
A Network Bandwidth Computation Technique

for IP Storage with QoS Guarantees

Young Jin Nam1, Junkil Ryu1, Chanik Park1, and Jong Suk Ahn2

1 Department of Computer Science and Engineering
Pohang University of Science and Technology/PIRL

Kyungbuk, Republic of Korea
{yjnam,lancer,cipark}@postech.ac.kr
2 Department of Computer Engineering

Dongguk University, Seoul, Republic of Korea
jahn@dgu.ac.kr

Abstract. IP storage becomes more commonplace with the prevalence
of the iSCSI (Internet SCSI) protocol that enables the SCSI protocol to
run over the existing IP network. Meanwhile, storage QoS that assures a
required storage service for each storage client has gained in importance
with increased opportunities for multiple storage clients to share the
same IP storage. Considering the existence of other competing network
traffic in IP network, we have to provide storage I/O traffic with guar-
anteed network bandwidth. Most importantly, we need to calculate the
required network bandwidth to assure a given storage QoS requirement
between a storage client and IP storage. This paper proposes a network
bandwidth computation technique that not only accounts for the over-
head caused by the underlying network protocols, but also guarantees the
minimum data transfer delay over the IP network. Performance evalua-
tions with various I/O workload patterns on our IP storage testbed verify
the correctness of the proposed technique; that is, allocating a part (0.6–
20%) of the entire network bandwidth can assure the given storage QoS
requirements.

1 Introduction

Storage Area Networks (SAN), such as Fiber Channel and Gigabit Ethernet,
have enabled a plethora of storage systems to be maintained as a storage pool,
resulting in reduced total cost of ownership, effective storage resource man-
agement, etc. Such SAN-based storage systems are advantageous in terms of
scalability and configurability, compared with SCSI bus-based storage systems.
Accordingly, a few data transmission protocols have newly emerged to support
the SAN environment. Fiber Channel protocol (FCP) is developed for FC-based
SAN, and iSCSI recently ratified by Internet Engineering Task Force is made for
IP SAN. A main advantage of iSCSI is that the iSCSI can operate on standard
network components, such as Ethernet [1]; that is, it exploits existing features
and tools that have been developed for the IP network. Thus, this paper focuses

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 473–480, 2004.
c© IFIP International Federation for Information Processing 2004

474 Y.J. Nam et al.

on the storage environment using IP-based SAN (IP storage), where storage
devices are attached to IP networks, and storage clients communicate with the
storage devices via the iSCSI protocol [1]. An initiator-mode iSCSI protocol runs
on the storage client, whereas a target-mode iSCSI protocol operates on the IP
storage. Note that the traditional SCSI protocol operates on top of the iSCSI
protocol layer that transmits a given SCSI command to its associated IP storage
over the IP network.

With the advance in storage technologies in terms of storage space and I/O
performance, the chances increase that multiple storage clients share the same
storage. A different storage client may require a different storage service, called
storage Quality of Service (QoS); that is, each storage client requires receiving
a guaranteed storage service, independently of the status of the I/O services
in other storage clients. Unfortunately, the storage itself does not contain any
feature of assuring storage QoS. As a result, recent research efforts [2,3] try to
add the QoS feature to various types of storage systems. However, notice that
the previous research emphasizes the QoS issue only within the storage system,
whereas it is assumed that the SAN itself has no QoS issues. Note that, FC-
based SAN is used only for storage I/O traffic. IP storage, however, transmits
its data over the IP network, where storage I/O traffic is likely to coexist with
the other network traffic. Considering this situation leads us to preserve an
amount of network bandwidth for the storage I/O traffic between a storage
client and its associated IP storage to avoid any probable interference with the
other network traffic. A naive approach is to allocate the full network bandwidth
(or separate dedicated IP network) that is large enough to serve the storage I/O
traffic with QoS guarantee for a pair of a storage client and its associated IP
storage. However, it can be easily inferred that this approach ends up being
with under-utilization of IP network resources, even though it can certainly
guarantee a given storage QoS requirement. By contrast, unless enough network
bandwidth resides between the storage client and the IP storage, the storage QoS
requirement is no longer guaranteed with lower I/O throughput (I/O requests
per seconds) and higher response time due to increased data transfer delays.

This paper emphasizes the problem of computing the required network band-
width to meet a given storage QoS requirement. It proposes a network bandwidth
computation technique that not only accounts for overhead caused by the under-
lying network protocols, but also guarantees the minimum data transfer delay
over the IP network. In the case of FC-based SAN environments, Ward et. al.
in [4] proposed a scheme to automatically design an FC-based SAN that not
only serves a given set of storage I/O traffic between storage clients and storage
systems, but also minimizes the system cost.

2 Problem Description

We begin by defining a few notations to be used throughout the paper. Ci and
Qi represent the storage client i and its storage QoS requirement, respectively.
Generally, the storage QoS requirement is defined as Qi = {fi, iopsi, szi, si, rti}.

A Network Bandwidth Computation Technique for IP Storage 475

The notation of fi represents the ratio of read I/O requests. In addition, iopsi,
szi, and rti represent the number of I/O requests per second (briefly IOPS),
an average I/O request size, and an average response time requested from Ci,
respectively. I/O access pattern is random with si = 0 and purely sequential with
si = 1. Note that our network bandwidth computation does not depend on the
value of si. We denote with bc→s

i and bs→c
i the network bandwidth allocated for

the direction from Ci and its associated IP storage and for its opposite direction,
respectively. Then, the problem that this paper will solve can be described as
follows: Compute bc→s

i and bs→c
i that satisfy the given Qi for the storage client

Ci and its associated IP storage. Note that we assume that the storage resources
except for network resources (bandwidth) have been appropriately reserved to
satisfy the storage QoS requirement Qi.

3 The Proposed Technique

To begin, we will explain the protocol layering for iSCSI protocol and the spe-
cific behavior of the iSCSI protocol for read and write I/O requests. The iSCSI
protocol data unit (PDU) consists of a 48-byte iSCSI header and iSCSI data
of a variable length. The maximum iSCSI data length relies on the types of
underlying Ethernet cards. Typically, it ranges from 1,394 through 8,894 bytes.
The TCP/IP headers and Ethernet header respectively occupy 40 bytes and 18
bytes.

Figure 1 presents the protocol behaviors for read and write I/O requests.
In the case of the read I/O request, as shown in Figure 1(a), the storage client
sends the READ SCSI command to the IP storage. Next, after reading the re-
quested data from its internal disk drives, the IP storage transmits the data
to the storage client in the DATA IN phase. Note that the data are to be frag-
mented into smaller pieces according to the maximum iSCSI data length. Fi-
nally, the IP storage sends the response message to the storage client. The iSCSI

CMD-Read PDU (106B)

DATA_IN PDU

DATA_IN PDU

CMD-Resp PDU (106B)

.

(a) read

CMD-Write PDU (106B) (w/ DATA_OUT PDU)

R2T PDU (106B)

DATA_OUT PDU

DATA_OUT PDU

CMD-Resp PDU (106B)

.

DATA_OUT PDU

(b) write

Fig. 1. iSCSI protocol behaviors for read and write I/O requests: (a) read and
(b) write

476 Y.J. Nam et al.

protocol behavior for the write I/O request is more complicated than that of
the read I/O request because of free buffer management and performance opti-
mization techniques like immediate/unsolicited data transmission. The storage
client sends the WRITE SCSI command to the IP storage. Unless the data size
is greater than the maximum iSCSI data length, it is transmitted along with
the write SCSI command. This results in collapsing the COMMAND phase and the
DATA OUT phase [1]. It is called immediate data transmission [1]. If the data
size is greater than FirstBurstLength, the storage client transfers the data
of the first FirstBurstLength bytes to the IP storage without receiving the
Ready to Transfer (R2T) message from the IP storage that is used to secure
free buffer space to store the write data. This process is called unsolicited data
transmission [1]. Note that the immediate data transmission is combined with
the unsolicited data transmission. Afterwards, the storage client transfers data
only when it receives the R2T message from the IP storage. It is called solicit
data transmission [1].

In what follows, we derive a set of equations to compute the required network
bandwidth to meet a given storage QoS requirement. We start by computing the
amount of data transfer, including the underlying protocol overhead for given
read and write I/O requests of size si. We denote with Dc→s

r (szi) the amount of
data transfer from the storage client to the IP storage for the read I/O request
of size szi, and Ds→c

r (szi) for the opposite direction. From the protocol behavior
for the read I/O request, as shown in Figure 1(a), we can easily obtain Dc→s

r (szi)
and Ds→c

r (szi) as follows:

Dc→s
r (szi) = ovprot, (1)

Ds→c
r (szi) = 2ovprot + �szi

Ŝf

�Sf + szi mod Ŝf , (2)

where Ŝf = Sf − ovprot. The notation of ovprot represents the 106-byte protocol
overhead caused by the Ethernet header, the TCP/IP header, and the iSCSI
header. The notation of Sf represents the underlying Ethernet frame size.

Next, we calculate the amount of data transfer for the write I/O request. To
begin, the storage client sends the agreed-upon amount of data (unsolicited data
transmission) to IP storage without having an R2T message. We assume that
the behavior of each data transfer follows that of the solicit data transmission
because the network traffic under our consideration is heavy enough. However,
if the I/O request size is not greater than the maximum iSCSI data length, the
associated data is delivered to the IP storage by using the immediate data trans-
mission. As with the read I/O request, we denote with Dc→s

w (szi) the amount
of data from the storage client to the IP storage for the write I/O request, and
Ds→c

w (szi) for the opposite direction. Based on the iSCSI protocol behavior for
the write I/O request, as shown in Figure 1(b), Dc→s

w (szi) and Ds→c
w (szi) can

be obtained as follows:

Dc→s
w (szi) =

{
ovprot + szi if szi ≤ Ŝf

ovprot + � szi

Ŝf
�Sf + szi mod Ŝf otherwise , (3)

A Network Bandwidth Computation Technique for IP Storage 477

Ds→c
w (szi) =

{
ovprot if szi ≤ FirstBurstLength
2ovprot otherwise . (4)

If the data size is not greater than the maximum iSCSI data length of Ŝf ,
Dc→z

w (szi) is ovprot + szi. Otherwise, it includes � szi

Ŝf
� times of the maximum

Ethernet frame size of Sf and the remaining data with the protocol overhead of
ovprot. As for Ds→c

w (szi), if the data size is not greater than FirstBurstLength,
Ds→c

w (szi) is equal to the size of the iSCSI response message. Otherwise, it
becomes two times of ovprot, because the R2T message is also delivered to the
storage client as well as the iSCSI response message.

Next, we define with b̂c→s
i the average amount of data transfer including the

underlying protocol overhead from the storage client to the IP storage for the
szi sized I/O request. In addition, we define with b̂s→c

i for the opposite direction.
From Equation (1)–(4), we can obtain b̂c→s

i and b̂s→c
i as follows:

b̂c→s
i = {fiD

c→s
r (szi) + (1 − fi)Dc→s

w (szi)}iopsi, (5)

b̂s→c
i = {fiD

s→c
r (szi) + (1 − fi)Ds→c

w (szi)}iopsi. (6)

The network bandwidth allocation with b̂c→s
i and b̂s→c

i is expected to assure the
requested maximum storage bandwidth derived by multiplying szi and iopsi.
However, they may not guarantee the demanded response time of rti. For exam-
ple, notice that Equation (5) and (6) result in a lower network bandwidth with
a smaller szi·iopsi. This implies that the chances increase that each I/O request
of size szi experiences a longer transmission delay on IP network that is most
likely to entail a violation of the demanded response time.

Thus, we introduce the minimum network bandwidth to assure the demanded
response time of rti. We denote with mc→s

i and ms→c
i the minimum network

bandwidth for each direction. The values of mc→s
i and ms→c

i are determined
such that the transmission delay of each I/O request are not greater than αi·rti,
where 0 < αi < 1. Usually, αi is determined according to the marginal response
time to meet rti in the phase of designing the associated IP storage [2,5,3]. For
example, if the IP storage is designed to assure 15msec for given rti = 20msec, the
values of αi can range from 0 through 0.25. We compute mc→s

i and ms→c
i from a

simple relationship that the expected transmission delay is inversely proportional
to the allocated network bandwidth without accounting for the effects of traffic
congestion control, IP routing, the transmission buffer size, TCP retransmission,
etc. The mc→s

i and ms→c
i are written as follows:

mc→s
i =

max{�fi�Dc→s
r (szi), �1 − fi�Dc→s

w (szi)}
αirti

, (7)

ms→c
i =

max{�fi�Ds→c
r (szi), �1 − fi�Ds→c

w (szi)}
αirti

. (8)

By denoting with bc→s
i and bs→c

i the network bandwidth for each direction re-
quired to guarantee a given Qi, we finally have bc→s

i and bs→c
i as follows:

bc→s
i = max{b̂c→s

i , mc→s
i }, (9)

bs→c
i = max{b̂s→c

i , ms→c
i }. (10)

478 Y.J. Nam et al.

4 Performance Evaluations

We set up an experimental testbed for IP storage to evaluate the performance
of the proposed technique.We use two Intel Pentium III based desktops for the
storage client and the IP storage. Both systems are attached to a Gigabit IP
network via Gigabit Ethernet cards and a switch. Assume that no other traffic
exists between the two systems. The maximum size of the Ethernet frame is
1500 bytes. The Linux kernel 2.4.18 works on top of the storage client and IP
storage. The storage client includes the initiator-mode iSCSI driver developed
by the University of New Hampshire [6], and the IP storage contains the target-
mode iSCSI driver for operating the iSCSI protocol. The network bandwidth
is controlled by Token Bucket Filtering (TBF) [7]. We believe that this type
of end-to-end traffic control works because no other traffic exists between the
storage client and the IP storage.

Table 1 shows the measured iopsi and rti for various QoS requirements of
Q1–Q4 when the amount of network bandwidth is computed by the proposed
technique. In addition, they are compared with the results with the full network
bandwidth for the same QoS requirements. We denote with prot-rt and full
for the proposed technique and the full network bandwidth, respectively. Each

Table 1. Results of iopsi and rti for the various QoS requirements of Q1–Q8

by the proposed technique (prot-rt) and the full network bandwidth allocation
(full)

QoS Technique Toward IP storage Toward client iopsi rti

Q1 prot-rt 0.05MB/s 0.60MB/s 84(100%) 9.74ms
full 100.00MB/s 100MB/s 82(100%) 9.70ms

Q2 prot-rt 1.84MB/s 0.17MB/s 265(99%) 2.59ms
full 100.00MB/s 100MB/s 266(100%) 2.58ms

Q3 prot-rt 0.03MB/s 19.19MB/s 77(100%) 15.66ms
full 100.00MB/s 100MB/s 76(100%) 15.34ms

Q4 prot-rt 15.67MB/s 0.02MB/s 211(100%) 20.28ms
full 100.00MB/s 100MB/s 208(100%) 21.54ms

of the storage QoS requirements is represented as follows: Q1 = {f1 = 1, iops1 =
82, sz1 = 1KB, s1 = 0, rt1 = 10ms}, Q2 = {f2 = 0, iops2 = 266, sz2 =
1KB, s2 = 0, rt2 = 3ms}, Q3 = {f3 = 1, iops3 = 76, sz3 = 64KB, s3 = 0, rt3 =
18ms}, and Q4 = {f4 = 0, iops4 = 208, sz4 = 64KB, s4 = 0, rt4 = 22ms}. The
first two requirements are for the small read and write I/O requests as in OLTP
applications, and the others are for the large read and write I/O requests in sci-
entific applications [5]. Since the network bandwidth allocation is independent of
storage access patterns, we assume that all the storage access patterns are purely
random. In addition, the demanded IOPS of iopsi and its associated response
time of rti are configured by injecting a set of I/O workload patterns and mea-

A Network Bandwidth Computation Technique for IP Storage 479

suring each performance. Note that the iopsi and rti of the QoS requirements
fall into neither too light traffic that makes the IP storage mostly idle nor too
heavy traffic that overloads the system. The results reveal that the allocation
of only 0.6–20% of the full network bandwidth computed by the proposed tech-
nique can meet the given storage QoS requirements. Observe that the proposed
technique can compute an appropriate amount of network bandwidth to provide
the same quality of storage service as the case when the full network bandwidth
is allocated. The percentage values in the iopsi column represent the percentage
of the measured IOPS with respect to the demanded IOPS.

Table 2 shows the measured iopsi and rti for the QoS requirements of Q1–Q4

for the prot and naive techniques. The prot technique computes the required
network bandwidth only by considering the underlying protocol overhead, as
shown in Equation (5)–(6); that is, b̂c→s

i and b̂s→c
i . The naive technique simply

calculates the network bandwidth by multiplying iopsi and szi. It assigns the
same bandwidth for each direction. As expected, the naive technique cannot
guarantee even demanded iopsi, because it does not account for the underlying
protocol overhead in Ethernet, TCP/IP, and iSCSI layers at all. Notice that

Table 2. Results of iopsi and rti for the various QoS requirements of Q1–Q8 by
the technique using Equation (5)–(6) (prot) and the technique using iopsi·szi

(naive)

QoS Technique Toward IP storage Toward client iopsi rti

Q1 naive 0.06MB/s 0.06MB/s 64(77%) 28.82ms
prot 0.01MB/s 0.12MB/s 80(96%) 12.99ms

Q2 naive 0.26MB/s 0.26MB/s 238(89%) 9.25ms
prot 0.29MB/s 0.03MB/s 262(98%) 3.54ms

Q3 naive 4.78MB/s 4.78MB/s 69(91%) 22.31ms
prot 0.01MB/s 5.19MB/s 74(96%) 19.33ms

Q4 naive 13.06MB/s 13.06MB/s 194(93%) 25.13ms
prot 14.08MB/s 0.02MB/s 208(99%) 22.05ms

the smaller sized I/O request causes higher protocol overhead, as expected from
Equation (1)–(4). In addition, the results show that read I/O requests creates
more protocol overhead than write I/O requests. It can be expected mainly from
Equation (2)–(3). By contrast, the prot technique guarantees more than 96%
of the required iopsi. However, it does not satisfy the demanded response time
of rti because of the transmission delay on IP network. Recall that, as shown in
Table 1, the proposed prot-rt technique can meet both the iopsi and the rti
by effectively allotting the network bandwidth for each direction between the
storage client and the IP storage.

480 Y.J. Nam et al.

5 Conclusion and Future Work

This paper addressed the problem of effectively allocating network bandwidth
to assure a given QoS requirement for IP storage. It defined a specification of
the storage QoS requirement, and it proposed a technique to compute the de-
manded network bandwidth to meet the storage QoS requirement that not only
accounts for the overhead caused by the underlying network protocols, but also
guarantees the minimum data transfer delay over the IP network. Performance
evaluations with various I/O workload patterns on our IP storage testbed verified
the correctness of the proposed technique; that is, allocating a part (0.6–20%)
of the entire network bandwidth can assure the given storage QoS requirements.
Currently, we have been revising Equation (9)–(10) to additionally account for
real-world I/O workload patterns featured by self-similarity and the condition
of traffic congestion.

Acknowledgments

The authors would like to thank the Ministry of Education of Korea for its
financial support toward the Electrical and Computer Engineering Division at
POSTECH through its BK21 program. This research was also supported in part
by the Korea Science and Engineering Foundation (KOSEF) under grant number
R01-2003-000-10739-0 and by HY-SDR IT Research Center.

References

1. Meth, K., Satran, J.: Design of the iscsi protocol. In: Proceedings of the Mass
Storage Systems and Technologies/20th IEEE/11th NASA Goddard Conference.
(2003)

2. Nam, Y.J.: Dynamic Storage QoS Control for Storage Cluster and RAID Perfor-
mance Enhancement Techniques. Ph.D Dissertation, POSTECH (2004)

3. Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., Veitch, A.: Hippo-
drome: Running rings around storage administration. In: Proceedings of Conference
on File and Storage Technologies. (2002)

4. Ward, J., O’Sullivan, M., Shahoumian, T., Wilkes, J.: Appia: Automatic storage
area network design. In: Proceedings of Conference on File and Storage Technolo-
gies. (2002)

5. Alvarez, G., Borowsky, E., Go, S., Romer, T., Becker-Szendy, R., Golding, R., Mer-
chant, A., Spasojevic, M., Veitch, A., Wikes, J.: Minerva: An automated resource
provisioning tool for large-scale storage systems. ACM Transactions on Computer
Systems 19 (2001) 483–518

6. UNH: iscsi reference implementation. http://www.iol.unh.edu/consortiums/iscsi/
(2004)

7. Hurbert, B.: Linux advanced routing & traffic control. http://lartc.org/howto
(2003)

	Introduction
	Problem Description
	The Proposed Technique
	Performance Evaluations
	Conclusion and Future Work

