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Abstract. In this paper we analyze the use of regularization kernels
on graphs to weight the quadratic cost function used in the Softassign
graph-matching algorithm. In a previous work, we have showed that
when using diffusion kernels on graphs such a weighting improves signif-
icantly the matching performance yielding a slow decay with increasing
noise. Weights, relying on the entropies of the probability distributions
associated to the vertices after diffusion kernel computation, transform
the original unweighted matching problem into a weighted one. In this
regard, as diffusion kernels are a particular case of regularization kernels
it is interesting to study the utility of this family of kernels for match-
ing purposes. We have designed an experimental set for discovering the
optimal performance for each regularization kernel. Our results suggest
that kernel combination could be a key point to address in the future.

1 Introduction

The Softassign algorithm [4] is a typical energy minimization approach for graph
matching that relies on transforming the discrete search space into a continuous
one and then optimizing a quadratic cost function through a polynomial compu-
tational complexity process in order to find a, typically approximate, solution.
It has been reported [5] that the use of an alternative non-quadratic energy
function complemented by a continuous editing process yields a slow decay of
matching performance with increasing graph corruption (noise). However, in a
recent paper [7] we report a similar decay with a simpler strategy consisting
on computing structural attributes for the vertices of the original unweighted
graph and then use these attributes to weight the quadratic function. Such good
results are due to the fact that these attributes encode the structural similarities
between each vertex and the rest of vertices of the graph, and such information
is key to choose the proper attractor in contexts of high matching ambiguities
where the classical Softassign fails, specially at higher levels of distortion.

Kernels on graphs provide a natural way of computing similarities between
the vertices of the same graph. In the case of the diffusion kernel, the one we used
in our initial experiments, Kondor and Lafferty [6] (see also [3] for a survey on
kernels for structures like strings, trees and graphs) transferred to the domain
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of graphs the well-known concept of kernel defined for the domain of vectors
[2][10][8]. Diffusion kernels on graphs are positive semi-definite matrices (it is
necessary to be a kernel or Gram matrix) having as many rows and columns as
the number of vertices in the graph (like the adjacency matrix) where the value of
each entry defines the similarity between two vertices and such a similarity decays
exponentially with the distance between the vertices that we are comparing.
The similarity can be interpreted as the probability of reaching one vertex from
another by following a lazy random walk (a random walk with a given probability
of remaining at each visited vertex). Given such a probabilistic interpretation, we
retain as attribute for a given vertex the entropy of the probability distribution
arising from considering the probability of reaching the rest of the nodes and
the probability of resting. This approach is closely related to the use of distance
matrices in matching and tests for isomorphism [9], and, more recently, to the
use of powers of the adjacency matrix [13].

Although understanding the role of the diffusion kernel in graphs is intuitive
because these kernels are the discrete version of continuous Gaussian kernels,
this is not the case for the regularization kernels recently proposed by Smola
and Kondor [12]. These latter kernels are derived from studying the usefulness
of the Laplacian of a graph (and its normalized version) as a smoothing operator
(section 2). Considering smoothing operators from a spectral point of view, it
results that a family of kernels emerges from considering different penalization
functions. It can be proved that the inverse of the so called regularization ma-
trix for each element of the family yields a kernel (actually, the diffusion kernel
belongs to this family). In (section 3) we review the weighted energy function
and its minimization through the Softassign continuation process. In order to
build the attributes of the vertices we consider that the similarities defined by
each kernel induce a probability distribution and, in order to characterize such
a distribution, we use its entropy. In (section 4) we evaluate the matching per-
formance of each kernel in different conditions of noise and edge connectivity.

2 Regularization Kernels on Graphs

Given a undirected and unweighted graph G = (V, E) with vertex-set V of size
m, and edge-set E = {(i, j)|(i, j) ∈ V × V, i �= j}, its adjacency matrix and
degree matrix are respectively defined as

Aij =
{

1 if (i, j) ∈ E
0 otherwise and Dij =

{∑m
j=1 Aij if i = j

0 otherwise .

Then, the Laplacian of G, L = D − A, and its degree-normalized version, L̃ =
D− 1

2 LD− 1
2 = I − D− 1

2 AD− 1
2 or Normalized Laplacian [1], are defined as

Lij =




−1 if (i, j) ∈ E
Dii if i = j
0 otherwise

and L̃ij =




−D
− 1

2
ii D

− 1
2

jj if (i, j) ∈ E

1 if i = j and Dii �= 0
0 otherwise .
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(a) (b)

(c) (d)

KY =




1.3889 0.0000 0.0000 0.0000 0.8165 0.7778 0.1667 0.1361 0.7778 0.1361
0.0000 1.5667 0.8944 0.7379 0.1054 0.1291 0.6455 0.6325 0.1291 0.6325
0.0000 0.8944 1.2000 0.1414 0.0000 0.0000 0.1155 0.1414 0.0000 0.1414
0.0000 0.7379 0.1414 1.2667 0.1667 0.0000 0.8981 0.1000 0.0000 0.1000
0.8165 0.1054 0.0000 0.1667 1.3333 0.1361 0.8165 0.0000 0.1361 0.0000
0.7778 0.1291 0.0000 0.0000 0.1361 1.3889 0.0000 0.8165 0.7778 0.1361
0.1667 0.6455 0.1155 0.8981 0.8165 0.0000 1.4000 0.0816 0.0000 0.0816
0.1361 0.6325 0.1414 0.1000 0.0000 0.8165 0.0816 1.2667 0.1361 0.1000
0.7778 0.1291 0.0000 0.0000 0.1361 0.7778 0.0000 0.1361 1.3889 0.8165
0.1361 0.6325 0.1414 0.1000 0.0000 0.1361 0.0816 0.1000 0.8165 1.2667




(e)

Fig. 1. Illustrating regularization kernel computation. (a) Graph with m = 10 nodes.
(b) Penalizing functions corresponding to Table 1. (c) Eigenvalues of the Normalized
Laplacian sorted in ascending order and contained in [0, 2]. (d) Result of applying the
penalizing functions on the graph spectrum. (e) Resulting p-step kernel with a = 2
and p = 2.

The connection of the latter Laplacian matrices with regularization theory
stands from the fact that given a real-valued function f defined over the vertices
of G, that is, f : V → IR both, L and L̃ can be seen as discrete differential oper-
ators which tend to penalize changes of f between adjacent edges. Considering
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now f a column vector, that is f ∈ IRm, the following inner product is a measure
of the smoothness of f over the graph G:

〈f, Lf〉 = fT Lf =
m∑

i=1

f2
i Dii −

∑
(i,j)∈E

2fifj =
∑

(i,j)∈E

(fi − fj)2 ,

and the result is called the Dirichlet sum of G. Furthermore, given g = D
1
2 f the

Dirichlet sums associated to L and L̃ are related by:

〈f, Lf〉 = (D− 1
2 g)T L(D− 1

2 g) = gT D− 1
2 LD− 1

2︸ ︷︷ ︸
L̃

g =
〈
g, D− 1

2 LD− 1
2 g

〉
=

〈
g, L̃g

〉

An alternative way of formulating regularization is through spectral analysis.
In [11], Smola et al stablished the connection between regularization, Fourier
analysis and kernels in continuous spaces. A smoothness operator in Fourier
space can be built by multiplying the Fourier transform by a penalizing func-
tion increasing in frequency. As such a multiplication in Fourier space becomes
the application of the latter function on the continuous Laplacian operator, an
spectral-based regularization operator in graphs comes from

〈f, r(L)f〉 = fT

[
m∑

i=1

r(λi)φiφ
T
i

]

︸ ︷︷ ︸
r(L)

f =
m∑

i=1

〈f, φi〉 r(λi) 〈φi, f〉 ,

where L denotes both L and L̃, {λi, φi} are the eigenvalues and eigenvectors of
L, and r(λi) is a monotone increasing function. Actually, r−1(λ), the inverse of
such a function is the Fourier transform of the associated kernel in the continuous
case, and the discrete regularization kernel K is the inverse (or the pseudo-inverse
if necessary) of the so called regularization matrix r(L). Then we have that

K = r−1(L) where r−1(L) =
m∑

i=1

r−1(λi)φiφ
T
i , (1)

and 0−1 = 0. For instance, in the particular case of the diffusion kernel, which
relies on matrix exponentiation but not on componentwise exponentiation, we
have that

K = e−βL = (
m∑

i=1

eβλφiφ
T
i )−1 =

m∑
i=1

e−βλφiφ
T
i .

In the general case, the relation K = r−1(L) is derived from the fact that given
a regularization operator, for instance M = r(L), the matrix K must satisfy the
self-consistency condition KMK = K to be a kernel, and therefore K = M−1 or
equal to the pseudo-inverse if M is not invertible. Furthermore, it can be proved
[12] that such regularization operator defines a reproducing kernel Hilbert space
whose kernel is K = M−1 . In table 1 we show several penalization functions and
their associated regularization kernels. The process of obtaining a regularization
kernel is summarized in Fig. 1. As it can be seen, choosing L̃ yields and spectrum
contained in [0, 2].
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3 Kernelizing Softassign

A feasible solution to the graph matching problem between GX and GY , with
adjacency matrices Xab, and Yij , is encoded by a matrix M of size m×n, being
m = |VX | and n = |VY |. Following the Gold and Rangarajan formulation we are
interested in finding the feasible solution M that minimizes the following cost
function,

F (M) = −1
2

m∑
a=1

n∑
i=1

m∑
b=1

n∑
j=1

MaiMbjCaibj , (2)

where typically Caibj = XabYij . Furthermore, considering the entropies defined
in the previous section a simple way of kernelizing the latter energy function is
to redefine Caibj as

CK
aibj = XabYij exp−[(HKX

a − HKY

i )2 + (HKX

b − HKY

j )2] , (3)

where HKX and HKY are the entropies of the probability distributions associated
to the vertices of the graph and induced respectively by KX and KY . Given a
pair of vertices, for instance a, b of graph GX the kernel KX induces the following
probability distribution

pX
ab = KX

ab(
m∑

c=1

KX
ac)

−1 and HKX
a =

m∑
b=1

pX
ab log pX

ab ,

and the same holds for pY
ij and HKY

i in case of vertices i, j of GY . We use
entropy because building attributes in the properties of distributions yields more
robustness than building them in the crude values of the kernels.

The latter definition of CK
aibj ensures that CK

aibj ≤ Caibj , and the equality is
only verified when nodes a and i have similar entropies, and the same for nodes
b and j. In practice, this weights the rectangles in such a way that rectangles
with compatible entropies in their opposite vertices are preferred, and otherwise
they are underweighted and do not attract the continuation process.

To see intuitively the difference between two kernels in Fig. 2 we show the
results obtained both for the cosine and the p-step kernel. We show the matching
strength prior to performing clean-up. Cosine kernel is very ambiguous (simi-
lar to the classical Softassign) whereas the p-step one finds the most coherent
subgraph in terms of structural similarity.

Table 1. Penalization Functions and Regularization Kernels.

r(λ) K = r−1(L) Name

1 + βλ (I + βL)−1 Regularized Laplacian

eβλ e−βL Diffusion Process
(a − λ)−p (aI − L)p p−step Random Walk
(cos λπ/4)−1 cosLπ/4 Inverse Cosine
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(a) (b)

Fig. 2. Illustrating matching differences between the cosine kernel (a) and the p-step
one (b).

4 Experiments

We have performed several matching experiments with graphs of 30 nodes, con-
sidering three levels of edge density (10%, 30% and 50%), and six different noise
levels (0% or isomorphism, 10%, 20%, 30%, 40%, and 50%). We have also con-
sidered both the Laplacian L and the Normalized Laplacian L̃ for kernel compu-
tation. In all cases β = 1 unless we specify that β is normalized by the number
of nodes of the graph. In all experiments we compare kernels with the classical
Softassign driven by degree similarity. Furthermore, in the plots (see Fig. 3) each
point corresponds to the averaged result for 100 graphs randomly generated. We
have registered the fraction of complete graphs successfully matched.

Analyzing the obtained results, at low edge densities (10%) we observe that
cardinality outperforms all kernels at zero noise (isomorphism). However, kernels,
specially p-step with L̃, yield slower decays as the noise increases. P-step has a
similar behavior at 30% edge density, although the diffusion kernel with L and
normalized β is the best choice even at isomorphism. This latter kernel yields
the slower decay for a density of 50% although p-step with L̃ is only acceptable
for a corruption percentage greater than 30%. We conclude that p-step is a good
choice for low densities, whereas the diffusion one with L and normalized β is
preferable for higher densities.

5 Conclusions and Future Work

In this paper we have analyzed the use of regularization kernels in the context of
graph matching, particularly in the Softassign algorithm. We have studied the
performance of several kernels in different noise and edge-density conditions and
we conclude that p-step is good for low densities and diffusion is good for higher
densities. This is why in the future we will develop an strategy for combining
them. Another question in which we are currently working is how to formulate
a pure kernelized energy function and its associated matching algorithm.
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Fig. 3. Matching results. Graphs successfully matched. Left column: results with the
Normalized Laplacian L̃. Right column: results with the classical Laplacian L. Each
row corresponds to a different edge density: 10%, 30% and 50%.
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