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Abstract. In this note we describe a new set of associative memories able to re-
call patterns in the presence of mixed noise. Conditions are given under which 
the proposed memories are able to recall patterns either from the fundamental 
set of patterns and from distorted versions of them. Numerical and real exam-
ples are also provided to show the efficiency of the proposal.  

1   Introduction 

An associative memory is a device designed to recall patterns. These patterns might 
appear altered by noise. An associative memory M can be viewed as an input-output 
system as follows: yMx →→ , with x and y, respectively the input and output 
patterns vectors. Each input vector forms an association with a corresponding output 
vector. The associative memory M is represented by a matrix whose ij-th component 

is ijm . M is generated from a finite a priori set of known associations, known as the 

fundamental set of associations, or simply the fundamental set (FS). If ξ is an index, 
the fundamental set is represented as: ( ){ }p,,2,1|, …=ξξξ yx  with p the cardinality 
of the set. The patterns that form the fundamental set are called fundamental patterns. 

If it holds that { }p…,2,1∈∀= ξξξ   yx , then M is auto-associative, otherwise it is 

hetero-associative. A distorted version of a pattern x to be recuperated will be denoted 

as x~ . If when feeding a distorted version of wx  with { }pw ,,2,1 …∈  to an associa-

tive memory M, then it happens that the output corresponds exactly to the associated 

pattern wy , we say that recalling is perfect. Several models for associative memories 
have emerged in the last 40 years. Refer for example to [1-4]. 

2   Foundations of the Proposed Memories 

Let [ ]
rmijpP

×
=  and [ ]

nrijqQ
×

=  two matrices.  

Definition 1. The following two matrix operations are defined to recall integer-
valued patterns: 

1. Operation Α◊ : [ ]
nmijnrrm fQP

×
Α

×Α× =◊  where ( )kjik

r

kij qpf ,
1
Α⊗=

=

Α . 
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2. Operation Β◊ : [ ]
nmijnrrm fQP

×
Β

×Β× =◊  where ( )kjik

r

kij qpf ,
1
Β⊗=

=

Β . 

According to the operators ⊗, Α and Β used different results can be obtained. If we 
want, for example, to compensate for additive or subtractive noise, operator ⊗ should 
be replaced either by max ( ∨ ) or min ( ∧ ) as in [4]. Median operator (med), should 
be adopted in the case of mixed noise. In this paper we use med operator because as 
we will show, it provides excellent results in the presence of mixed noise. It can be 

easily shown that if nZx ∈  and mZy ∈ , then txy Α◊  is a matrix of dimensions 
nm× . 

Relevant simplifications are obtained when operations Α◊  and Β◊  are applied be-

tween vectors: 

1. If nZx ∈  and mZy ∈ , then txy Α◊  is a matrix of dimensions m×n, and also it 
holds that  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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2. If nZx ∈  and P  a matrix of dimensions m×n, operations xΒ× ◊nmP  gives as a 

result one vector with dimension m, with i-th component given as 

( ) ( )jij

n

jirm xpP ,
1

Β=◊
=Β× medx . 

If nZx ∈  and P  a matrix of dimensions nm×  then operation xM Β× ◊nm  out-

puts an m-dimensional column vector, with i-th component given as: 

( ) ( )jij

n

jinm xm ,
1

Β=◊
=Β× medxM . 

Operators Α and Β might be chosen among those already proposed in the literature. 
In this paper we use operators Α and Β proposed in [4]. Operators Α and Β are de-
fined as follows: 

( ) yxyx −=Α ,  (1.a) 

( ) yxyx +=Β ,  (1.b) 

3   Kinds of Noises 

The proposed memories can cope with several kinds of noises. Among them: additive, 
subtractive and mixed. In this paper, we are interested in leading with mixed noise. 

Let nRx ∈  be an input fundamental pattern to an associative memory. Pattern x can 
be altered or corrupted by mixed noise to produce a vector x~  by adding or subtract-

ing at random to each component of x, ix  a real c, cxx ii +=~  (additive noise), and 

cxx ii −=~  (subtractive noise).  
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4   The New Memories 

Two kind of associative memories are proposed, hetero-associative and auto-
associative. Due to space, in this paper only hetero-associative memories are de-
scribed. One hetero-associative memory is described: HS-memory of type M. 

TRAINING PHASE: 

Step 1:  For each p,,2,1 "=ξ , from each couple ( )ξξ yx ,  build matrix: 

( )[ ] nm
t

×Α◊
ξξ xy . 

Step 2:  Apply the median operator to the matrices obtained in Step 1 to get matrix 
M as follows:  

( )[ ]tp
ξξ

ξ
xymedM Α=

◊=
1

. (2) 

The ij-th component M is given as follows:  

( )ξξ

ξ ji

p

ij xym ,
1

Α=
=

med . (3) 

RECALLING PHASE: 
We have two cases, i.e.:  

Case 1: Recall of a fundamental pattern. A pattern wx , with { }pw ,,2,1 "∈  is 

presented to the memory M and the following operation is done: 
wxM Β◊ . (4) 

The result is a column vector of dimension n, with i-th component given as: 

( ) ( )wjij

n

ji
w xmx ,

1
Β=◊

=Β medM . (5) 

Case 2: Recalling of a pattern from an altered version of it. A pattern x~  (altered 

version of a pattern wx  is presented to the hetero-associative memory M and the 
following operation is done: 

xM ~
Β◊ . (6) 

Again, the result is a column vector of dimension n, with i-th component given as: 

( ) ( )jij

n

ji xm ~,~
1

Β=◊
=Β medxM . (7) 

Conditions, not proved here due to space, for perfect recall of a pattern of the FS or 
from altered version of them follow: 

Theorem 1. Let ( ){ }p,,2,1|, …=ααα yx  with 
nRx ∈α

, mRy ∈α  the funda-

mental set of an HS-memory M and let ( )γγ yx ,  an arbitrary fundamental couple 
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with { }p,,1"∈γ . If 0
1

=
= ij

n

j
εmed , mi ,,1"= , ( )γγε jiijij xym ,Α−=  then 

( ) miii …1, ==◊Β
γγ yxM . 

More restricted conditions are given by the following: 

Corollary 1. Let ( ){ }p,,2,1|, …=ααα yx , nRx ∈α , mRy ∈α . A HA-median 

memory M has perfect recall if for all p,,1"=α , MM =α  where 

( )tξξ xyM Α◊=  is the associated partial matrix to the fundamental couple 

( )αα yx ,  and p  is the number of couples. 

Theorem 2. Let ( ){ }p,,2,1|, …=ααα yx , nRx ∈α , mRy ∈α  a FS with perfect 

recall. Let nR∈αη  a pattern of mixed noise. A HA-median memory M has perfect 
recall in the presence of mixed noise if this noise is of median zero, this is if 

αη α ∀=
=

,0
1 j

n

j
med . 

Example 1. The reader can easily verify that for the following set of patterns satisfies 
the conditions given by Theorem 1 and Corollary 1: 
















=

2.0
0.0
1.0

1x
, 



















=

4.0
3.0
3.0
2.0

1y ; 
















=

5.0
3.0
4.0

2x
, 



















=

7.0
6.0
6.0
5.0

2y  and 
















=

8.0
6.0
7.0

3x , 



















=

0.1
9.0
9.0
8.0

3y . 

If a FS satisfies the conditions imposed by Theorem 1, and the noise added to a 

pattern αx  of this FS satisfies Theorem 2, then no matter the level of noise added, the 
pattern is perfectly recalled. If this is the case you can easily prove that a given pattern 

αx  is recalled through the information of the associated column of matrix αxM ~
Β◊  

of an element α
ix  of αx  not affected by noise. Let us verify this with an example. 

Example 2. Suppose we want to recall the first fundamental pattern from Example 1 
given the following distorted version of its key: 

















−
=

2.0
0.0
3.0

~1x . 

As you can appreciate for the distorted pattern, the median of the noise added to x 

equals 0: ( ) 0.04.0,0.0,2.0 =−med . Also element number two of 1x  is not affected 

by the added noise. Pattern 1x  is thus recalled through the information of column two 

(underlined) associated to 1
2x  of 1~xM Β◊ . Let us verify this. 
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RECALLING PHASE: 
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

( )
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( )
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=◊ ΒΒ

4.0
3.0
3.0
2.0

0.0,4.0,6.0
1.0,3.0,5.0
1.0,3.0,5.0
2.0,2.0,4.0

2.0,2.0,0.0,4.0,3.0,3.0
2.0,1.0,0.0,3.0,3.0,2.0
2.0,1.0,0.0,3.0,3.0,2.0
2.0,0.0,0.0,2.0,3.0,1.0

2.0
0.0
3.0

2.04.03.0
1.03.02.0
1.03.02.0
0.02.01.0

1

med
med
med
med

med
med
med
med

xM
 

5   Case of a General Fundamental Set 

In practice most of the fundamental sets of patterns do not satisfy the restricted condi-
tions imposed by Theorem 1 and its Corollary. If this not the case, we propose the 
following procedure to perfectly recall a general FS. Given a FS not satisfying Theo-
rem 1: 

TRAINING PHASE: 
Step 1. Transform the FS into an auxiliary fundamental set (FS’) satisfying Theo-
rem 1:  

1) Make contd = .  

2) Make ( ) ( )1111 ,, yxyx = .  
3) For the remaining couples do { 

For 2=ξ  to p { 
For i=1 to n { 

dxx ii += −1ξξ ; ξξξ
iii xxx −=� ; 

dii += −1ξξ yy ; ξξξ
iii xxy −=� . 

} 
}  

Step 2. Build matrix M in terms of set FS’: Apply to FS’ steps 1 and 2 of the training 
procedure described at the beginning of Section 2.3. 

Remark 1. We can use any d. In this work we decided to use however the difference 
between the first components. 

RECALLING PHASE: 
We have also two cases, i.e.: 

Case 1: Recalling of a fundamental pattern of FS:  

1) Transform ξx  to ξx  by applying the following transformation: ξξξ xxx �+= . 

2) Apply equations (4) and (5) to each ξx  of FS’ to recall ξy .  

3) Recall each ξy  by applying the following inverse transformation:   
ξξξ yyy �−= . 

Case 2: Recalling of a pattern ξy  from an altered version of its key ξx~ :  

1) Transform ξx~  to ξx  by applying the following transformation: ξξξ xxx �~ += . 
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2) Apply equations (6) and (7) to ξx  to get ξy , and  

3) Anti-transform ξy  as ξξξ yyy �−=  to get ξy . 

Example 3. Suppose we want to first memorize and then recall the following general 
fundamental set: 
















=

2.0
0.0
1.0

1x
, 
















=
0
0
1

1y ; 
















=

5.0
2.0
4.0

2x
, 
















=
0
1
0

2y  and 
















=

8.0
6.0
6.0

3x , 
















=
1
0
0

3y . 

TRAINING: 

1) 3.01.04.01
1

2
1 =−=−= xxd . 

2) ( )T2.00.01.01 =x  and ( )T001=1y . 

3) 
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5.0
3.0
4.0

2x , 
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0.0
1.0
0.0

� 2x ,
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3.0
3.0
3.1

2y ,
















−=
3.0
7.0
3.1

� 2y ;  
















=

8.0
6.0
7.0

3x , 
















=

0.0
0.0
1.0

� 3x ,
















=

6.0
6.0
6.1

3y ,

















−
=

4.0
6.0
6.1

� 3y . 

You can easily show that: 

















−−
−−====
2.00.01.0
2.00.01.0
8.00.19.0

321 MMMM . 

RECALLING PHASE: 
Let us consider only Case 2, which is of more interest. Suppose we want to recall 

pattern 2y  from its following distorted key: ( )T1.02.06.0~ 2 =x .  

1) As discussed: ( )T1.03.06.0�~ 222 =+= xxx . 

2) 
( )

( )
( ) 
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−
−=
















◊
















−−
−−=◊ ΒΒ

3.0
3.0
3.1

1.0,3.0,5.0
1.0,3.0,5.0
9.0,3.1,5.1

1.0
3.0
6.0

2.00.01.0
2.00.01.0
8.00.19.0

2

med
med
med

xM .  

Finally, 
















=
















−−
















=−=

0
1
0

3.0
7.0
3.1

3.0
3.0
3.1

� 22 yyy 2 . 

6   Experiments with Real Patterns 

The proposed associative memories were also tested with real patterns. We used the 
objects shown in Fig. 1.  
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Fig. 1. The five objects used in the experiments. (a) A bolt. (b) A washer. (c) An eyebolt. (d) A 
hook. (e) A dovetail.  

6.1   Construction of the Association Matrix 

We did not directly recognize the objects by their images. We preferred to do it indi-
rectly by invariant descriptions of each of them. For this, ninety images of each object 
in different positions, rotations and scale changes were captured. To each image a 
standard thresholder [5] was applied to get its binary version. Small spurious regions, 
due to bas thresholding, were eliminated form each image by means of a size filter [6, 
pp.47-48]. To each of the 19 images of each object (class) the first three Hu geometric 
invariants, to translations, rotations and scale changes were computed [7]. The five 
associations were built as: 
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4429.0

1x , 
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2y
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=

1825.0
2911.0
7038.0

3x , 























=

0
0
1
0
0

3y
; 
















=

8467.0
5517.1
1421.1

4x , 























=

0
1
0
0
0

4y
; 

















−
=

541.2
0195.0
2491.0

5

E
x , 























=

1
0
0
0
0

5y
; 

The three real numbers for each αx  are the average values of the four Hu invari-
ants computed with each set of 19 images of each object. The “1” at each y represents 
the index of the class of each object. After applying the methodology described in 
Section 4, matrix M is: 























−−−
−−−
−−−
−−−

=

0058.01594.04429.0
0058.01594.04429.0
0058.01594.04429.0
0058.01594.04429.0
9942.08406.05571.0

M
. 

6.2   Recalling of a Pattern by a Corrupted Version of Its Key 

In practical applications the noise added to the values of the patters rarely satisfies 
Theorem 2. To cope with this situation, we propose the following strategy: Once a 
general FS has been processed as described in Section 5, one of its patterns is classi-
fied in terms of a possible altered version of its key as follows: 
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( )





 −=

=

i
kk

m

ki

j yyj
1

minminarg,y  (8) 

Table 1. Percentage of classification for the test set. 

 Bolt Washer Eyebolt Hook Dovetail 
Bolt 100% 0 0 0 0 
Washer 0 100% 0 0 0 
Eyebolt 10% 0 90% 0 0 
Hook 0 0 0 100% 0 
Dovetail 0 15% 0 0 85% 

Fifty images (10 for each object), and different from those used to build matrix M 
were used to measure the efficiency of the proposal. Of course the values of the in-
variants change. Table 1 shows the recalling results. As you can appreciate in 10% of 
the cases the eyebolt is classified as a bolt, and in 15% of the cases a dovetail is clas-
sified as a washer. In remaining cases the objects were correctly classified. 

7   Conclusions 

We have described a set of associative memories able to recall patterns altered by 
mixed noise. The proposed memories are based on the median operation. Numerical 
and real examples with images of real objects have been provided showing the per-
formance of these memories. We gave the necessary and sufficient conditions under 
which the proposed memories are able to recall patterns either from the fundamental 
set of from altered versions of them. In this paper we show for the first time that asso-
ciative memories combined with invariant features can be used to recognize objects in 
the presence of image transformations. Actually, we are investigating how to bypass 
the restricted conditions imposed by theorem 2, and to avoid using equation (8). 
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