor nodes u and v

for any two nodes u and v within a wireless communication range. If we choose
a random graph G2n,p with p = 0.5 as a network graph, the network layer has
the same local connectivity. However, we have

p2
G2n,p

(u, v) = 0.5 + (1 − 0.5)(1 − (1 − (0.5)2)d′−2) = 1 − (0.5)(0.75)d′−2,

which is smaller than p2
Kn,n

(u, v). Hence the complete bipartite graph Kn,n per-
forms better than a random graph.

3 Basic ID-Based One-Way Function Schemes

In this section we use a public one-way hash function h in order to reduce the
number of keys stored in a node. The KPSs presented here are ID-based since a
unique ID is assigned to each sensor node and the ID is used to compute secret
keys. First we determine a network graph G and construct a key pool K = {Kv :
v ∈ G}. Next we decompose the edges of graph G into star-like subgraphs. A
sensor node u receives a secret key Ku and ‘hashed’ keys h(Kv ‖ ID(u)) if it
is contained in a star-like subgraph centred at v. Since a node v can compute
h(Kv ‖ ID(u)) by evaluating the public one-way function h at the concatenation
of its unique key Kv and public ID, ID(u), both of u and v can establish their
secret key h(Kv ‖ ID(u)). In case v is a leaf of a star-like subgraph centred at
u, h(Ku ‖ ID(v)) is established as their secret key.

Now we consider an edge decomposition of a regular graph into star-like
subgraphs. We begin with the following definition.

Definition 3.1. An Euler circuit of G is a circuit in a graph G containing all
the edges.
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Theorem 3.1. A nontrivial connected graph has an Euler circuit if and only if
each vertex has even degree.

There is an algorithm to find Euler circuits in O(|E|)-time [7].

Theorem 3.2. A connected regular graph G of order n and even degree r has
an edge decomposition into star-like subgraphs such that each vertex is a centre
of one star and a leaf of r/2 distinct stars.

Proof. By using an Euler circuit, we will find an edge colouring of G such that
the edges with the same colour form a star-like subgraph.

Note that |E(G)| = nr/2. Let v0E0v1E1 · · · vnr
2 −2Enr

2 −2vnr
2 −1(= v0) be an

Euler circuit of G. We use a set of colours labeled by vertices in G. Now we
colour each edge Ei with colour vi. Then the edges coloured by v is the r/2
edges coming from the vertex v in the Euler circuit, which form a star-like sub-
graph centred at v. Thus this colouring yields an edge decomposition of G into
star-like subgraphs such that each vertex is a centre of one star and a leaf of r/2
distinct stars. ��

Each node v stores one secret key Kv and r/2 hashed keys for the nodes u
such that v is contained in a star-like subgraph centred at u. Therefore the total
number of keys stored in a sensor node is given by r/2 + 1. This scheme reduces
the number of keys per node by almost 50% as compared with the method
discussed in the previous section.

Security Analysis. When a node u is revealed to an adversary, he obtains Ku

as well as h(Kvi ‖ ID(u)) for r/2 adjacent nodes vi. It is infeasible to compute
Kvi even though he knows the key h(Kvi ‖ ID(u)) since h is a one-way function.
It follows that an adversary cannot compromise any link between two noncom-
promised nodes. Under the restriction of perfect resiliency, random pairwise keys
schemes [3] exhibited the highest performance in terms of maximum supportable
network size. However the basic ID-based one-way function schemes (IOSs) with
regular network graphs (of even degree r) have maximum supportable network
size two times larger than the random pairwise keys scheme, for a fixed probabil-
ity p of sharing a common key, as shown in Fig. 2. Assuming each node contains
k secret keys, the maximum supportable network size n is estimated as

n =
2(k − 1)

p
+ 1 ≈ 2k

p
,

since p = r/(n − 1) and k = r/2 + 1. In random pairwise keys schemes, the
maximum supportable network size is given by n = k/p.

4 Multiple ID-Based One-Way Function Schemes

Basic IOSs are not suitable for a network of large size since they can accommo-
date only O(k) sensor nodes for the node storage of k keys. In this section, we
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Fig. 2. The relationship between the probability of sharing a common key and the
maximum supported network size for perfect resilience against node compromise. Each
node is assumed to have k = 200 keys

use multiple copies of a single basic IOS to increase the network size relative to
available memory. In exchange, the resiliency of multiple IOSs is weakened. In
order to deploy n = ml sensor nodes, we first determine an (m, r, λ, µ)-strongly
regular graph G which is decomposed by star-like subgraphs. Each vertex u of G
corresponds to l sensor nodes, say u1, . . . , ul, of the network. We say the sensor
nodes u1, . . . , ul are contained in a class u. Every node in a class u receives a
common key Ku. If a vertex u is contained in a star-like subgraph centred at a
vertex v in G, each sensor node ui in a class u receives h(Kv ‖ ID(ui)). Since
any node vj in a class v can compute h(Kv ‖ ID(ui)), two nodes ui and vj can
establish their session key using this hashed key. We assume that the duplicates
u1, . . . , ul share no common key (even though we can set up an arbitrary key
among them). The number of keys stored in a node is k = r/2 + 1, which is 1/l
times smaller than using a single graph with the same probability of sharing a
common key. The probability that two nodes share a common key is given by
p = rl/(n − 1) ≈ r/m.

Security Analysis. Consider a DSN of size n = ml which adopts an l-multiple
IOS based on an (m, r, λ, µ)-strongly regular graph G. Suppose that an adver-
sary compromises s nodes randomly in the network. We compute the probabil-
ity that an arbitrary link uivj (u �= v) between two noncompromised nodes is
compromised. It also estimates the fraction of compromised links between non-
compromised nodes in the total network. Let u and v be the vertices (classes) of
G containing ui and vj , respectively, such that v is a leaf of a star-like subgraph
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centred at u. Then h(Ku ‖ ID(vj)) is established as a secret key between two
nodes ui and vj . In order to compute h(Ku ‖ ID(vj)) without capturing ui or
vj , the coalition have to contain at least one node in class u different from the
node ui. Therefore the probability is estimated as

P (s) = 1 −
(
n−l−1

s

)
(
n−2

s

) ≈ 1 −
(

1 − l − 1
n − 2

)s

≈ 1 −
(
1 − p

2k

)s

. (1)

Figure 3 shows the performance of a multiple IOS compared with other ex-
isting schemes.
Example 4.1. Let G = Km

2 , m
2

be a complete bipartite graph, where 4|m. It is an
(m, m/2, 0, m/2)-strongly regular graph. Using l copies of the graph G, we can
accommodate lm sensor nodes. The number of keys per node is m/4+1. If a node
ui in a class u is compromised, then ml(l − 1)/4 links between noncompromised
nodes are compromised. These are the links between the other l − 1 duplicates
in the class u and the nodes whose class is a leaf of a star-like subgraph centred
at u in G. Note that we do not consider physical constraints in this analysis.

Key Revocation. If a node ui is detected as being compromised, a controller
node (which has a large communication range and may be mobile) broadcasts
ID(ui) so that secure nodes can stop communicating with ui. Nevertheless the
other duplicates uj , i �= j can still use the links established by the keys of the
form h(Kv ‖ ID(uj)).

In order to replace the captured node ui, a new node unew is installed with
a new key Kunew

and h(Kv ‖ ID(unew)) for r/2 node classes v, where the
node classes v are randomly chosen among secure classes. Alternatively, we can
choose the same classes v as the hashed keys of the revoked node ui has. Now
the controller node broadcasts ID(unew) so that every node vi can compute
h(Kvi ‖ ID(unew)). After deployment, the node unew can communicate with
a (physical) neighbor vj of a class v for which unew has h(Kv ‖ ID(unew)).
Shared-key discovery and path-key establishment phase should be restarted.

5 Deterministic Multiple Space Blom’s Schemes

In this section, we briefly describe Blom’s KPSs and present modified schemes
for DSNs. First we consider original Blom’s KPSs which are secure against up to
coalition of size t. Let n be the size of a network and q a prime power large enough
to assume that keys of ln q bits in length are secure. In order to accommodate n
sensor nodes, the TA constructs a public (t + 1) × n matrix M over GF (q) such
that any t + 1 columns of M are linearly independent. A well-known example of
such a matrix M is a Vandermonde matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 2 3 . . . n
1 22 32 . . . n2

...
1 2t 3t . . . nt

⎞
⎟⎟⎟⎟⎟⎠ .
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Each node u receives a unique (t + 1) × 1 column vector xu from the matrix
M , which is public. Using a Vandermonde matrix, a node given the j-th column
vector can store only a seed j ∈ GF (q) to generate the other elements [5]. In the
next step, the TA generates a secret random (t + 1) × (t + 1) symmetric matrix
D over GF (q) and assigns secret information Ku = xT

u D to each node u. Any
two nodes u and v can compute their secret key Kuv = xT

u Dxv from one’s secret
information and the other’s public column vector. Note that xT

u Dxv = xT
v Dxu

due to the symmetry of the matrix D.

5.1 Modified Blom’s KPSs on Complete Bipartite Graphs

As described above, any pair of nodes can establish a secret key in Blom’s
schemes. Thus the network layer is represented by a complete graph. We can
weaken the connectivity of the network graph in order to improve resiliency
against node compromise. We choose a complete bipartite graph Km1,m2 in-
stead of a complete graph as a network graph in this modification. We divide
the set of nodes into two sets U and V such that |U | = m1 and |V | = m2. The
initial assignment of public column vectors is the same as the original schemes.
The difference is that the TA generates a random (t + 1) × (t + 1) matrix D,
which is not necessarily symmetric. Secret information xT

u D is assigned to each
node u ∈ U and Dxv is assigned to each node v ∈ V , given their public col-
umn vectors xu and xv. Now both of the nodes xu and xv can compute their
secret key xT

u Dxv. The following theorem supports the stronger resiliency of this
modification.

Theorem 5.1. Let U = {u1, . . . , um1} and V = {v1, . . . , vm2} be sets of (t +
1) × 1 column vectors over GF (q) such that any t + 1 vectors, either all in U or
all in V , are linearly independent. Let D be a (t + 1) × (t + 1) matrix. Then

1. D is determined by t + 1 row vectors uT
li
D, i = 1, . . . , t + 1 or t + 1 column

vectors Dvli , i = 1, . . . , t + 1, and
2. for any t + 1 vectors uli ∈ U, (i = 1, . . . , t + 1), and for any t + 1 vectors

vli ∈ V, (i = 1, . . . , t + 1), and for any scalar k ∈ GF (q), there exists a
(t + 1) × (t + 1) matrix D′ such that

uT
liD

′ = uT
liD, and D′vli = Dvli (i = 1, . . . , t), and uT

lt+1
D′vlt+1 = k.

Proof. Let

U =

⎛
⎜⎜⎜⎝

uT
l1

uT
l2
...

uT
lt+1

⎞
⎟⎟⎟⎠ and V =

(
vl1 vl2 . . . vlt+1

)
.

Then U and V are invertible (t + 1) × (t + 1) matrices over GF (q). Given UD
or DV , we can compute D by multiplying by the inverse matrix U−1 or V −1,
which proves the first part of the theorem.
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Now we define

(D̂)i,j =

{
k, if i = j = t + 1,
(UDV )i,j , otherwise.

and
D′ = U−1D̂V −1.

Then we have
eT
i UD′V = eT

i D̂ = eT
i UDV

and
UD′V ei = D̂ei = UDV ei,

for every elementary vector ei (with a “1” in position i and “0”s in all other
positions), i = 1, . . . , t. Since eT

i UD′ = eT
i UD and D′V ei = DV ei for i =

1, . . . , t, it follows that

uT
liD

′ = eT
i UD′ = eT

i UD = uT
liD,

and
D′vli = D′V ei = DV ei = Dvli

for i = 1, . . . , t, and

uT
lt+1

D′vlt+1 = eT
t+1UD′V et+1 = eT

t+1D̂et+1 = k,

as desired. ��

Theorem 5.1 means that an adversary cannot obtain any information on the
keys of the links between noncompromised nodes unless it compromise at least
t+1 nodes, either all in U or in V . In the original Blom’s scheme with the same
threshold parameter t, the compromise of any t+1 keys breaks the total system.
However, in our modification, the probability of a total break is reduced to

P (t + 1) =

(
m1
t+1

)
+

(
m2
t+1

)
(
m1+m2

t+1

) .

In general, when s nodes are captured randomly, the probability P (s) of total
break is estimated as

P (s) = 1 −
∑

i+j=s
0≤i,j≤t

(
m1
i

)(
m2
j

)
(
m1+m2

s

) . (2)

We will use this modification as building blocks to construct new KPSs in
the next section.
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5.2 Deterministic Multiple Space Blom’s Schemes (DMBSs)

We consider l copies of an (m, r, λ, µ)-strongly regular graph G to accommodate
n = ml nodes. We regard each vertex of G as a class of l nodes. Every sensor
node ui receives its public column vector xui

from a Vandermonde matrix M
and every edge e of G is associated with a random (t + 1) × (t + 1) matrix De,
not necessarily symmetric.

Now an arbitrary direction is assigned to every edge of G. For every edge
e ∈ E(G) incident to a vertex (class) u, each node ui of class u receives row
vector xT

ui
De if e starts from u, or column vector Dexui

if e ends at u. Suppose
that an edge uv ∈ E(G) begins at u. Then two sensor nodes ui ∈ u and vj ∈ v can
compute their secret key Kuivj

= xT
ui

Duvxvj
using each other’s public vector.

Since each vector has size equivalent to t+1 keys, the total amount of information
per node is given by r(t + 1). The probability that two nodes share a common
key is p = rl/(n − 1) ≈ r/m.

Security Analysis. Suppose that s nodes are captured by an adversary in a
random way. Consider a link between two noncompromised nodes ui and vj ,
contained in classes u and v, respectively. In order to compute their secret key
Kuivj = xT

ui
Duvxvj , the coalition has to contain at least t + 1 nodes, either all

in the class of u or the class of v. Therefore the probability P (s) that the link is
compromised is estimated as

P (s) = 1 −
∑t

i=0
∑t

j=0

(
l−1

i

)(
l−1
j

)(
n−2l

s−i−j

)
(
n−2

s

) . (3)

Figure 3 illustrates the graph of P (s) as a function of the number of compro-
mised nodes for various schemes. In this plot, we assume that

1. the total network size is n = 1200,
2. each node has 200 pieces of secret information,
3. the probability of sharing a common key between two nodes is p = 0.5.

We briefly describe the graphs and parameters used in this plot as follows:

(a) is from Fig. 2 in [9], where we take s′ = 2, s = 7, and t = 99.
(b) shows the resiliency of a modified Blom’s scheme with threshold parameter

t = 199 and network graph K600,600. We use (2) in Sect. 5.1.
(c) shows the resiliency of a deterministic multiple space Blom’s scheme based

on 300 copies of a (4, 2, 0, 2)-strongly regular graph, where we take threshold
parameter t = 99. We use (3) in Sect. 5.2.

(d) shows the resiliency of a basic scheme such that 200 keys are chosen from a
pool of size 58000 [6].

(e) shows the resiliency of a q-composite scheme with q = 1 [3].
(f) is given by (1) in Sect. 4.
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Fig. 3. Fraction of compromised links between noncompromised nodes v.s. number of
compromised nodes

6 Conclusion

We presented two KPSs for distributed sensor networks in this paper. We can
determine network graphs in both schemes. ID-based one-way function schemes
allow each node to reduce the storage by using one-way functions in generating
secret keys. Using a single copy of a network graph, we obtain a KPS with perfect
resiliency. A basic IOS has the maximum supportable network size larger than
a random pairwise keys scheme [3]. A multiple IOS provides a trade-off between
node storage (or total network size) and resiliency against coalition attack. MBSs
are based on modified Blom’s schemes and Du-Deng-Han-Varsheney/Liu-Ning
schemes. MBSs show stronger resiliency than Du-Deng-Han-Varsheney/Liu-Ning
schemes.
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