

An Efficient Parallel Loop Self-scheduling on Grid
Environments

Chao-Tung Yang1, Kuan-Wei Cheng1, and Kuan-Ching Li2

1High Performance Computing Laboratory
Dept. of Computer Science and Information Engineering

Tunghai University
Taichung, 407 Taiwan, R.O.C.
ctyang@mail.thu.edu.tw

2Parallel and Distributed Processing Center
Dept. of Computer Science and Information Management

Providence University
Shalu, Taichung, 433 Taiwan, R.O.C.

kuancli@pu.edu.tw

Abstract. The approaches to deal with scheduling and load balancing on PC-
based cluster systems are famous and well-known. Self-scheduling schemes,
which are suitable for parallel loops with independent iterations on cluster
computer system, they have been designed in the past. In this paper, we propose
a new scheme that can adjust the scheduling parameter dynamically on an
extremely heterogeneous PC-based cluster and grid computing environments in
order to improve system performance. A grid computing environment consists
of multiple PC-based clusters is constructed using Globus Toolkit and SUN
Grid Engine middleware. The experimental results show that our scheduling
can result in higher performance than other similar schemes.

Keywords. Parallel loops, Self-scheduling, PC-based clusters, Grid Computing

1. Introduction

Parallel computers are increasingly widespread, and nowadays, many of these parallel
computers are no longer shared-memory multiprocessors, but follow the distributed
memory model due to scalability factor. These systems consist of homogeneous
workstations, where all these workstations have processors, memory and cache
memory with exactly identical specifications. Nowadays, more and more systems are
composed of homogeneous and clustered together with a number of heterogeneous
workstations, where they may have similar or different architectures, speed, and
operating systems. For this reason, first of all we have to do is to distinguish whether
the target system is homogeneous or heterogeneous. Therefore, we define a frame of
relativity to decide the cluster system to two typical cases comparatively, say
relatively homogeneous and relatively heterogeneous.

After the system architecture is clear, the next starting point is the task analysis. As
we know, the major source of program parallelization is loop. If the loop iterations

H. Jin et al. (Eds.): NPC 2004, LNCS 3222, pp. 92-100, 2004.
 IFIP International Federation for Information Processing 2004

mailto:ctyang@mail.thu.edu.tw
mailto:kuancli@pu.edu.tw

 An Efficient Parallel Loop Self-scheduling on Grid Environments 93

can be distributed to different processors as evenly as possible, the parallelism within
loop iterations can be exploited. Loops can be roughly divided into four kinds, as
shown in Figure 1: uniform workload, increasing workload, decreasing workload, and
random workload loops. They are the most common ones in programs, and should
cover most case. In a relatively homogeneous case, workload can be partitioned
proportionally by computing power respectively to each working computer, but in
relatively heterogeneous case, this method will not work. The self-scheduling scheme
works well not only in moderate heterogeneous cluster environments but also in
extremely heterogeneous environment where the performance difference between the
fastest computer and the slowest computer is large.

Figure 1. Four kinds of loop style

In this paper, we revise known loop self-scheduling schemes to fit both
homogeneous and heterogeneous PC clusters environment. The HINT Performance
Analyzer [2] is given for a help to distinguish whether the target system is relatively
homogeneous or relatively heterogeneous. Afterwards we partition loop iteration
styles by four different ways according to the cluster system typical cases for
achieving good performance in any possible executive environment. In this paper, we
propose a new scheme that can adjust the scheduling parameter dynamically on an
extremely heterogeneous PC-based cluster and grid computing environments in order
to improve system performance. A grid computing environment consists of multiple
PC-based clusters is constructed using Globus Toolkit and SUN Grid Engine
middleware. The experimental results show that our scheduling can result in higher
performance than other similar schemes.

2. Background

2.1. Self-scheduling

Self-scheduling is a large class of adaptive/dynamic centralized loop scheduling
schemes. In a common self-scheduling scheme, p denotes the number of processors,

94 C.-T. Yang, K.-W. Cheng, and K.-C. Li

N denotes the total iteration and f() is a function to produce the chunk-size at each
step. At the i-th scheduling step, the master computes the chunk-size Ci and the
remaining number of tasks Ri,

R0=N, Ci=f(i,p), Ri=Ri-1-Ci
where f() possibly has more parameters than just i and p, such as Ri-1. The master
assigns Ci tasks to an idle slave and the load imbalancing will depend on the
execution time gap between tj, for j=1, …, p [7].

2.2. The α Self-scheduling Scheme

In the previous scheduling paper [1], α% partition of workload was according to their
performance weighted by CPU clock in the first phase and the rest (100-α)% of
workload according to known self-scheduling in the second phase. The experimental
results were conducted on a PC cluster with six nodes and the fastest computer is 7.5
times faster than the slowest ones in CPU-clock cycle. Many various α values are
applied to the matrix multiplication and a best performance is obtained with α=75.
Thus, our approach is suitable in all applications with regular parallel loops. Through
αSelf-Scheduling Scheme, we get three new improved self-scheduling schemes;
From FSS, GSS, TSS, so called NFSS, NGSS, and NTSS [1], where N means “new”
here.

3. Methodology

The adjustment of scheduling parameters dynamically and fit multiform system
architectures to accomplish our system has been implemented. Later, we combined
Grid computing technology, the HINT Performance Analyzer, our αself-scheduling
scheme, and the dynamic adjustment of scheduling parameters into a whole new
approach.

3.1. System Definition

System definition is the first step in our approach. The HINT Performance Analyzer
[2] is given for helping us to distinguish whether the target system is relatively
homogeneous or relatively heterogeneous. We gather CPU performance capabilities,
amounts of memory, cache sizes, and basic system performance by HINT. An
updatable library, called System Information Array (SIA), is build to record the
collection of the information. Define the two Cluster System Typical Cases as
follows:

Gather CPU Information, P1, P2…Pn,
Assume P1 is the node that has the worst performance (working ability) of all.
Say, Pn =r n P1

Partition α% of workload according to their performance weighted by CPU clock
and the rest (100-α)% of workload according to known self-scheduling scheme.

 An Efficient Parallel Loop Self-scheduling on Grid Environments 95

(1) Define Heterogeneous Ratio (HR), HR=
p
p

n

1 ≈
MaxQUIPS
MinQUIPS ≈

rn

1 <α’/ 100,

whereα’ is the temporary value of α.
(2) Case 1: If α’ < HR, then we say the target system is relatively heterogeneous

case.
 Case 2: If α’ > HR, then we say the target system is relatively homogeneous
case.

(3) If the target system is relatively heterogeneous system, we start theαself-

scheduling scheme withα=α’ %
If the target system is relatively homogeneous, then we run the HINT
benchmark to build (and update) the SIA, and start theα self-scheduling
scheme withα=100 %

There is still a point for attention: not always update the SIA before each time of
job submission, only when the system has one or more new nodes added, SIA-update
will be needed and αwill be properly adjusted.

3.2. Loop Styles Analysis

For the programs with regular loops, intuitively, we may want to partition problem
size according to their CPU clock in heterogeneous environment. However, the CPU
clock is not the only factor which affects computer performance. Many other factors
also have dramatic influences in this aspect, such as the amount of memory available,
the cost of memory accesses, and the communication medium between processors, etc
[5]. Using this intuitive approach, the result will be degraded if the performance
prediction is inaccurate. A computer with largest inaccurate prediction will be the last
one to finish the assigned job.

Loops can be roughly divided into four kinds, as shown in figure 1: uniform
workload, increasing workload, decreasing workload, and random workload loops.
They are the most common ones in programs, and should cover most cases. These
four kinds can be classified two types: regular and irregular. The first kind is regular
and the last three ones are irregular. Different loops may need to be handled in
different ways in order to get the best performance. Since workload is predictable in
regular loops, it is not necessary to process load balancing at beginning.

We propose to partition problem size in two stages. At first stage, partition α% of
total workload according to their performance weighted by CPU clock. In the way,
the communication between master and slaves can be reduced efficiently. At second
stage, partition following (100-α) % of total workload according to known self-
scheduling scheme. In the way, load balancing can be archived. This approach can be
suitable for all regular loops. An appropriate α value will lead to good performance.

Furthermore, dynamic load balancing approach should not be aware of the run-
time behavior of the applications before execution. But in GSS and TSS, to achieve
good performance, computer performance of each computer in the cluster has to be in
order in extreme heterogeneous environment, which is not very applicable. With our

96 C.-T. Yang, K.-W. Cheng, and K.-C. Li

schemes, this trouble will not exist. In this paper, the terminology “FSS-80” stand for
“α=80, and remainder iterations use FSS to partition” and so on.

Example 1

Suppose that there is a cluster consisting of five slaves. Each of computing nodes has
CPU clock of 200MHz, 200MHz, 233MHz, 533MHz, and 1.5GHz, respectively.
Table 1 shows the different chunk sizes for a problem with the number of iteration
I=2048 in this cluster. The number of scheduling steps is parenthesized.

Table 1. Sample partition size of Example 1

GSS 410, 328, 262, 210, 168, 134, 108, 86, 69, 55, 44, 35, 28, 23, 18, 14, 12, 9, 7, 6, 5,
4, 3, 2, 2, 2, 1, 1, 1, 1 (N=30)

GSS-
80

923, 328, 144, 123, 121, 82, 66, 53, 42, 34, 27, 21, 17, 14, 11, 9, 7, 6, 4, 4, 3, 2, 2,
1, 1, 1, 1, 1 (N=28)

FSS 205, 205, 205, 205, 205, 103, 103, 103, 103, 103, 51, 51, 51, 51, 51, 26, 26, 26, 26,
26, 13, 13, 13, 13, 13, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1 (N=43)

FSS-
80

923, 328, 144, 123, 121, 41, 41, 41, 41, 41, 21, 21, 21, 21, 21, 10, 10, 10, 10, 10, 5,
5, 5, 5, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 (N=39)

TSS 204, 194, 184, 174, 164, 154, 144, 134, 124, 114, 104, 94, 84, 74, 64, 38 (N=16)
TSS-
80

923, 328, 144, 123, 121, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12,
10, 8, 1 (N=23)

To model our approach, we use following terminology:
• T is the total workload of all iterations in a loop.
• W is the α% of total workload.
• b is the fewest workload in an increasing/decreasing workload loop. It can be the

workload of the first iteration (in an increasing workload loop) or the workload
of the last iteration (in a decreasing workload loop).

• h is the different of workload between consequence iterations. h is a positive
integer.

• x is the iteration number on which the α % accumulating workload is reached. x
is positive real.

3.3. System Modeling

In our new parallel loop self-scheduling scheme, the HINT Performance Analyzer
help us to decide the cluster system for two typical cases comparatively, and the next
we must have proper reaction and appropriate self scheduling scheme processed on
which system architecture and loop style are changeable. Parallel loop style analysis
is essential since parallel loops can be roughly divided into four kinds, as shown in
Figure 1: uniform workload, increasing workload, decreasing workload, and random
workload loops. They should be the most common ones in programs, and should
cover most cases. Moreover, we implement the adjustment of scheduling parameters
dynamically to fit multiform system architectures, and message passing interface
(MPI) directives parallelizing code segment to be executed by multiple CPUs which
is so called cluster. In the loop parallelism region, our self-scheduling scheme must be

 An Efficient Parallel Loop Self-scheduling on Grid Environments 97

hand inserted into source code in the region where the largest possible loops that may
be parallelized. An example of how our new self-scheduling scheme works is shown
in Figure 2.

Figure 2. System model.

4. Experimental Results

4.1. Hardware and Software Configuration

Our Grid architecture is implemented on top of Globus Toolkit, name grid-cluster. It
is built three PC clusters to form a computational grid environment (Figure 3).
• Alpha site: Four PCs, each PC has two AMD Athlon MP2000 processors,

512MB DDRAM and Intel PRO100VE NIC.
• Beta site: Four PCs, each PC has one Intel Celeron 1.7GHz processor, 256MB

DDRAM, and 3Com 3c9051 NIC.
• Gamma site: Four PCs, each PC has two Intel P3 866 MHz processors, 256MB

SDRAM and 3Com 3c9051 NIC.

98 C.-T. Yang, K.-W. Cheng, and K.-C. Li

SGE QMaster daemon is run on the master node of each PC cluster, and SGE
execute daemon is run to manage and monitor incoming job and Globus Toolkit v2.4.
Each slave node is running SGE execute daemon to execute income job only. The
operating system is RedHat Linux release 9. Parallel application we use MPICH-G2
v1.2.5 for message passing.

Figure 3. THU Grid testbed

4.2. Experimental Results

4.2.1. Regular Workload

The experiment consists of three different scenarios: (1) Differences performance
presentation of scheduling schemes in uniform workload. (2) Different grid
environment and (3) Matrix multiplication with different matrix sizes. At first step,
we run a MPI program on different grid system to evaluate the system performance.
Second step, we connect these grid systems together to form a grid environment (In
our testbed is grid Alpha, Beta and Gamma) Then, running the same MPI program to
evaluate the system performance. Third step, through the different system topologies,
we connect the system characteristics together for a performance analysis. Finally, we
run the same MPI program to evaluate the system performance of different system
architectures. Our new scheme can guarantee whether what kind of parallel loop
scheduling situation happen, they can be properly well-arranged in our approach and
achieved better performance than other scheme developed before, all of the
performance analysis are presented in Figures 4, 5, and 6.

Figures 4, 5, and 6 note that our approach connects these grid systems together to
form a grid environment (In our testbed is grid Alpha, Beta and Gamma) Then,
running the same MPI program to evaluate the system performance and implements
FSS, GSS, and TSS group approach. In previous methods, NFSS, NTSS, and NGSS
get worse performance than new scheme with dynamic parameterization and
systematic adjustment automatically.

 An Efficient Parallel Loop Self-scheduling on Grid Environments 99

0

50

100

150

200

250

NF
SS

-8
0

NF
SS

-7
5

AN
FS

S

NG
SS

-8
0

NG
SS

-7
5

AN
GS

S

NT
SS

-8
0

NT
SS

-7
5

AN
TS

S

Pr
oc

es
sin

g T
im

e (
s)

512x512 1024x1024

0

20

40

60

80

100

120

140

N
FS

S-
80

N
FS

S-
75

AN
FS

S

N
G

SS
-8

0

N
G

SS
-7

5

AN
G

SS

N
TS

S-
80

N
TS

S-
75

AN
TS

S

Pr
oc

es
si

ng
 T

im
e

(s
ec

.)

512x512 1024x1024

0

10

20

30

40

50

60

70

80

NF
SS

-8
0

NF
SS

-7
5

AN
FS

S

NG
SS

-8
0

NG
SS

-7
5

AN
GS

S

NT
SS

-8
0

NT
SS

-7
5

AN
TS

S

Pr
oc

es
sin

g T
im

e (
se

c.)

512x512 1024x1024

Figure 4 Figure 5 Figure 6

Figure 4. A chart of execution time of different sizes of matrix multiplication by grid α+β+
γ.
Figure 5. A chart of execution time of different sizes of matrix multiplication by grid β.
Figure 6. A chart of execution time of different sizes of matrix multiplication by grid β+γ.

4.2.2. Irregular Workload

The experiment consists of three scenarios: Differences performance presentation of
scheduling schemes in (1) Increasing workload. (2) Decreasing workload and (3)
Random workload. Fig 7, 8, 9, note that execution time of simulated increasing, random,
and decreasing workload loop by various self-scheduling approaches grid α+β+γ.

Increasing Workload

0

10

20

30

40

50

60

70

80

90

NFS
S

ANFSS
NGSS

ANGSS
NTS

S
ANTSS

Pr
oc

es
sin

g T
im

e (
s)

Random Workload

0

50

100

150

200

250

300

NFSS

ANFS
S

NGSS

ANGSS
NTSS

ANTS
S

Pr
oc

es
si

ng
 T

im
e

(s
ec

.)

Decreasing Workload

0

50

100

150

200

250

NFSS ANFSS NGSS ANGSS NTSS ANTSS

Pr
oc

es
sin

g T
im

e (
s)

Figure 7 Figure 8 Figure 9

Figure 7. A chart of execution time of simulated increasing workload loop by various self-
scheduling approaches grid α+β+γ.
Figure 8. A chart of execution time of simulated random workload loop by various self-
scheduling approaches grid α+β+γ.
Figure 9. A chart of execution time of simulated decreasing workload loop by various self-
scheduling approaches grid α+β+γ.

5. Conclusion and Future Work

In this paper, we can find that Grid Computing technology certainly can bring more
computing performance than the traditional PC Cluster or SMP system. Moreover, we
try to draw up and integrate a nice and complete system implemented on parallel loop

100 C.-T. Yang, K.-W. Cheng, and K.-C. Li

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

self-scheduling. The system can guarantee whether what kind of parallel loop
scheduling situation happen, they can be properly well-arranged in our system and
achieved better performance than other scheme developed before. We revise known
loop self-scheduling schemes to fit both homogeneous and heterogeneous PC clusters
and Grid environment when loop style is regular or irregular. After enough feedback
information has been investigated, collected, and analyzed, the performance will well-
improved in each time of feedback information collection and job submission. Now
we combine Grid Computing technology, the HINT Performance Analyzer, our α
self-scheduling scheme, and the dynamic adjustment of scheduling parameters into a
whole new approach successfully. The goal of achieving good performance on
parallel loop self-scheduling by our approach is definitely practicable. The
appropriate method to investigate the performance trend after the new computing
nodes added and the proper way to adjust the value of αare our future work.

References

Chao-Tung Yang and Shun-Chyi Chang, “A Parallel Loop Self-Scheduling on Extremely
Heterogeneous PC Clusters,” Lecture Notes in Computer Science, vol. 2600, Springer-
Verlag, pp. 1079-1088, P.M.A. Sloot, D. Abramson, A.V. Bogdanov, J.J. Dongarra, A.Y.
Zomaya, Y.E. Gorbachev (Eds.), June 2003.
T. H. Tzen and L.M. Ni, “Trapezoid Self-Scheduling: A Practical Scheduling Scheme for
Parallel Compilers,” IEEE Trans. on Parallel and Distributed Systems, Vol 4, No 1, Jan.
1993, pp 87 - 98.
Christopher A. Bohn, Gary B. Lamont, “Load Balancing for Heterogeneous Clusters of
PCs,” Future Generation Computer Systems, 18 (2002) 389–400.
E. Post, H. A. Goosen, “Evaluating the Parallel Performance of a Heterogeneous System,”
Proceedings of HPCAsia2001.
H. Li, S. Tandri, M. Stumm and K. C. Sevcik, “Locality and Loop Scheduling on NUMA
Multiprocessors,” Proceedings of the 1993 International Conference on Parallel
Processing, Vol. II, 1993, pp. 140-147.
A. T. Chronopoulos, R. Andonie, M. Benche and D.Grosu, “A Class of Loop Self-
Scheduling for Heterogeneous Clusters,” Proceedings of the 2001 IEEE International
Conference on Cluster Computing, pp. 282-291
P. Tang and P. C. Yew, “Processor self-scheduling for multiple-nested parallel loops,”
Proceedings of the 1986 International Conference on Parallel Processing , 1986, pp. 528-
535.
Yun-Woei Fann, Chao-Tung Yang, Shian-Shyong Tseng, and Chang-Jiun Tsai, “An
intelligent parallel loop scheduling for multiprocessor systems,” Journal of Info. Science
and Engineering - Special Issue on Parallel and Distributed Computing, vol. 16, no. 2, pp.
169-200, March 2000.
S. F. Hummel, E. Schonberg, L. E. Flynn, “Factoring, a Scheme for Scheduling Parallel
Loops,” Communications of the ACM, Vol 35, No 8, Aug. 1992.
C. D. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: a Practical Scheduling
Scheme for Parallel Supercomputers,” IEEE Trans. on Computers, Vol 36, Dec. 1987, pp
1425 - 1439.
I. Foster, C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann; 1st edition (January 1999)
A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed Computing Systems.
I. Foster, N. Karonis. Proc. 1998 SC Conference, November, 1998.

	1. Introduction
	2. Background
	3. Methodology
	4. Experimental Results
	5. Conclusion and Future Work
	References

