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Abstract. Hard problem of cartographic pattern recognition in fine scale1 maps, 
using information that comes from coarse scale2 maps, is considered. The maps 
are raster-scanned color maps of different thematic, representing the same terri-
tory in coarse and fine scale respectively. A solution called Coarse-to-Fine 
Scale Method is proposed. This method is defined in terms of means: coarse 
scale maps and their information; concepts: image associated function, carto-
graphic knowledge domain and cartographic pattern; and tools: a set of cluster-
ing criteria of the Logical Combinatorial Pattern Recognition. 

1   Introduction. Formal Statement of the Problem 

In this paper we present the main ideas of the C2FS (Coarse-to-Fine Scale) method 
of color cartographic pattern recognition. This method has been originated from un-
solved problem of the vector description of raster objects. To date, it is hard to see the 
ways to obtain even a partial, but general, i.e. applied to any type of raster objects, 
solution of the problem; see survey papers [2][4][7] for detail discussion. In certain 
sense, the C2FS method represents a promising alternative. 

Let us suppose that we have a vector image I1 (or already recognized raster image) 

in scale 1:s1 of a given territory T and a raster image I2 of T to be vectored (recog-

nized) in scale 1:s2, and s1 > s2 (e.g. s1 = 100,000 and s2 = 50,000). Our goal is to use 

the information from I1 in vectorization of I2. Note that I1 can be considered as a 

“generalization”3 of I2: I1 = G (I2), i.e. if an object O2 ∈ I2, then there can exist O1 ∈ 

I1, such that O1 = G (O2). We denote Ω - the set of all such objects O2 from I2 and Θ - 

the compliment of Ω in I2: I2 = Ω ∪ Θ. We also put ω = G (Ω) and note that ω ⊆ I1. 

Obviously, to vector objects from Ω and Θ we need two different strategies. The 
objects from Ω can be vectored, using the features (position, color or colors, shape, 
etc.) of the vector objects from ω. After, the objects of Ω have being vectored we can 
vector the objects from Θ by one of the recognition modules [2][7] as a “new” carto-
graphic material. 
                                                           
1  Inferior to 1:200,000. 
2  Superior to 1:200,000. 
3  We do not discuss here what this generalization is. 
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2   Theoretical Background 

The theoretical background of the C2FS method is based on the following definitions:  

Definition 1. A digital image is a matrix ||M (i , j)||n×m such that 0 ≤ i ≤ n, 0 ≤ j ≤ m; 

and M(i, j) = (r, g, b), where r, g, b are elements of the set {0,1,..., 255}. 

Definition 2. Let I be a digital image according to the definition 1, then Image Asso-
ciated Function (IAF) ƒI: Z×Z’→ M to I is defined as follows: 

a) IAF domain is Z×Z’ where Z={0,1,..., n} and Z’={0,1,..., m}. 
b) IAF co-domain is a set M without repeated elements, which is composed of the 

elements of M(i, j) ∈ I. 
c) IAF is assigned to each pair (i, j) in Z×Z’ the corresponding value given by the 

matrix ||M (i , j)||. In other words, ƒI ( i, j) = M(i, j), ∀(i, j) ∈ Z×Z’. 

Definition 3. Cartographic Knowledge Domain (CKD) is a finite space of attributive, 
topologic, logical and spatial data, which are associated with raster cartographic ob-
jects presented in maps [9]4. 

Definition 4. Let I be a digital image according to definition 1 and let ƒI: Z×Z’→ M 

be IAF. Cartographic Pattern (CP) P in I is a function such that 
1) P = ƒI|Zp: Zp→ Mp, where Zp ⊆ Z×Z’ and Mp ⊆ M. In other words, P is the re-

striction of IAF ƒI to some set Zp. 

2) A concept from CKD can be assigned to the set Zp or Mp. 

Whereas P only fulfills condition 1, it is a candidate to be a CP. 
These definitions are served as a compliment to clustering criteria coming from 

Logical Combinatorial Pattern Recognition: β0-Connected, β0-Compacted, β0-
Complete Maximal [1][3] to segment and recognize the image. We apply the cluster-
ing criteria only to IAF co-domain because this contains much less elements than the 
total number of pixels presented in the digital image (raster map). 

Clustering criteria. Next, we analyze mentioned above clustering criteria and the 
similarity measures in application to color cartographic image processing. To our 
knowledge, this is one of the first works in this direction; see [2][3][8] for belief.  

We use the following notations. Let I be a digital cartographic image; fI be an Im-

age Associated Function, fI: Z×Z’→M; Γ: U×U→[0,1] be a Similarity Function, 

where U is a finite space of objects to classify; β0 be nonnegative real number. 

A subset Gi in U is called β0-Connected, if ∀Or, Os ∈Gi, then there exist 

q1 ii O,...,O ∈Gi such that Or= 1i
O , Os = qi

O  and ∀p∈{1,..., q-1} Γ(
pi

O ,
1pi

O
+

)≥β0. 

Moreover, if Ok ∈ U and ∃Oj ∈ Gi such that Γ(Ok, Oj)≥β0 then Ok ∈ Gi. 

In cartographic digital images, this criterion can be used to find groups in co-
domain M, defined by the elements that allow a gradual transition in terms of the 

                                                           
4  For example, attributive data like type of border, name of state, surface, population, adminis-

trative unit, among others; geometric data like contours, coordinates, etc. [2]. 
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similarity function. While for cartographic patterns, this can be used when the pat-
terns are defined by colors that go from “clear” blue to “dark” blue, for instance. A 
problem comes when there are gradual transitions between colors in the image and 
each color of that transition is used to represent a different cartographic pattern. No-
tice that this problem depends on the image context and can be solved by using other 
two criteria that are defined in the following. 

A subset Gi in U is called β0-Compacted, if ∀ Oj ∈ Gi ∃ Oi ∈ Gi such that Oi ≠Oj 

and Γ(Oi, Oj) takes the maximum value.  

In other words, the objects in a β0-Compacted set are most similar objects with re-

spect to the similarity function. As we have already mentioned, the applications of β0-

Connected criterion depend on the image context. To make it context–independent, 
we can successively apply the β0-Compacted criterion and/or the following criterion. 

A subset Gi in U is called β0-Complete Maximal iff ∀Oi, Oj ∈Gi, the similarity 

function Γ computed for both elements is greater or equal than β0, and if Γ(Ok, Op) ≥ 

β0, where Ok∈Gi, then Op ∈ Gi.  

According to our experiments, this criterion has a disadvantage that if it is applied 
to the digital image before other two criteria it can generate more than necessary 
groups in the co-domain. On the other hand, it can be applied to β0-Connected groups 

iteratively extracting more precisely the groups of interest (finer clustering); that is its 
advantage. Once again, the use of each single criterion depends on the image context, 
while their combination may not. 

Summing-up the clustering criteria analysis, we note the following:  

• Elements of the IAF co-domain can be grouped/structured in different groups 
depending on the clustering criteria.  

• Groups/structures obtained by the application of a criterion Π5 can result in the 
union of groups/structures formed by another criterion Π’. In other words, succes-
sive application of clustering criteria leads to gradually finer structuring of the 
IAF co-domain. Thus, a hierarchy under inclusion relation between the groups is 
settled down, in which “general” (“coarse”) groups are at superior level (βo-

Connected criterion) and “specific” (“fine”) groups are at inferior level (βo- Com-

pacted and/or βo- Complete Maximal criteria) [1]. 

On the other hand, these criteria are general and abstract. To apply them in image 
processing, we should make them specific and concrete for the pixel clustering. Thus, 
we use a criterion of similarity and modified HSI color space. Indeed, in normal HSI 
space, if the intensity is equal to zero then the saturation is indeterminate, and if the 
saturation is zero then hue is indeterminate. In the modified HSI space, we remove 
the singularities, i.e. intervals where the saturation and hue are indeterminate6.  

                                                           
5  Π, Π� is one of the three criteria: β0-Connected, β0-Compacted or β

0
-Complete Maximal. 

6  More general approach to modified non-linear color spaces see in [6]. 
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Similarity criterion and similarity function. Let I be a cartographic digital image. 
Let fI: Z×Z’→M be IAF. The Similarity Criterion C: M×M→[0,1] is defined as fol-

lows: let p, q ∈ M; we denote by I(k), S(k) and H(k) the intensity, saturation and hue 
respectively of some point k ∈ M, then C(p, q):  
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Using this similarity criterion, it is possible to define the Similarity Function only 

in terms of this criterion. Unique feature used in definition of C is color. However, we 
can define another criterion Ca and consider other features besides of color, construct-

ing Ca and corresponding similarity function. 

According to the similarity criterion above, the similarity function coincides with 
the criterion C(p, q). C(p, q) for elements p, q from the IAF co-domain are computed 
as follows; refer formulas above.  

a) If the absolute value of difference between their intensities is more than some 
threshold C the value of similarity function is equal to zero.  

b) Otherwise, if this value is less than C, then if both intensities are less or equal than 
some another threshold N (average of all colors close to “black”) or the difference 
is more or equal than yet another threshold B (average of all colors close to 
“white”), then the value of similarity function is equal to one7. 

c) If ¬a ∧¬b, then the saturation of p and q are considered as follows. 

                                                           
7  This can be interpreted as averaging of clear and dark tonalities. 
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c1) If  both saturation are less or equal than some threshold R, then the value of 
similarity function is equal to one. 

c2) If one of saturation is less or equal than R, then the value of similarity func-
tion is equal to one minus the absolute value of the difference of intensities. 

c3) If ¬c1∧¬c2, then the saturation as well as hue are determinate, forming two 
vectors for p and q in polar coordinates (saturation (radii), hue (angle)). In 
this case, the value of similarity function is equal to one minus the Euclidean 
distance between these two vectors; see also formula above. 

Figure 1 shows the results obtained with the application of the clustering criteria 
(first β0-Connected and then β0-Complete Maximal), which use just defined the simi-

larity function, to segment a complex color image. 

 

 
 (a)  (b)  (c)  

Fig. 1. (a) Source Image. (b) and (c) Segmentation of the objects of interest. 

3   Application of the C2FS Method  
to Cartographic Pattern Recognition 

Let I be a digital cartographic image ||M (i , j)||n×m. First we should compute the Im-

age Associated Function as follows. Let Z = {0,..., n}, Z' = {0,..., m}, consider the 
Cartesian product Z × Z’ and the difference of the sets A and B: A-B = {x∈A | x ∉ 
B}. Next the following steps are employed:    

1. Let po = 0, qo = 0, then the sets are defined:  

G0 = { M( x, y) | M(x, y) = M(po, qo)} and   

G’0 = {(x, y) | M( x, y)∈ G0}. 

2. Let (p1, q1) ∈  Z × Z’- G’0, then the sets are defined:  

G1 = { M( x, y) | M(x, y) = M(p1, q1)} and  

G’1 = {(x, y) | M( x, y)∈ G1}. 

3. Let (p2, q2) ∈  Z × Z’- G’0∪ G’1, then the sets are defined:  

G2 = { M( x, y) | M(x, y) = M(p2, q2)} and  

G’2 = {(x, y) | M( x, y)∈ G2}. 
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4. The process continues until the first natural number k such that  Z × Z’- G’0∪ 

G’1∪ G’2∪…∪ G’k+1 = ∅ is found. It can be demonstrated that sets G’i, i ∈ 

{0,...,k} generate a partition of set Z × Z’. We call the union ∪iG’i a primitive 

partition.   

To relax the equality condition that is requested in the definition of sets Gi, i ∈ 

{1,..., k}, we set up the generalized sets Gi
ε as follows: Gi

ε = { M( x, y) | ||M(x, y) - 

M(pi,qi)|| ≤ ε}8, where ||•|| could be any metric. In this work we use the “Manhattan” 

metric, i.e. ||(x, y, z,) – (p, q, r) || = |x – p | + |y – q |+|z – r |; |•|  denotes the absolute 
value.   

It is more convenient to work with the co-domain of the Image Associated Func-
tion because it does not contain repeated elements thus allowing avoid excessive 
computing.  For example, consider figure 2. 

 
Fig. 2. Cartographic map: size 914 × 539 = 492646 pixels. 

The number of elements in the co-domain of the Image Associated Function, con-
sidering the sets Gi

ε, with ε=20, is 120. In other words, we only use 0.02% of the total 

number of the image pixels to build primitive partition. To this partition, we apply the 
clustering criteria to extract and recognize the objects of interest in maps9. 

Cartographic Pattern Recognition. Suppose that a cartographic pattern PTE already 

recognized by a computer system in a cartographic map in a coarse scale exists. The 
recognition of PTE implies that corresponding attributive, geometric, topologic data 

are known and, therefore, form the Cartographic Knowledge Domain (CKD). Infor-
mation of special interest is its location with respect to some coordinate system, color 
or colors, shape, etc. We use this information to recognize or assign a concept from 
CKD, e.g. “Lerma River” to PFE presented in the fine scale map.  Note that the char-

acteristics of PTE and PFE are conceptually similar, e.g. they have the same name, 

although they can be distinct as functions according to definition 4. 

                                                           
8  Notice that when ε = 0, the sets G

i

ε are converted in the sets G
i
; that is why we call them 

“generalized”. 
9  Note that primitive partition in vector image of region maps, for example, is immediate and 

provides the region recognition as well, i.e. this is simultaneous segmentation-recognition [5] 
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Information about the location of PTE is used to find a candidate to be “fine” carto-

graphic pattern PFE. Notice that PFE is generated by the application of the clustering 

criteria. This way, once PFE has been located the system is assigned to it the concept 

defined by “coarse” cartographic pattern PTE, finally reaching PFE recognition under 

that concept. For example, suppose that a cartographic map in coarse scale provides 
information with which the following CKD is build: {name: “Palm”; location: 
(84,101)}. CKD affirms that it is possible to find in the image coordinates (84,101) a 
cartographic pattern denominated “Palm”. Notice that the location, extraction and 
recognition are immediate because the classification has been employed over all im-
age pixels by means of the Image Associated Function co-domain; see figure 3. 

 

Fig. 3. Recognition of a cartographic pattern visually classified as punctual. (a) Original image. 
(b) Image obtained after applying the criterion βo-Connected, βo=0.9. (c) Recognition of the 

pattern (function) “Palm”. 

4   Conclusion 

Color cartographic pattern recognition by a computer system remains a hard task [4]. 
This is closely related to the spatial data vectorization for GIS-ready information [2]. 
In this context, the coarse-to-fine scale method represents a promising alternative to 
carry it out. Indeed, a typical situation in GIS development is that spatial data in a 
coarse scale are available, and GIS-developer needs to transform (recognize) them 
into finer scale. For example, Mexico has full-territory coverage by recognized to-
pographic maps in scale 1:50,000, but not in 1:25,000; this is a commonality for 
many countries [4]. Moreover, the C2FS method is in essence a simultaneous seg-
mentation-recognition system [5][7].   

The method attempts to incorporate the external (interpretative) knowledge to the 
segmentation-recognition process; an early approach with the same core was [10].   

We believe that this work is not a yet another paper about (YAPA) cartographic 
pattern recognition. This assertion is also based on “universality” of our method: this 
was initially designed to recognize cartographic patterns into fine scale maps, how-
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ever, further development shown that it is possible to recognize patterns independ-
ently of the map scale by modifying the cartographic knowledge domain. 

Of course, the method has certain limitations. One of them is that it is required a 
lazy user's intervention to establish the clustering criteria parameters. This common 
problem in image processing and pattern recognition, however, is not a great obstacle 
for further method’s development by adding more pattern features to the criteria. 
Although, the method has actually been designed at basic level (considers unique 
color feature), requiring further development (consider other features such as shape), 
it is technically sound, according to the obtained results. 
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