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Abstract. In this paper an approach to the automatic target detection and track-
ing using multisensor image sequences with the presence of camera motion is 
presented. The approach consists of three parts. The first part uses a motion 
segmentation method for targets detection in the visible images sequence. The 
second part uses a background model for detecting objects presented in the in-
frared sequence, which is preprocessed to eliminate the camera motion. The 
third part combines the individual results of the detection systems; it extends 
the Joint Probabilistic Data Association (JPDA) algorithm to handle an arbitrary 
number of sensors. Our approach is tested using image sequences with high 
clutter on dynamic environments. Experimental results show that the system de-
tects 99% of the targets in the scene, and the fusion module removes 90% of the 
false detections. 

1   Introduction 

The task of detecting and tracking regions of interest automatically is a fundamental 
problem of computer vision; these systems have a great importance in military and 
surveillance applications.  A lot of work has already been carried out on the detection 
of multiple targets. However, detection and tracking of small, low contrast targets in a 
highly cluttered environment still remains a very difficult task. 

The most critical factor of any system for automatic detection is its ability to find 
an acceptable compromise between the probability of detection and the number of 
false target detection. These types of errors can generate false alarms and false rejec-
tions. In a single sensor detection system, unfortunately, reducing one type of error 
comes at the price of increase the other type. One way to solve this problem is to use 
more than one sensor and to combine the data obtained by these different expert sys-
tems. In this paper we propose an approach to solve the automatic detection problem 
of objects using decision fusion, our principal contribution is improve the target 
detection and tracking results without specialization of the algorithms for a particular 
task; the approach was tested on a set of image sequences obtained from mobile cam-
eras. 

The paper is organized as follows. Section 2 introduces the models which are con-
sidered, and briefly they are described. Section 3 shows an overview of the approach. 
Sections 4 and 5 describe the algorithms used to detect objects of interest in visible 
and infrared image sequences respectively. Section 6 describes the method for com-
bining the results obtained by the two algorithms. Several results that validate our 
approach are reported in section 7, and finally section 8 contains concluding remarks. 
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2   Background 

Parametric motion model: The parametric motion model θw  represent the projection 
of the 3D motion field of the static background [1], where θw  denotes the modeled 
velocity vector field and θ the set of model parameters. The parametric motion model 
is defined at pixel p = (x,y) as: 
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Where θ = (ai), i = 1..6, is the parameter vector to be estimated. 

Motion estimation: To estimate a motion model θk we use a gradient-based multi-
resolution robust estimation method described in [2]. To ensure the goal of 
robustness, we minimize an M-estimator criterion with a hard-redescending function 
[3]. The constraint is given by the usual assumption of brightness constancy of a 
projected surface element over its 2D trajectory [4]. The estimated parameter vector is 
defined as: 

θ" = 
θ

argmin E(θ) = 
θ

argmin ∑
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Where DFDθ(p)=It+1(p + )( pwθ
! )–It(p), and p(x) is a function which is bounded for 

high values of x. The minimization takes advantage of a multiresolution framework 
and an incremental scheme based on the Gauss-Newton method. More precisely, at 
each incremental step k (at a given resolution level, or from a resolution level to a 
finer one), we have:  θ = θ" k + ∆θk. Then, a linearization of DFDθ(p) around θ" k is 

performed, leading to a residual quantity r∆θk(p) linear with respect to ∆θk: 

)())(()())(( 1)( pIpwpIpwpwpIr tktkktpk −++⋅+∇= +∆∆ θθθθ "" !!!!
 (3) 

Where )( pIt∇
!  denotes the spatial gradient of the intensity function at location p 

and at time t. Finally, we substitute for the minimization of E(θk) in (2) the 

minimization of an approximate expression Ea, which is given by Ea(∆θk) 

=∑ ∆ ))(( pr kθρ . This error function is minimized using an Iterative-Reweighted-

Least-Squares procedure, with 0 as an initial value for ∆θk [1]. This estimation 
algorithm allows us to get a robust and accurate estimation of the dominant motion 
model between two images. 

Mixture Gaussian background model: Mixture Models are a type of density model 
which comprise a number of component functions, usually Gaussian. These 
component functions are combined to provide a multimodal density [5]. The key idea 
of background model is to maintain an evolving statistical model of the background, 
and to provide a mechanism to adapt to changes in the scene. There are two types of 
background model: 

Unimodal model: each pixel is modeled with a single statistical probability distribu-
tion (Gaussian distribution) η(X, µt, Σt,), where µt and Σt are the mean value and 
covariance matrix of the distribution at frame t respectively. Pixels where observed 
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colors are close enough to the background distribution are classified as background 
points, while those too far away as foreground points. 

Multimodal model: a mixture of multiple independent distributions is necessary to 
model each pixel. Each distribution is assigned a weight representing its priority. A 
pixel is classified as a background point only if the color observed matches with one 
of the background distributions. A new distribution of the observation should be im-
ported into the background model if none of the distributions matches it. 

Joint Probabilistic Data Association: The Joint Probabilistic Data Association 
(JPDA) algorithm considers the problem of tracking T targets in clutter [6]. xt(k) 
(1≤t≤ T) denotes the state vectors of each target t at the time of the kth measurement. 
The target dynamics are determined by known matrices Ft and Gt and random noise 
vectors wt(k) as follows: 

Xt(k+1) = Ft(k)xt(k) + Gt(k)wt(k) (5) 

where t = 1, . . . ,T. The noise vector wt(k) is stochastically independent Gaussian 
random variables with zero mean and known covariance matrices. Let mk denotes the 
number of validated returns at time k. The measurements are determined by 

zl(k) = H(k)xt(k) + vt(k) (6) 

where t =1, . . . ,T, and l =1, . . .,mk. The H(k) matrix is know, each vt(k) is a zero-
mean Gaussian noise vector uncorrelated with all other noise vectors, and the covari-
ance matrices of the noise vectors vt(k) are know.  

The goal of JPDA is to associate the targets with the measurements, and to update 
those estimates. The actual association of targets being unknown, the conditional 
estimate is determined by taking a weighted average over all possible associations. An 
association for the kth observation is a mapping a:{1, ... , T}→{0, ... , mk} that asso-
ciates the target t with the detection a(t), or 0 if no return is associated with the tth 
target. 

Let θa(k) denotes the event that “a” is the correct association for the kth observa-
tion. And  )|( kkx t

l
"  denotes the estimate of xt(k) given by the Kalman filter on the 

basis of the previous estimate and the association of the tth target with the lth return. 
The conditional estimate )|( kkx t" for xt(k) given Zk is  
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Zk. The set of probabilities )(kt
lβ  can be computed efficiently as the permanents of a 

set of sub-matrices. 

Multi-sensor data fusion: The multi-sensor data fusion is defined as the process of 
integrating information from multiple sources to produce the most specific and com-
prehensive unified data about an entity, activity or even [7]. 

Fusion processes are often categorized as low, intermediate or high level fusion 
depending on the processing stage at which fusion takes place [7]. 

Low level fusion, also called data fusion, combines several sources of raw data to 
produce new raw data that is expected to be more informative and synthetic than the 
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original inputs. Intermediate level fusion, also called feature level fusion, combines 
various features. Those features may come from several raw data sources or from the 
same raw data. High level fusion, also called decision fusion combines decisions com-
ing from several experts. Methods of decision fusion include voting methods, statisti-
cal methods, fuzzy logic based methods, and machine learning methods. 

3   Overview of the Approach 

Figure 1 shows an overview of the method. The proposed algorithm consists of three 
independent parts. The first part finds the camera motion, and detects the mobile tar-
gets in the visible image sequence. The second part detects the mobile target in the 
infrared image sequence. Each part of the algorithm behaves as an expert, indicating 
possible presence of mobile targets in the scene; Decision fusion is used to combine 
the outcomes from these experts. 

 
Fig. 1. Overview of the approach. 

4   Targets Detection in Visible Images 

Mobile objects in the visible image sequences are detected performing a thresholding 
on the motion estimation error, where the mobile objects are the regions whose true 
motion vector does not conform to the modeled flow vector. 

In [8] is shown through the analysis of the results of different kinds of optical flow 
estimation algorithms, that 2||)(~|| pI∇

!
 is indeed a proper measure of the reliability of 

the estimation of the normal flow un, thus, the motion error is calculated using the 
following weighted average, which is proposed in [9] 
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Where F(p) is a small neighborhood around p which contains n points, and Gm is a 
constant which accounts for noise in the uniform areas. An interesting property of this 
local measure is the following. Let us suppose that the pixel p and its neighborhood 
undergoes the same displacement of magnitude δ and direction u! . In [1] there were 
derived two bounds l(p) and L(p) such that, whatever the direction u! might be, the 
following inequality holds: 

0 ≤ l(p) ≤ )(� pMes tΘ
 ≤ L(p) (9) 

The bounds used in the experiments are given by: 
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Where λmin and λmax are respectively the smallest and highest eigenvalues of the 
following matrix (with )(~ qI  = Image at time q and ))(~),(~()(~ qIqIqI yx=∇ : 
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Figure 2 shows the results of the target detection method in the visible sequence in 
presence of one target. 

   
 (a) Visible image sequence. b) Detected target. 

Fig. 2. Motion segmentation results in the Ship sequence. 

5   Targets Detection in Infrared Images 

Mobile objects in the infrared image sequences are detected determining the back-
ground in the image, and subtracting it to the original image, which has been preproc-
essed to eliminate the camera motion, this preprocessing step use information of the 
dominant motion calculated in the last module. 

     
 (a) Infrared image sequence. (b). Detected target. 

Fig. 3. Background model results in the boat sequence. 

The background is obtained using a statistical model to classify pixels (see sec-
tion 2). Each pixel is modeled as a mixture of 3 Gaussian models [10]. This process 
has three main stages: 

1. Gaussian model initialization.  
2. Background detection. 
3. Update of the background estimation. 

Figure 3 shows the results of the target detection method in the infrared sequence 
in presence of one target. 
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6   Decision Fusion 

The first and second parts of the approach behave as experts indicating the possible 
position of mobile targets in the scene. The final decision is reached by fusing the 
results of these experts. 

 
Fig. 4. Multi-sensor Fusion Architecture. 

Figure 4 shows the sequential Multi-Sensor Data Fusion architecture [11] used to 
combine the individual target detecting results. The initial state of the tracking algo-
rithms is obtained using a weighted “k out of N” voting rule. The combination of the 
measurements is done; making Ns (Number of sensors in the system) repetitions of 
the JPDA algorithm (see section 2). 

The fusion algorithm works on the basis of the following equations. 
Let mki, i = 1, 2, . . . ,Ns, the number of validated reports from each sensor i at time 

k. The measurements are determined by 
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where t=1, ... ,T, i =1, ... ,Ns, and l =1, ..., mki. The measurement )(kz i
l

 is interpreted 

as the lth measurement from the ith sensor at time k. Generalizing from the single-
sensor case, the Hi(k) matrices are known, and )(kvt

i are stochastically independent 

zero-mean Gaussian noise vectors with known covariance matrices. The observation 
at time k is now 
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The conditional estimate of the fusion algorithm is given by: 
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Where the sums are over all possible sets of associations L with target t. 

7   Results 

In this section, we will show the experimental results of our approach. The algorithm 
was tested with a database of two multi-spectral image sequences. The weather condi-
tions were: winds of 30 to 70 km/hour, and variable lighting. The boat sequence was 
used to characterize the results of the motion segmentation algorithm. 

Table 1 shows the principal features and results of the two first blocks. In the table, 
Pd is the probability of detection and NFt is the average number of false targets per 
image. The figures 5(a) and 6(a) show an image of the Boat and People sequence 
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respectively. By applying the algorithms described in section 4 and 5 the objects are 
detected in each frame, figures 5(b) and (c) show the target detection results using the 
Boat sequence, figure 6(b) and (c) show the target detection results using the People 
sequence. 

Table 1. Results of different experts. 

Sequence Size Frames Targets Sensor Pd (%) NFt 
Visible 96 2.0   Boat 640 x 480 150 1 
Infrared 100 1.5 
Visible 99 1.5   People 640 x 480 150 2 
Infrared 98 0.6 

  Ship 640 x 480 50 2 Visible 95 5.2 

  
 (a) Sequence at t=50. (b) Motion segmen- (c) Background (d) Detection after  
 ation result. model result.  fusion 

Fig. 5. Target detection results in the boat sequence. 

In table 2, results after the decision fusion are shown. In both sequences, the fusion 
improves results. The data association step in the fusion module reduces the number 
of false targets creating gating regions and considering just the measurements that fall 
in that region. The fusion module improves the target state estimation by processing 
sequentially the sensors detection, in this module if an target was not detected in a 
sensor, the information about it stays and the following sensor is processing, this way 
to combine the information improves the probability of detection, because the target 
must be loosed in all sensors to lose it in the fusion decision result. Figure 5(D) and 
6(D) shows these results graphically. 

Table 2. Results after fusion. 

Sequence Processing average time Pd (%) NFt 
Boat 4.3 seg. 100 0.5 
People 4.1 seg. 99 0.1 

 
 (a) People sequence. (b) Motion segmen- (c) Background (d) Detection after  
 tation result. model result. fusion 

Fig. 6. Target detection results in the people sequence. 
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8   Conclusions 

In this paper an approach to improve target detection process using decision fusion is 
proposed. The approach was tested using multi-spectral image sequences from mov-
ing cameras. Experimental results show that targets detection algorithms detects in 
average 97% of the targets in the worse case, and in the better one detects 99.5%. The 
fusion module detects in the worst case 99% of the targets and 100% in the better one, 
while the 90% of the false targets are removed. This results show the advantages of 
this approach for automatic detection and tracking. It has been shown that this ap-
proach performs better that either tracker in isolation. Most importantly the tracking 
performance is improved without specialization of the tracking algorithms for a spe-
cific task; it remains to develop an algorithm to handle target occlusion and to reduce 
the processing time. 

References 

1. J. Odobez, P. Bouthemy. Direct incremental model-based image motion segmentation 
analysis for video analysis Signal Processing. Vol 66, pp 143-155, 1998 

2. J. Odobez, P. Bouthemy. Robust multiresolution estimation of parametric motion models. 
JVCIR, 6(4) pp 348-365, 1995. 

3. P.J. Hubert. Robust statistics. Wiley, 1981. 
4. Horn, Shunck. Determining optical flow. Artificial Intelligence, vol 17 pp 185-203, 1981 
5. C. Stauffer, Adaptive background mixture models for real-time tracking. In Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition, pp 246-252, 1999. 
6. Bar-Shalom, T. Fortmann. Tracking and data association, Academic Press, San Diego, 

1988. 
7. E. Waltz and J. Llinas, Handbook of multisensor data fusion, CRC Press, 2001. 
8. J. Barron, D Fleet, S. Bauchemin. Performance of optical flow techniques. International 

Journal of Computer Vision. 12(1) pp 43-77, 1994. 
9. M. Irani, B. Rousso, S. Peleg. Computing occluding and transparent motion. Intern. J. 

Comput. Vis. 12(1) pp 5-16, 1994. 
10. C. Stauffer, W. E. L. Grimson, Learning patterns of activity using real time tracking. IEEE 

trans. PAMI, val 22, no. 8, pp 747-757, Aug, 2000. 
11. L. Pao, S. O'Neil. Multisensor Fusion algorithms for tracking. Proc. of American Control 

Conference. pp. 859–863, 1993. 


	1 Introduction
	2 Background
	3 Overview of the Approach
	4 Targets Detection in Visible Images
	5 Targets Detection in Infrared Images
	6 Decision Fusion
	7 Results
	8 Conclusions
	References



