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Abstract. In this paper we consider the problem of reconstructing a
high resolution image from a set of undersampled and degraded frames,
all of them obtained from high resolution images with unknown shifting
displacements between them. We derive an iterative method to estimate
the unknown shifts and the high resolution image given the low resolution
observations. Finally, the proposed method is tested on real images.

1 Introduction

High resolution images can, in some cases, be obtained directly from high preci-
sion optics and charge coupled devices (CCDs). However, due to hardware and
cost limitations, imaging systems often provide us with only multiple low reso-
lution images. In addition, there is a lower limit as to how small each CCD can
be, due to the presence of shot noise [1] and the fact that the associated signal
to noise ratio (SNR) is proportional to the size of the detector [8].

Over the last two decades research has been devoted to the problem of re-
constructing a high resolution image from multiple shifted undersampled, and
degraded frames (see [4] for a recent review). A key part of the high resolution
reconstruction problem is the estimation of the shifts between the images.

Most of the reported approaches on shift estimation for super-resolution,
first estimate the displacement vectors either by interpolating the low resolu-
tion observations and then finding the registration parameters or by finding the
low resolution registration parameters in the low resolution domain and then
interpolating them (consider [4] again), where the high resolution image and the
registration parameters are estimated simultaneously, can be found in [10, 9, 12,
2].
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In this paper, starting from the low to high resolution method described in [6,
11], we propose a new iterative method to alternatively estimate the registration
parameters and to obtain a high resolution image from a set of low resolution
observations.

The paper is organized as follows. The problem formulation is described
in section 2. The process to estimate the displacements between the images is
described in section 3. Once the registration parameters have been obtained
the application of the Bayesian paradigm to calculate the MAP high resolution
image and estimate the regularization hyperparameters is described in section 4.
The iterative estimation of the registration parameters and the high resolution
image is discussed in section 5. Experimental results are described in section 6.
Finally, section 7 concludes the paper.

2 Problem Formulation

Consider a set g = {g1, . . . ,gQ} of Q ≥ 1 low resolution images with N1 × N2

pixels. The low resolution sensors obtaining the low resolution images are shifted
with unknown horizontal and vertical displacements with respect to each other
by values proportional to (T1/L) × (T2/L), where T1 × T2 is the size of each
low resolution sensing element and L denotes the high resolution magnification
factor. Our aim is to reconstruct an M1 × M2 high resolution image, f , with
M1 = L×N1 and M2 = L×N2, from the set of low resolution observations.

We now relate the low resolution observed images in g to the unknown high
resolution image f we want to estimate. Since the low resolution sensors obtain-
ing the low resolution images are shifted with unknown horizontal and vertical
displacements with respect to each other by values proportional to T1/L×T2/L
we have that each gi, i = 1, . . . , Q results from f through motion compensation,
filtering, and subsampling:

gq = AHC(dq)f + εq q = 1, . . . , Q , (1)

where C(dq) is the (M1 ×M2) × (M1 ×M2) matrix defined by C(dq)f(a, b) =
f(a+dx

q, b+dy
q)), where dq = (dx

q,d
y
q) denotes horizontal and vertical displace-

ments, matrix H of size (N1 ×N2) × (LN1 × LN2) describes a high resolution
filtering operation, A is the downsampling matrix with size N1N2 × (M1M2)
and εq a random independent noise with variance β−1

q .
Matrices A and H are assumed to be known. AH models optical distortion

together with CCD pixel resolution [11]. The matrix H is assumed to be block-
circulant and C(dq) will be approximated by a block-circulant matrix as well.

Our problem can now be formulated as the estimation of the set of displace-
ments, d = {d1, . . . ,dq}, and the high resolution image f . In order to perform
this task we will proceed in two steps; first we will estimate the displacements
d and then the high resolution image f .
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3 Estimation of the Displacement Vectors

To obtain the high resolution image f , we need to accurate estimate the pixel
displacement dq in (1). In this paper we estimate the registration parameters as
follows. From (1), we first consider for each q ∈ {1, . . . , Q}, the following low to
high resolution observation model with just one observation,

gq = AHuq + ψq q = 1, . . . , Q , (2)

where uq is an M1 ×M2 high resolution image, H and A have been defined
in (1) and ψq is random independent noise with variance µ−1

q .
We then use as prior model for uq a simultaneous autoregression (SAR) [7],

that is,

p(uq|αq) =
1

Zprior(αq)
exp

{
−1

2
αq ‖ Cuq ‖2

}
, (3)

where the parameter αq measures the smoothness of the ‘true’ image, Zprior(αq)
= (

∏
i,j λ

2
ij)

−1/2(2π/αq)(M1×M2)/2 and λij = 1−2φ(cos(2πi/M1)+cos(2πj/M2)),
i = 1, 2, . . . ,M1, j = 1, 2, . . . ,M2 and C is the Laplacian.

Then we select as estimate of uq,

ûq = argmin
uq

{
αq ‖ Cuq ‖2 +µq ‖ gq − AHuq ‖2

}
(4)

The high resolution estimate ûq is found together with estimates of αq and µq

using the method described in [6, 11, 5].
One of the ûq’s (call it û) is an initial estimate of f , and we proceed with

the estimation of the registration parameters d = {d1, . . . ,dq}. In this paper
we have used the following two approaches.

3.1 Method I: Global Correlation

Given ûq and the initial estimate, û, of the high resolution image f we calculate
the registration parameters between ûq and û by finding

(d̂x
q, d̂

y
q) = arg max

dx
q,dy

q

Cûq,û(dx
q,d

y
q), (5)

where
Cûq,û(dx

q,d
y
q) =

∑
n1

∑
n2

ûq(n1, n2)û(n1 + dx
q, n2 + dy

q) (6)

3.2 Method II: Local Correlation

Given ûq and û we compute a set of points of interest in image ûq (see for
instance [3]). Then, for each pixel location (nx, ny), corresponding to a point
of interest, consider a block of small size centered around it and search for the
location of the best-matching block of the same size in a limited area around
pixel (nx, ny) in image û.
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Let dq(i) for i = 1, . . . ,points of interest be the set of obtained registration
parameters; we then create the list L = {dn

q, n = 1, . . . , N}, of the N most
frequently appearing values of the registration parameters (N should cover a high
percentage of the points of interest). For each dn

q find the correlation between the
central part of ûq of size M1/2×M2/2 and the same area in image û displaced
by dn

q. Select the registration parameter maximizing this correlation.

4 Bayesian Analysis

Once we know the registration vector d, from (1), the probability density func-
tion of gq, with f the ‘true’ high resolution image, is given by

p(gq|f , βq) =
1

Z(βq)
exp

[
−βq

2
‖ gq − Wqf ‖2

]
, (7)

where Z(βq) = (2π/βq)(N1×N2)/2, βq is the inverse of the noise variance and
Wq = AHC(dq).

Since we have multiple low resolution images, the probability density function
of g given f is

p(g|f , β) =
∏
q

p(gq|f , βq)

=
1

Znoise(β)
exp

[
−1

2

∑
q

βq ‖ gq − Wqf ‖2

]
(8)

where β = (β1, . . . , βQ) and Znoise(β) =
∏

q Z(βq).
As prior model for f we use the simultaneous autoregression (SAR) defined

in (3), that is

p(f |α) =
1

Zprior(α)
exp

{
−1

2
α ‖ Cf ‖2

}
, (9)

Note that this SAR model is equivalent to the use of the Laplacian operator
to regularize the high resolution image estimate.

The Bayesian analysis is performed to estimate the hyperparameters, α and
β, and the high resolution image. In this paper we use the following two steps:

Step I: Estimation of the Hyperparameters

α̂ and β̂ are first selected as

α̂, β̂ = argmax
α,β

Lg(α, β) = argmax
α,β

log p(g|α, β), (10)

where p(g|α, β) =
∫
f p(f |α)p(g|f , β)df .

The solution to this equation is obtained with the EM-algorithm with X t =
(f t,gt) and Y = g = [0 I]tX .
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Step II: Estimation of the High Resolution Image

Once the hyperparameters have been estimated, the estimation of the high
resolution image, f(α̂,β̂), is selected to minimize

α̂ ‖ Cf ‖2 +
∑
q

β̂q ‖ gq − Wqf ‖2, (11)

which results in
f(α̂,β̂) = Q

(
α̂, β̂

)−1 ∑
q

β̂qWt
qgq, (12)

where Q(α̂, β̂) = α̂CtC +
∑

q β̂qWt
qWq.

The estimation process we are using could be performed within the so called
hierarchical Bayesian approach (see [6]) by including priors on the unknown
parameters α and β. Note that the prior model in (9) plays an important role
in the estimation of the high resolution image and the hyperparameters when
an incomplete set (

∑
q βqWt

qWq singular) of low resolution images is used [5].
Note also that equation (12) can be solved using the method proposed in [6].

5 Iterative Registration and Image Estimation

Combining the methods proposed in section 3 to estimate the registration param-
eters, d, and the algorithm to estimate the high resolution image, f , described
in section 4, we can obtain an iterative procedure to estimate both of them.

Let d0 be the displacement vector obtained by applying the methods de-
scribed in section 3 and f0 the image estimate obtained by the method described
in section 4 when d = d0. Then re-estimate the displacement vector dk by us-
ing ûq obtained in section 3 and replacing û (the initial estimate of the high
resolution image obtained in section 3), by fk−1. Recalculate fk for this new
displacement vector dk using the method described in section 4. The iterative
procedure ends when ‖ fk − fk−1 ‖2 / ‖ fk−1 ‖2 is less than a prescribed bound.

6 Experimental Results

A number of experiments were performed with the proposed algorithms over a
set of images to evaluate their performance to estimate the high resolution image
and registration parameters.

According to (1) the high resolution image in Fig. 1a, f , was first shifted
to obtain a set of 16 high resolution images, fl1,l2(x, y) = f(x + l1, y + l2),
(x, y) ∈ {0, . . . ,M1}×{0, . . . ,M2}, l1, l2 = 0, . . . , 3. Then each fl1,l2 was blurred
using a motion blur of length 10 and downsampled by a factor of four. Gaussian
noise was added to each low resolution image to obtain three sets of sixteen low
resolution images, gl1,l2, with signal to noise ratio (SNR) equal to 20, 30 and
40dB.
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Table 1. Estimated registration parame-
ters for the low resolution image set with
SNR of 20dB, by global correlation (first
table) and local correlation (second table)

Global correlation.
Estimated shifts in table

Real shifts 0 1 2 3

0 (0,0) (0,0) (0,0) (0,0)
1 (0,0) (0,0) (0,0) (0,0)
2 (0,0) (0,0) (0,0) (0,0)
3 (2,0) (1,0) (1,0) (1,0)

Local correlation.
Estimated shifts in table

Real shifts 0 1 2 3

0 (0,0) (0,1) (0,2) (0,3)
1 (1,0) (1,1) (1,2) (1,3)
2 (2,0) (2,1) (2,2) (2,3)
3 (3,0) (3,1) (3,2) (3,3)

Table 2. Estimated registration parame-
ters for the low resolution image set with
SNR of 30dB, by global correlation (first
table) and local correlation (second table)

Global correlation.
Estimated shifts in table

Real shifts 0 1 2 3

0 (0,0) (0,0) (0,0) (0,0)
1 (0,0) (0,0) (0,0) (0,0)
2 (0,0) (0,0) (0,0) (0,0)
3 (1,0) (1,0) (1,0) (1,0)

Local correlation.
Estimated shifts in table

Real shifts 0 1 2 3

0 (0,0) (0,1) (0,2) (0,3)
1 (1,0) (1,1) (1,2) (1,3)
2 (2,0) (2,1) (2,2) (2,3)
3 (3,0) (3,1) (3,2) (3,3)

In order to test the performance of the proposed algorithms we ran the reg-
istration algorithms in section 3 and the reconstruction method described in
section 4 on different sets of q randomly chosen low resolution images with
1 ≤ q ≤ 16. For comparison purposes, Fig. 1b depicts the zero-order hold
upsampled image of g0,0 for 30dB SNR (PSNR=13.68dB) while the bilinear
interpolation of g0,0 is shown Fig. 1c (PSNR=14.22dB).

Tables 1 and 2 show, at convergence of the method described in section 5,
the estimated displacement vectors obtained using the methods described in
sections 3.1 and 3.2 for the 20dB and 30dB cases, respectively. The estimated
registration parameters did not change between the first and second iteration of
the method.

The estimated high resolution image for the 30dB case using local correlation
and 6 low resolution images is depicted in Fig. 1d (PSNR = 21.03dB).

7 Conclusions

In this paper we have presented an iterative method to estimate the registration
parameters and reconstruct a high resolution image from a set of shifted low
resolution observation. The method has been tested on synthetic images and
has provided good estimates of both the high resolution image and displacement
vectors.

The proposed method works for the case of shift displacements between the
high resolution images. Extension to homographies, of particular interest for
plane surfaces like registration plates or text, is under study.
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(a) (b)

(c) (d)

Fig. 1. (a) original image (b) zero order hold, (c) bilinear interpolation, (d) image
obtained with the proposed method using 6 low resolution images
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