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Abstract. For a finite group G to be used in the MOR public key cryp-
tosystem, it is necessary that the discrete logarithm problem(DLP) over
the inner automorphism group Inn(G) of G must be computationally
hard to solve. In this paper, under the assumption that the special con-
jugacy problem of G is easy, we show that the complexity of the MOR
system over G is about log |G| times larger than that of DLP over G
in a generic sense. We also introduce a group-theoretic method, called
the group extension, to analyze the MOR cryptosystem. When G is con-
sidered as a group extension of H by a simple abelian group, we show
that DLP over Inn(G) can be ‘reduced’ to DLP over Inn(H). On the
other hand, we show that the reduction from DLP over Inn(G) to DLP
over G is also possible for some groups. For example, when G is a nilpo-
tent group, we obtain such a reduction by the central commutator attack.

Keywords: MOR cryptosystem, discrete logarithm problem, group ex-
tension, central commutator attack.

1 Introduction

At Crypto 2001, Paeng et al. [8] proposed the MOR public key cryptosystem
using finite non-abelian groups. For a group G to be used in the MOR public key
cryptosystem, it is necessary that the discrete logarithm problem(DLP) over the
inner automorphism group Inn(G) of G must be computationally hard to solve,
and there must be an efficient way to represent group elements as products of
the specified generators of G. Furthermore, we expect the security of the MOR
system to be something ‘mor(e)’ than that of DLP over G. Also it should be
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noted that the difficulty of DLP depends not only on the algebraic structure of
the group, but also on how elements of the group are represented.

Despite of many cryptographic advantages(see [8]) of the MOR cryptosystem,
the groups proposed so far have turned out to be unsatisfactory(see [7, 9, 14]).

In this paper, we are not trying to suggest new candidates for the groups
G to be used in the MOR cryptosystem. We would rather intend to reveal the
reasons why it is not easy to find good candidates for G. Thus, we hope that this
paper helps searching for suitable groups for the MOR system.

First, in Section 2, we compute the complexity of finding the secret keys of
MOR system in a generic sense. Under the assumption that the special conju-
gacy problem of G is easy, we show that the complexity of MOR system over G
is about log |G| times larger than that of DLP over G in a generic sense. This
result is somewhat unexpected, since our intuitive expectation for the generic
complexity of MOR system is about |Z(G)| times larger than that of DLP
over G.

Next, in Section 3, using the well-known theory of group extensions, we show
that it is possible to ‘reduce’ the problem of finding the secret keys of MOR
system over G to that of the MOR system over (smaller) subgroups H of G. Our
method is a generalization of various attacks given in [7, 9, 14].

In Section 4, we intend to find a reduction algorithm, which reduces MOR
system over G to DLP over G. (If this reduction were efficient enough, MOR
system would have less advantage in security than other public key cryptosystem
based on DLP over G.) We show that this reduction is possible for the groups
which are nilpotent or ‘nearly’ nilpotent. We call our reduction the central com-
mutator attack and we note that this attack is generic.

In this paper, we use the following standard notations : If N is a normal
subgroup of G and g ∈ G, the order of g is denoted by |g| and the image of g
in G/N is denoted by g. We let Inn(g) be the inner automorphism of G induced
by g, that is,

Inn(g)(x) = g−1xg, (x ∈ G)

and we let Inn(G) = {Inn(g) | g ∈ G} be the subgroup of inner automorphisms
in Aut(G). We note that Inn(G) ≈ G/Z(G), where

Z(G) = {z ∈ G | zg = gz for all g ∈ G}

is the center of G.

2 MOR Cryptosystem

2.1 Description of MOR Cryptosystem

The MOR cryptosystem [8] is described as follows.

– Bob’s Public key : (Inn(g), Inn(gs))
– Bob’s Secret key : An integer s(mod |g|), where g ∈ G/Z(G)
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It should be noted that for a fixed generating set {γi | i ∈ I} of G, a public
key (Inn(g), Inn(gs)) = (ϕ,ϕs) is described by the data {ϕ(γi)} and {ϕs(γi)}.

Encryption

1. Alice chooses a random integer r and computes (Inn(gs))r = Inn(gsr).
2. Alice computes E = Inn(gsr)(M).
3. Alice computes µ = (Inn(g))r = Inn(gr).
4. Alice sends (E,µ) to Bob.

Decryption

1. Bob computes µ−s = Inn(g−sr).
2. Bob recovers M = µ−s(E).

2.2 MOR Cryptosystem and Related Problems

For simplicity, let us write DLP(G) for DLP over G. Thus DLP(Inn(G)) stands
for DLP over the inner automorphism group Inn(G) of G.

The security of MOR system is related with the following problems :

– [Special Conjugacy Problem] : For a given ϕ ∈ Inn(G), find h ∈ G such that
Inn(h) = ϕ.

– [DLP(Inn(G))] : Given ϕ,ϕs ∈ Inn(G) for some s ∈ Z, find s(mod |ϕ|).
Throughout this paper, let us assume(agree(?)) that the special conjugacy

problems over G are not hard to solve. (Otherwise, one can exploit the cryptosys-
tem using the hardness of the special conjugacy problem over G.) Therefore, for
given Inn(g), we may find g′ ∈ G satisfying Inn(g) = Inn(g′). It means that
g′ = gz for some z ∈ Z(G). In this case, DLP(Inn(G)) can be restated as fol-
lows :

Find an integer s(mod |g|) for given g, gsz ∈ G, where z ∈ Z(G),

or
Find an integer s(mod |g|) for given g, g

s ∈ G/Z(G).

It means that DLP(Inn(G)) is equivalent to DLP(G/Z(G)).
In particular, if |Z(G)| is sufficiently large, there is little possibility that gsz

is contained in the cyclic subgroup 〈g〉 for a randomly chosen z ∈ Z(G). Hence,
existing algorithms for solving DLP(G) do not seem to be directly applied to
DLP(Inn(G)). On the contrary, if |Z(G)| is too large, then Inn(G) becomes too
small to be used for MOR system. Therefore, we conclude that the appropriate
size of Z(G) is crucial in MOR system.

2.3 Central Attack

The crucial role of Z(G) gives rise to the following intrinsic attack against MOR
system.

Assume that |Z(G)| = m is known. For given g and gsz for some s ∈ Z and
z ∈ Z(G), we get h1 = gm and h2 = (gsz)m = (gm)s. Now, solving DLP(〈gm〉)
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or DLP(G), we get s(mod |gm|), which gives a partial information of the secret
key s. Of course, gm may be the identity of G in the extreme case(for example,
see [8, p. 477]).

2.4 Complexity of Generic Algorithm on MOR System

Since middle of 90’s, a lot of works [11, 4, 5, 6] have been done on generic al-
gorithms for DLP and their lower bounds of complexity. Algorithms which do
not exploit any particular property of representations of the group are called
generic, and the baby-step giant-step algorithm is one of the generic algorithms
for DLP. In generic algorithms for DLP, only group operations and equality tests
are used.

Let {γi | i ∈ I} be a given generating set of G for MOR system, and a
public key (ϕ,ϕs) be given by {ϕ(γi)} and {ϕs(γi)}. Assuming that the special
conjugacy problem over G is not difficult as before, we get g and gsz for some
unknown z ∈ Z(G).

Let MulG(·, ·), InvG(·) and EquG(·, ·) denote the group operation (multi-
plication and inversion) oracles and the equality test oracle of G, respectively.
Now, consider the factor group G/Z(G). The generic operations of G/Z(G) can
be realized using those of G as follows.

• Group operation oracle of G/Z(G) :

MulG/Z(G)(g1, g2) = MulG(g1, g2),
InvG/Z(G)(g) = InvG(g).

• Equality test oracle of G/Z(G) :

EquG/Z(G)(g1, g2) =

{
True (if g1g−1

2 γi = γig1g
−1
2 for all i ∈ I),

False (otherwise).

One equality test in G/Z(G) requires at most (2|I| + 1) calls of MulG, 1 call
of InvG and |I| calls of EquG. Under the assumption that |I| = O(log |G|), we
have the following result as a direct application of the Pohlig-Hellman algorithm
in [10].

Theorem 1. Let a public key of MOR system (Inn(g), Inn(gs)) be given, and
let |g| =

∏k
i=1 p

ei
i , where pi are distinct primes. Under the assumption that

|I| = O(log |G|) and that the special conjugacy problem over G is easy, the
secret key s can be computed by O(

∑
ei(log |g| + pi) log |G|) group operations

and equality tests of group elements. If a memory space for storing �√p� group
elements(where p is the largest prime factor of |g|) is available, the running time
can be reduced to O(

∑
ei(log |g| +

√
pi log pi) log |G|).

Proof. By the above discussion, one equality test between two elements ofG/Z(G)
requires O(log |G|) group operations and equality tests of elements of G. The sec-
ond assertion follows directly from [10]. �	
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Thus, in a generic sense, the complexity of computing the secret key of MOR
system is about log |G| times larger than that of solving DLP(G).

This result is somewhat unexpected, since our intuitive expectation for the
generic complexity of MOR system is about |Z(G)| times larger than that of
DLP over G. (If the equality test oracle of G/Z(G) were ; “check if g1 = g2z for
each z ∈ Z(G)”, then we would obtain the result matching our intuition. So, the
point is that one equality test between two elements of G/Z(G) requires only
O(log |G|) group operations and equality tests of elements of G.)

3 Group Extensions and MOR Cryptosystem

Since it does not seem easy to find a good candidate for MOR cryptosystem
from the list of well-known finite groups, we consider an inductive argument as
follows. Suppose that the group G is good for MOR system, and suppose that G
has the smallest order among good candidates. Then we think of G as a group
extension of a maximal normal subgroup H of G, which is not suitable for MOR
system by the hypothesis.

In this section, generalizing the various ideas of [7, 9, 14], we show that it is
possible to w-reduce(see the definition below) DLP(Inn(G)) to DLP(Inn(H)),
where H is a maximal normal subgroup of G.

Definition 2. Given ϕ,ϕs ∈ Inn(G) with a secret key s(mod |ϕ|), if we can com-
pute ψ,ψs for some ψ ∈ Inn(H), we say DLP(Inn(G)) can be w-reduced (weakly-
reduced) to DLP(Inn(H)). In this case, note that we can recover s(mod |ψ|),
provided DLP(Inn(H)) is not hard to solve. (Of course, |ψ| may be 1 in the
extreme case.)

Although the theory of group extension(see, for example, [2, § 15.1] or [13,
§ 2.7]) is quite standard and well-known, we briefly sketch the proofs for some
results of group extensions to prepare for our proof of Theorem 10.

3.1 Group Extensions

Definition 3. For given two groups H and F , if H �G and G/H ∼= F , then we
call G a group extension of H by F.

Theorem 4. (See [2, 13].) If G is a group extension of H by F, there exist func-
tions T : F → Aut(H) and f : F × F → H satisfying the following conditions :

(1) T (τ) ◦ T (σ) = Inn(f(σ, τ)) ◦ T (στ), for σ, τ ∈ F ,
(2) f(σ, τρ) f(τ, ρ) = f(στ, ρ)T (ρ)(f(σ, τ)), for σ, τ, ρ ∈ F ,
(3) f(1, 1) = 1.

Proof. Let t : F → G give rise to a bijection between F and a complete set of
coset representatives of H in G such that t(1) = 1 (t is called a transversal).
Next, we define two functions T : F → Aut(H) and f : F × F → H by
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(a) T (σ)(h) = t(σ)−1h t(σ), for σ ∈ F, h ∈ H,
(b) f(σ, τ) = t(στ)−1 t(σ) t(τ), for σ, τ ∈ F .

Then, T and f satisfy the conditions (1)–(3). �	

Remark 5. If T and f satisfy the conditions (1)–(3) of Theorem 4, then we
call f a factor set belonging to T. If a factor set f is obtained from G as (a) and
(b) in the proof of Theorem 4, then we call f a factor set associated with the
extension G.

Theorem 6. (See [2, 13].) Let f : F × F → H be a factor set belonging to
T : F → Aut(H). Then there exists a group G which is a group extension of H
by F such that f is a factor set associated with G.

Proof. Put G = { t(σ)a | σ ∈ F, a ∈ H} and define a binary operation ∗ on G
by

[t(σ)a] ∗ [t(τ)b] = t(στ) f(σ, τ)T (τ)(a) b, (σ, τ ∈ F, a, b ∈ H).

Then, G becomes a group extension of H by F . Moreover, t(σ)1 is actually
a transversal and (T, f) satisfies the conditions (a) and (b) in the proof of
Theorem 4. �	

Corollary 7. (See [2, 13].) The group extension G is uniquely determined by T
and f . In this case, we denote G = [H,F, T, f ].

We note that semi-direct products are group extensions with the trivial factor
sets. In [7, 9], it is shown that DLP over inner automorphism groups of semi-
direct products can be reduced to DLP over inner automorphism groups of
individual groups. For group extensions, a similar result can be derived.

Theorem 8. Assume the group extension data G = [H,F, T, f ] is known. If F
is non-abelian, then DLP(Inn(G)) can be w-reduced to DLP(Inn(F )).

Proof. Let ϕ = Inn(g) and g = t(σ)a, where σ ∈ F, a ∈ H. For any x = t(τ)b ∈
G, we have

ϕ(x) = [(t(σ)a)−1] ∗ [t(τ)b] ∗ [t(σ)a]

= [t(σ−1)d] ∗ [t(τ)b] ∗ [t(σ)a], (where T (σ)(d) = f(σ−1, σ)−1a−1)

= [t(σ−1τ) f(σ−1, τ)T (τ)(d) b] ∗ [t(σ)a]

= t(σ−1τσ) f(σ−1τ, σ) · T (σ)(f(σ−1, τ)T (τ)(d) b) · a.
Similarly there exists A ∈ H such that ϕs(x) = t(σ−sτσs)A. Let Ψ = Inn(σ).

Then, the problem of finding s from given ϕ,ϕs ∈ Inn(G) can be w-reduced to
that of finding s from Ψ, Ψs ∈ Inn(F ). �	

Theorem 8 implies that the smaller order σ ∈ F/Z(F ) has, the less infor-
mation about s is exposed. Therefore, it is reasonable to take F to be abelian.
The next theorem is useful when we investigate group extensions by finite cyclic
groups.
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Theorem 9. (See [2, § 15.3].) If G is a group extension of H by Zn, then G is
uniquely determined by χ ∈ Aut(H) and α ∈ H satisfying the following condi-
tions :

(1) χn = Inn(α) ∈ Inn(H),
(2) χ(α) = α.

Proof. Write Zn = {0, 1, . . . , n − 1}. We choose a coset representative 1 of 1,
and define a transversal t : Zn → G by t(i) = 1

i
for 0 ≤ i ≤ n − 1. Then,

1
n

= α for some α ∈ H. Therefore χ := Inn(1)|H ∈ Aut(H). Then χ and
α satisfy conditions (1) and (2). Conversely, if χ and α are given, we define
T : Zn → Aut(H) and f : Zn × Zn → H by

T (i) = χi, (0 ≤ i ≤ n− 1)

f(i, j) =

{
1 if i+ j < n,

α if i+ j ≥ n.

Then T and f satisfy the conditions (1)–(3) of Theorem 4. �	

3.2 MOR System and Group Extensions

Let G be given by a group extension of H by F . The case, for which F is non-
abelian, is not desirable since DLP(Inn(G)) can be w-reduced to DLP(Inn(F ))
by Theorem 8.

Furthermore, since every finite group has a composition series, we may regard
G as a group extended by finite simple groups for finitely many times. Therefore,
in this section, we analyze the case when F = Zp for some prime p. Now we have
the main result of the present section.

Theorem 10. If the group extension data G = [H,Zp, T, f ] is known, then
DLP(Inn(G)) can be w-reduced to DLP(Inn(H)).

Proof. Let G = [H,Zp, T, f ]. Then, by Theorem 9, there exist χ ∈ Aut(H) and
α ∈ H satisfying the following conditions :

T (i) = χi, (0 ≤ i < p),

f(i, j) =

{
1 if i+ j < p,

α if i+ j ≥ p,

χp = Inn(α) ∈ Inn(H).

Now, we compute Z(G). If t(i)a ∈ Z(G), then for all j ∈ Zp and b ∈ H, we
have

[t(i)a] ∗ [t(j)b] = [t(j)b] ∗ [t(i)a].

Therefore,

t(i+ j) f(i, j)χj(a) b = t(j + i) f(j, i)χi(b) a
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and hence this implies χj(a) = a and b = a−1 χi(b) a. Note that this is equivalent
to χ(a) = a and χi = Inn(a−1). Hence we conclude that

Z(G) = { t(i)a | χ(a) = a, χi = Inn(a−1)}.
Since χp = Inn(α) ∈ Inn(H) and p is prime, we note that the order of χ in

Out(H) = Aut(H)/ Inn(H) is 1 or p.

Case 1. |χ| = 1.

We prove this case by showing that there is a computable isomorphism be-
tween G/Z(G) and H/Z(H). If |χ| = 1, then χ = Inn(h) for some h ∈ H.
Since χi = Inn(hi) = Inn(a−1), there exists zi ∈ Z(H) such that hi = a−1zi

(i.e., hia ∈ Z(H)). Then h commutes with a and thus χ(a) = Inn(h)(a) = a.
Therefore,

Z(G) = { t(i)a | hia ∈ Z(H)}
and we have

|Z(G)| ≥ |Z(H)|.
Next, we find an isomorphism between G/Z(G) and H/Z(H). Since χp =

Inn(hp) = Inn(α), we have α = hpz for some z ∈ Z(H). We define Ψ : G →
H/Z(H) by

Ψ(t(i)a) = hia, (a ∈ H, i ∈ Zp).

Then we can show the followings.

1. Ψ is a group homomorphism :

Ψ([t(i)a] ∗ [t(j)b]) = Ψ
(
t(i+ j) f(i, j)χj(a) b

)
=

{
hi+j χj(a) b = hi+j h−j a hj b = hia hjb, if i+ j < p

hi+j−p hp z χj(a) b = z hi a hj b = hia hjb, if i+ j ≥ p

= Ψ(t(i)a)Ψ(t(j)b).

2. Ψ is surjective : For g ∈ H/Z(H), where g ∈ H, we have

Ψ(t(i)h−ig) = hih−ig = g.

3. Ker Ψ = Z(G) : t(i)a ∈ Ker Ψ ⇔ hia ∈ Z(H) ⇔ t(i)a ∈ Z(G).
Hence, by the first isomorphism theorem, we have

Ψ : G/Z(G) ≈−→ H/Z(H).

Note that Ψ is computable since h can be derived from χ = Inn(h).

Case 2. |χ| = p.

If |χ| = p, i should be 0 in order that the equation χi = Inn(a−1) holds.
Moreover, since χ0(b) = b = aba−1 for all b ∈ H, a must be contained in Z(H).
Therefore, we have

Z(G) = { t(0)a | χ(a) = a, a ∈ Z(H)} ≤ Z(H).
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For given Inn(t(i)a) and Inn ((t(i)a)s), under the assumption that the special
conjugacy problem of G is easy, we can find t(j)c and t(l)d such that Inn(t(i)a) =
Inn(t(j)c) and Inn ((t(i)a)s) = Inn(t(l)d). Then we must have i ≡ j (mod p) and
c = az for some z ∈ Z(H) with χ(z) = z. Similarly, we get is ≡ l (mod p).
Consequently, we obtain s ≡ r′ (mod p) and thus we may put s = pr + r′ for
some integer r. Since

(t(i)a)p =

p-times︷ ︸︸ ︷
[t(i)a] ∗ [t(i)a] ∗ · · · ∗ [t(i)a]

=

(p−1)-times︷ ︸︸ ︷
[t(i)a] ∗ [t(i)a] ∗ · · · ∗ [t(i)a] ∗ [t(2i) f(i, i)T (i)(a) a]

=

(p−2)-times︷ ︸︸ ︷
[t(i)a] ∗ · · · ∗ [t(i)a] ∗ [t(3i) f(i, 2i)T (2i)(a) f(i, i)T (i)(a) a]

= t(0)
p−1∏
j=0

f(i, ij)T (ij)(a)

= t(0)Φ,

where Φ =
p−1∏
j=0

f(i, ij)T (ij)(a), we have

Inn ((t(i)a)p) = Inn(t(0)Φ)

and

Inn ((t(i)a)s) ◦ Inn
(
(t(i)a)−r′)

= Inn ((t(i)a)pr) = Inn (t(0)Φr) .

We may consider Inn(t(0)Φ)|H and Inn (t(0)Φr) |H as elements of Inn(H),
and we conclude that DLP(Inn(G)) is w-reduced to DLP(Inn(H)). �	

Example 11. Let Λ be the graph automorphism of order 2 of SLn(q)(see [12,
§ 10]). The group extension G = [SLn(q),Z2, Λ, 1] belongs to Case 2. In this case,
the order of Z(G) is the same as that of SLn(q).

Example 12. A metacyclic group(for example, see [3, p. 99]) is a semi-direct
product and belongs to Case 2. In this case, the order of the center of the group
decreases.

In Case 1, since we can find a computable isomorphism

Ψ : G/Z(G) ≈−→ H/Z(H),

we see that DLP(Inn(G)) can be completely reduced to DLP(Inn(H)) in this
case.
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Example 13. (See [8].) Let G = SL2(p) ×θ Zp, where

θ = Inn ◦ θ1 : Zp → Aut(SL2(p)),

and θ1 is an isomorphism from Zp to 〈α〉, α ∈ SL2(p). Then

Z(G) = { t(i)a | hia = ±I, a ∈ SL2(p)}.

Note that |Z(G)| > |Z(H)| and hence this example belongs to Case 1. There-
fore, we have

G/Z(G) ∼= SL2(p)/Z(SL2(p)) ∼= PSL2(p).

Remark 14. Moreover, all semi-direct products using inner automorphisms are
of Case 1. This is the reason why the authors of [7, 9] search for outer automor-
phisms.

Remark 15. As in [8, 9], even when the message space is restricted to { t(0)h |
h ∈ H}, a similar reduction is possible and we omit the proof.

Remark 16. Since we can only w-reduce DLP(Inn(G)) to DLP(Inn(H)), we
may not succeed in recovering full information about the secret keys. However,
we note that there are many choices of maximal normal subgroups H in G. Thus,
we may conclude that the group extension data G = [H,Zp, T, f ] should not be
easily obtained in order to have a secure MOR system. This should be kept in
mind when we search for suitable groups for MOR system.

4 Central Commutator Attack

As we have mentioned in Section 2, DLP(Inn(G)), which is the underlying prob-
lem of MOR system, depends a lot on the center Z(G) ofG. We are thus naturally
led to consider the lower central series of G. Especially, we are interested in the
nilpotent groups of which the length of lower central series are finite.

In this section, we show that there is a reduction algorithm for MOR system
on a nilpotent group.

4.1 Central Commutator Attack

As before, for g ∈ G, we assume a public key (Inn(g), Inn(gs)) = (ϕ,ϕs) is
given.

Lemma 17. Suppose we can find h, z ∈ G such that z = ϕ(h−1)h = g−1h−1gh �=
1 and ϕ(z−1)z = g−1z−1gz = 1, then zs can be computed from ϕs.

Proof. Observe the following computation :

ϕs(h−1)h = g−sh−1gsh = g−s(h−1gh)s = g−s(gz)s = zs. �	
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Thus, if we can find such h and z and can solve DLP(〈z〉) from z and zs,
we get s(mod |z|). To find such h and z, assume G is nilpotent and consider the
lower central series of G ;

G = G0 > G1 > · · · > Gk−1 > Gk = 〈1〉,
where Gi = [G,Gi−1]. We have k ≥ 2 because we are assuming G is non-abelian.
Since Gk−2 �≤ Z(G) and Gk−1 ≤ Z(G), there exists h ∈ Gk−2\Z(G). Letting
z = g−1h−1gh ∈ Gk−1, z is contained inGk−1 ≤ Z(G) and thus z commutes with
g. This technique is called the central commutator attack, since z and zs ∈ Z(G)
are central commutators.

However, when z is the identity of G, we do not get any information about
s, and the condition z �= 1 is not guaranteed here. The next algorithm settles
this problem and it can be applied to any nilpotent group.

Lemma 18. Let G be a nilpotent group of nilpotency (k − 1) with k ≥ 2. Then
the Algorithm-1 below outputs z and zs with z �= 1(and n in the Algorithm-1
satisfies n ≤ k).

Algorithm-1

Input: ϕ = Inn(g) and ϕs = Inn(gs) such that ϕ �= 1.

Step 1: Define σ(x) := ϕ(x−1)x = g−1x−1gx and
choose x0 such that σ(x0) �= 1.

Step 2: For m ∈ N, define xm := σ(xm−1) and
let n be the smallest integer such that xn = 1.

Step 3: Put h = xn−2, z = xn−1 and compute zs = ϕs(h−1)h.

Output: z and zs with z �= 1.

Proof. For Inn(g) to be used for an encryption, there should exist x0 which is not
trivially encrypted, i.e., ϕ(x0) �= x0 and g−1x0 g x0

−1 �= 1. Since G is a nilpotent
group of nilpotency (k − 1), we have the following lower central series of G ;

G = G0 > G1 > · · · > Gk−1 > Gk = 〈1〉,
where Gi = [G,Gi−1]. Define σ and xm as in the Algorithm-1. We note that
xm ∈ Gm for m = 1, . . . , k and thus xk = 1. Therefore we see that n ≤ k. Since
n is the smallest integer such that xn = 1, we have z = xn−1 �= 1. Now, if we
put h = xn−2, then h and z satisfy the conditions of Lemma 17 and thus we get
ϕs(h−1)h = zs. �	

Thus by solving DLP(〈z〉), one can compute some partial information of the
secret, i.e., s(mod |z|). Moreover, we will show that one can recover s completely,
if DLP over prime order subgroups of G are easy.

Let m = |g| =
∏k

i=1 p
ei
i be the order of g in G/Z(G), where pi are distinct

primes. Then the following algorithm is nothing but an application of the Pohlig-
Hellman algorithm [10] to MOR system.
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• Step A : For a fixed i, compute s(mod pj
i ) for j = 1, . . . , ei, inductively.

• Step B : Compute s(mod pi
ei) for each i = 1, . . . , k.

• Step C : Using the Chinese remainder theorem, compute s(modm).

We note that only the Step A is essential here : Fix a prime factor p of m,
and let e be the exponent of p in m. Let

s(mod pe) =
e−1∑
j=0

sjp
j , (0 ≤ sj ≤ p− 1).

First, compute
ψ := (Inn(g))m/p = Inn(gm/p)

and
ψ0 := (Inn(gs))m/p = Inn(gm/p)s = Inn(gm/p)s0 = ψs0 .

Since gm/p is not contained in Z(G), we have ψ(γ−1
i )γi �= 1 for some i, where

{γi | i ∈ I} is a given generating set of G. Applying the Algorithm-1 to ψ and
ψ0, we get h, z and zs0 such that

z = (g−m/p)h−1(gm/p)h and (g−m/p)z−1(gm/p)z = 1.

Observe that |z| = p. Solving DLP(〈z〉), we obtain s0. Now, assume that we
have obtained s0, . . . , s�−1 for some � < e. Next, we compute

ψ� :=(Inn(gs) ◦ Inn(g)− ∑�−1
j=0 sjpj

)m/p�+1

=(Inn(gs−∑�−1
j=0 sjpj

))m/p�+1

= Inn(gm/p)s� .

Again applying the Algorithm-1 to ψ and ψ�, and solving DLP(〈z〉), we obtain
s�. By induction we can compute s(mod pe). In summary, we have the following
result.

Theorem 19. Let G be a finite nilpotent group. For given Inn(g) and Inn(gs),
by solving DLP over prime order subgroups of G, one can recover s(mod |g|)
completely. In other words, DLP(Inn(G)) can be completely reduced to DLP over
prime order subgroups of G.

We mention here that the central commutator attack is generic in the sense
that the algorithm does not use particular property of representations of the
group but uses only group operations and equality tests of group elements.

Even when G is not nilpotent, the Algorithm-1 can be applied. First, observe
the following.

Lemma 20. For x ∈ G define τx : G → G by

τx(y) = x−1y−1xy, (y ∈ G).

Then G/Z(G) has nontrivial center if and only if there exists x ∈ G\Z(G) such
that τx(G) ⊆ Z(G).
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Proof. Elementary(see, for example, [1, p. 70]).

When the center of G/Z(G) is non-trivial, there exists x ∈ G such that
[x,G] ⊆ Z(G). Thus, given ϕ = Inn(g), we have τx(g) = x−1ϕ(x) ∈ Z(G) and
ϕ(x−1)x ∈ Z(G). Now we see that Algorithm-1 works. Therefore, we might say
that Algorithm-1 is valid if G is ‘nearly’ nilpotent.

When the center of G/Z(G) is trivial, G has the trivial upper central series
and perhaps is secure against the central commutator attack. But we expect this
kind of groups would be ‘similar’ to simple groups or semi-simple linear groups
which are usually not suitable for MOR system.

5 Conclusion

The security of the MOR cryptosystem using a group G is based on the hardness
of DLP(Inn(G)) and is related with the size of Z(G). In a generic sense, the
complexity of DLP(Inn(G)) is about log |G| times larger than that of DLP(G),
since Pohlig-Hellman or the baby-step giant-step algorithm can be applied to
MOR system, provided the special conjugacy problem of G is easy.

Since every finite group G has a composition series, we may regard G as a
group extended by finite simple groups for finitely many times. This leads us to
analyze a group extension G of H by Zp for some prime p, and it is shown that
DLP(Inn(G)) can be w-reduced to DLP(Inn(H)).

We note that there are many choices of maximal normal subgroups H in G.
Thus, we may conclude that the group extension data G = [H,Zp, T, f ] should
not be easily obtained in order to have a secure MOR system. This should be
kept in mind when we search for suitable groups for MOR system.

We also analyzed MOR systems on finite nilpotent groups. If G is nilpo-
tent, or Z(G/Z(G)) �= 1, using central commutator attacks, it is shown that
DLP(Inn(G)) can be completely reduced to DLP(G).

Finally, it should be noted again that MOR system and DLP highly depend
on the representations (or presentations) of groups.
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